Operating Rules of Course MEC-E6002 Welding Technology and Design

Master Degree in Mechanical Engineering 2018/2019 **Responsible Professor:** Professor Pedro Vilaça (pedro.vilaca@aalto.fi)

Period V (Spring term); Credits: 5; Language: English; Evaluation: 0 to 5

Date	Theory Seminar Content	Time and Place
Seminar 1 15/04 (Monday)	Presentation of course contents and general information Introduction to welding technology (+ allied techniques)	10h15-12h00 U5 / U147 Otakaari 1
Seminar 2 17/04 (Wednesday)	Fundaments of physics of the electric arc and power sources	10h15-13h00 U5 / U147 Otakaari 1
Seminar 3 24/04 (Wednesday)	Electric arc welding processes:	10h15-13h00 U5 / U147 Otakaari 1
Seminar 4 29/04 (Monday)	Electric arc welding processes (cont.):	10h15-12h00 U5 / U147 Otakaari 1
Seminar 5 06/05 (Monday)	High power density welding processes: • Fundaments of electron beam welding and variants • Fundaments of laser beam welding and variants (+ laser cutting)	10h15-12h00 12h30-14h00 U5 / U147 Otakaari 1
Seminar 6 08/05 (Wednesday)	Oxyfuel welding (+ oxyfuel cutting) Joining by brasing and soldering Fundaments and variants of resistance welding processes: • Spot, seam and projection	10h15-13h00 U5 / U147 Otakaari 1
Seminar 7 13/05 (Monday)	Introduction to welding metallurgy: • Fundaments • Thermal cycle in welding • Welding of steels and low alloy steels	10h15-12h00 U5 / U147 Otakaari 1

(Continues in the next page...)

Date	Theory Seminar Content (continuation)	Time and Place
Seminar 8 15/05 (Wednesday)	Introduction of welding metallurgy (cont.): • Welding of steels and low alloy steels (cont.) • Welding of stainless steels • Welding of non-ferrous metals	10h15-13h00 U5 / U147 Otakaari 1
Seminar 9 20/05 (Monday)	Solid state welding processes: • Flash and stud welding • High frequency welding • Cold pressure welding • Ultrasonic welding • Diffusion welding • Explosion coating and cutting • Friction and friction stir based processes	10h15-13h00 U5 / U147 Otakaari 1
Seminar 10 22/05 (Wednesday)	Design of Welded Structures: (issue not included in exam) Residual Stress and Deformation	10h15-13h00 U5 / U147 Otakaari 1

Date	Exercise/Laboratory Session Content	Time and Place
Session 1 18/04 (Thursday)	Safety and general information about welding laboratory facilities and procedures Demonstration and practice of electric arc welding process (1/3): Practice: Shielded Metal Arc Welding (SMAW or MMA) Demo: Submerged Arc Welding (SAW)	Shift A: 10h15-12h00 Shift B: 14h15-16h00 K2 Welding Lab
Session 2 25/04 (Thursday)	Demonstration and practice of electric arc welding process (2/3): • Practice: Gas Metal Arc Welding (GMAW or MIG/MAG) • Demo: Friction Stir Welding (FSW)	Shift A: 10h15-12h00 Shift B: 14h15-16h00 K2 Welding Lab
Session 3 02/05 (Thursday)	Demonstration and practice of electric arc welding process (3/3): Practice: Gas Tungsten Arc Welding (GTAW or TIG) Demo: Plasma Arc Welding (PAW)	Shift A: 10h15-12h00 Shift B: 14h15-16h00 K2 Welding Lab
Session 4 09/05 (Thursday)	Demonstration and practice of non-electric arc techniques: Practice: Resistance Welding (RW) Demo: Oxyfuel Cutting + Plasma Cutting	Shift A: 10h15-12h00 Shift B: 14h15-16h00 K2 Welding Lab
Session 5 16/05 (Thursday)	Application exercises of welding metallurgy	Shift A + Shift B: 10h15-12h00 U5 / U147 Otakaari 1
Session 6 23/05 (Thursday)	Preparation for exam	Shift A + Shift B: 10h15-12h00 K3, Room118

Registration preferential condition:

Evaluation:

Final Grade = 0.6 X max (final exam grade May; final exam grade September) +

- 0.2 X continuous evaluation grade (questions from 11 theory seminars) +
- 0.2 X continuous evaluation grade (reports of 4 weld laboratory sessions)
- All exams and continuous evaluation tasks are evaluated in a scale of [0..100];
- Final Grade [0..5] = (Final Grade [0..100] 23)/14
 0 (insufficient); 1 (sufficient); 2 (satisfactory); 3 (good); 4 (very good); 5 (excellent).
- Final Exam:
 - a) 1st Final exam: Monday, 27th May 2019 from 13h00 to 16h00 (room: U1/U154 @ Otakaari 1);
 - b) 2nd Final exam in date, time and room to be announced.
- Continuous Evaluation:
 - a) Questions from theory seminars:
 - A set of questions will be established at the end of each of the 11 seminars;
 - Answer to the questions from each theory seminar should be submitted in MyCourses in the correspondent "Assignments" sub-section, as one document identified as: "Firstname_Surname_Seminar#.pdf"
 - The deadline to submit the answers is the end of the day of the theory seminar (23h59);
 - The grade [0..100] is obtained from the average of the grades [0..100] of each of the 11 theory seminars.
 - b) Reports of weld laboratory sessions:
 - The report is individual (each student will submit his own document), and only the students present during laboratory sessions are entitled to submit it;
 - Instructions and guidance information for the report of the laboratory activities will be available in a separated document;
 - Reports cannot be larger than 4 pages;
 - Reports should be submitted in MyCourses in the "Assignments" sub-section, as one document identified as: "Firstname_Surname_LabSession#.pdf"
 - The deadline to submit the reports is the end of the Sundday immediately after of the laboratory session (23h59);
 - The grade [0..100] is obtained from the average of the grades [0..100] of each of the 4 laboratory session reports.

Registration in laboratory sessions:

- Timetable:
 - > Shift A: Thursday 10h15 to 12h00
 - > Shift B: Thursday 14h15 to 16h00
- All the students should register at MyCourses, in the "Laboratory Sessions" section, and attend all the sessions in the laboratory shift where they are registered. The deadline to register is 17.04.2019 (23h59);
- The welding lab is located @ K2 ground floor.

Professor Time Table for Support of Students (Sähkömiehentie 3, Room 246):

• Thursday 12h00 to 14h00 (send email for confirmation: pedro.vilaca@aalto.fi)

Contact of Course Assistant:

General issues: Hamidreza Latifi (hamidreza.latifi@aalto.fi)

Contact of Welding Laboratory Operator:

Mikko Peltonen (mikko.j.peltonen@aalto.fi)

References:

Basic

- Principles of Welding Processes Physics, Chemistry, and Metallurgy. Robert W. Messler, Jr. Wiley-VCH. 2004 (ISBN-13: 978-0-471-25376-1)
- Welded Joint Design (3rd Edition), John Hicks. Woodhead Publishing Ltd. 1999 (ISBN-1-85573386-2).

Other

General (Welding Processes and Applications):

- ASM Metals Handbook Vol. 6 Welding Brazing and Soldering. 1993. ASM International.
- AWS Welding Handbook Vol. 1 to 4 8th and/or 9th edition. American Welding Society.

Electric Arc Physics:

- J. F. Lancaster (1986) The Physics of Welding, 2nd edition, IIW, Pergamon Press Solid state processing:
 - Pedro Vilaça, João Gandra, Catarina Vidal, "Linear Friction Based Processing Technologies for Aluminum Alloys: Surfacing, Stir Welding and Stir Channeling".
 Chapter 7 of book: "Aluminium Alloys-New Trends in Fabrication and Applications".
 pp. 159-197. ISBN 980-953-307-512-4, Intech. Available from: doi: 10.5772/3354.
 - Pedro Vilaça, Wayne Thomas, "State-of-the-art in FSW technology". Chapter 4 of book: "Structural Connections for Lightweight Metallic Structures". pp. 85-124. ISBN 978-3-642-18186-3, Springer. Available from doi: 10.1007/8611_2010_50.

Design of Welded Structures:

 Eurocode 3: Design of steel structures. Part 1-1 (General rules and rules for buildings) and Part 1-8 (Design of joints)