Chapter 21

NONLINEAR OPTICS I

Nonlinear optical media

Taylor series expansion of polarization \mathcal{P} about $\mathcal{E} = 0$:

$$\mathcal{P} = \epsilon_o \chi \mathcal{E} + 2 \mathrm{d} \mathcal{E}^2 + 4 \chi^{(3)} \mathcal{E}^3 + \dots = \epsilon_o \chi \mathcal{E} + \mathcal{P}_{\mathrm{NL}}$$

second-order third-order

Centrosymmetric media are third-order nonlinear, because d = 0 for them.

Second-order nonlinear optics

 $\mathfrak{P} = \epsilon_o \chi \mathfrak{E} + 2 \mathrm{d} \mathfrak{E}^2$

Second-harmonic generation:

Electro-optic (Pockels) effect

$$\begin{split} \mathcal{E}(t) &= E(0) + \operatorname{Re}\{E(\omega) \exp(j\omega t)\}, \text{ where usually } |E(0)| >> |E(\omega)|.\\ \mathcal{P}_{\mathrm{NL}}(t) &= P_{\mathrm{NL}}(0) + \operatorname{Re}\{P_{\mathrm{NL}}(\omega) \exp(j\omega t)\} + \operatorname{Re}\{P_{\mathrm{NL}}(2\omega) \exp(j2\omega t)\}\\ P_{\mathrm{NL}}(0) &= \mathrm{d}\left[2E^{2}(0) + |E(\omega)|^{2}\right] \qquad P_{\mathrm{NL}}(2\omega) = \mathrm{d}E^{2}(\omega)\\ \frac{P_{\mathrm{NL}}(\omega) &= 4\mathrm{d}E(0)E(\omega)}{P_{\mathrm{NL}}(\omega) &= 4\mathrm{d}E(0)E(\omega)\\ \Rightarrow P_{\mathrm{NL}}(\omega) &= \epsilon_{o}\Delta\chi E(\omega), \text{ where } \Delta\chi &= (4\mathrm{d}/\epsilon_{o})E(0)\\ \Rightarrow n^{2} &= 1 + \chi \quad \Rightarrow \quad 2n\,\Delta n = \Delta\chi\\ \Rightarrow \boxed{\Delta n = \frac{2\mathrm{d}}{n\epsilon_{o}}E(0)} \end{split}$$

Wave mixing

Frequency conversion in three-wave mixing

$$\mathcal{E}(t) = \operatorname{Re}\{E(\omega_1) \exp(j\omega_1 t) + E(\omega_2) \exp(j\omega_2 t)\}$$

Frequency components of $\mathcal{P}_{NL}(t)$:

If the waves co-propagate, $n_1\omega_1 + n_2\omega_2 = n_3\omega_3$. $n_1 \neq n_2 \neq n_3$ due to dispersion

k₂

Wave mixing as a photon interaction process

Conservation of energy and momentum:

 $\frac{d\phi_1}{dz} = \frac{d\phi_2}{dz} = -\frac{d\phi_3}{dz} \implies \frac{d}{dz} \left(\frac{I_1}{\omega_1}\right) = \frac{d}{dz} \left(\frac{I_2}{\omega_2}\right) = -\frac{d}{dz} \left(\frac{I_3}{\omega_2}\right)$

Optical parametric devices $az \quad az \quad az \quad (\omega_1) = a$

Tolerable phase mismatch:

$$\begin{aligned} \Delta \mathbf{k} &= \mathbf{k}_3 - \mathbf{k}_1 - \mathbf{k}_2 \neq 0 \\ P_{\mathrm{NL}}(\omega_3) &= 2 \mathrm{d} E(\omega_1) E(\omega_2) = 2 \mathrm{d} A_1 A_2 \exp[-j(\mathbf{k}_1 + \mathbf{k}_2) \cdot \mathbf{r}] \\ &= \frac{2 \mathrm{d} A_1 A_2 \exp(j \Delta \mathbf{k} \cdot \mathbf{r})}{I_3 \propto \left| \int_V \mathrm{d} A_1 A_2 \exp(j \Delta \mathbf{k} \cdot \mathbf{r}) \mathrm{d} \mathbf{r} \right|^2} \end{aligned}$$

For a plane wave: $I_3 \propto |\int_0^L \exp(j\Delta k z) dz|^2 = L^2 \operatorname{sinc}^2(\Delta k L/2\pi)$

- maximum at Δk = 0 and vanishing at $L_{\rm c}$ = 2 $\pi/\Delta k$

Quasi-phase matching:

Let d be a periodic function $d(\mathbf{r}) = d_o \exp(-j\mathbf{G} \cdot \mathbf{r})$, with $\mathbf{G} = \Delta \mathbf{k}$.

$$\Rightarrow I_3 \propto \left| \int_V \mathbf{d}(\mathbf{r}) \exp(j\Delta \mathbf{k} \cdot \mathbf{r}) \mathbf{d} \mathbf{r} \right|^2 \propto \left| \int_V \mathbf{d}_o \ \exp(j\Delta \mathbf{k} \cdot \mathbf{r} - j\mathbf{G} \cdot \mathbf{r}) \mathbf{d} \mathbf{r} \right|^2$$

 \Rightarrow A new phase-matching condition is $\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{G} = \mathbf{k}_3$.

Example of a periodically *poled ferroelectric crystal*:

Third-order nonlinear medium

Kerr electro-optic effect:

A steady field E(0) causes a refractive-index change $\Delta n = -\frac{1}{2} \mathfrak{s} n^3 E^2(0)$, where $\mathfrak{s} = -\frac{12}{\epsilon_o n^4} \chi^{(3)}$ is the Kerr coefficient.

Third-harmonic generation:

A monochromatic field $E(\omega)$ leads to terms $P_{
m NL}(\omega) = 3\chi^{(3)}|E(\omega)|^2E(\omega)$ and

$$P_{
m NL}(3\omega) = \chi^{(3)}E^3(\omega)$$

Optical Kerr effect:

$$\begin{split} \epsilon_o \Delta \chi &= \frac{P_{\rm NL}(\omega)}{E(\omega)} = 3\chi^{(3)} |E(\omega)|^2 = 6\chi^{(3)} \eta I, \\ n^2 &= 1 + \chi \implies \Delta n = \frac{3\eta}{\epsilon_o n} \chi^{(3)} I \equiv n_2 I \quad \text{Impedance} \\ n(I) &= n + n_2 I \quad \text{Optical Kerr coefficient} \end{split}$$

Self-phase modulation due to optical Kerr effect

A wave of intensity *I* travelling over a distance *L* undergoes a nonlinear phase shift

$$\Delta \varphi = \frac{2\pi}{\lambda_0} n_2 IL.$$

If two waves co-propagate in the medium, a *cross-phase modulation* takes place. An optical beam "sees" a higher refractive index in the center \Rightarrow *Self-focusing*:

The Helmholtz equation, $[\nabla^2 + (n + n_2 I)^2 k_0^2]E = 0$, can be written in the slowlyvarying envelope approximation for $n_2 I \ll n$ as

$$rac{\partial^2 A}{\partial x^2}+rac{n_2}{\eta_o}k^2|A|^2A=2jkrac{\partial A}{\partial z}~~$$
 - nonlinear Schrödinger equation

One of its solutions describes a non-diverging beam (spatial soliton):

$$A(x,z) = A_0 \operatorname{sech}\left(\frac{x}{W_0}\right) \exp\left(-j\frac{z}{4z_0}\right) \Rightarrow I(x,z) = \frac{|A(x,z)|^2}{2\eta} = \frac{A_0^2}{2\eta} \operatorname{sech}^2\left(\frac{x}{W_0}\right).$$

Four-wave mixing

A superposition of three real-valued waves can be written in terms of their complex amplitudes as

$$\mathcal{E}(t) = \sum_{q=\pm 1,\pm 2,\pm 3} \frac{1}{2} E(\omega_q) \exp(j\omega_q t),$$

where $\omega_{-q} = -\omega_q$ and $E(-\omega_q) = E^*(\omega_q)$. This leads to $6^3 = 216$ terms in

$$\mathcal{P}_{\rm NL}(t) = \frac{1}{2} \chi^{(3)} \sum_{q,r,l=\pm 1,\pm 2,\pm 3} E(\omega_q) E(\omega_r) E(\omega_l) \, \exp[j(\omega_q + \omega_r + \omega_l)t].$$

A harmonic component of frequency $\omega_3 + \omega_4 - \omega_1$ has six terms above so that

$$P_{\rm NL}(\omega_1 + \omega_2 - \omega_3) = 6\chi^{(3)}E(\omega_1)E(\omega_2)E^*(\omega_3).$$

Hence, four waves are mixed by the medium, if $\omega_4 = \omega_1 + \omega_2 - \omega_3$. The frequency- and phase-matching conditions are

$$\omega_1 + \omega_2 = \omega_3 + \omega_4,$$

 $\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3 + \mathbf{k}_4.$

6

Three-wave mixing and optical phase conjugation

The condition $\omega_1 + \omega_2 = \omega_3 + \omega_4$ is satisfied, if $\omega_3 = \omega_4 \equiv \omega_0$ and therefore $\omega_1 + \omega_2 = 2\omega_0$. This results in *three-wave mixing* that still involves 4 photons.

The frequency-matching condition is satisfied also if $\omega_1 = \omega_2 = \omega_3 = \omega_4 = \omega$. This *degenerate four-wave mixing* leads to *phase conjugation*. If two of the waves are counter-propagating, i.e., $\mathbf{k}_4 = -\mathbf{k}_3$, we obtain

 $E_2({f r})\,\propto\,A_3A_4E_1^*({f r})$,

which means that the generated wave is a conjugate of $E_1(\mathbf{r})$.

