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Modeling Securities and Investment 
in Continuous Time II

Aalto/ Professor Suominen

Preliminary notes (updated during the course)
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3.The Black-Scholes
Model
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The Concepts  Underlying Black-
Scholes

• The option price and the stock price depend on 
the same underlying source of uncertainty

• We can form a portfolio consisting of the stock 
and the option which eliminates this source of 
uncertainty

• The portfolio is instantaneously riskless and must 
instantaneously earn the risk-free rate

• This leads to the Black-Scholes differential 
equation for the value of option: function f (an 
example of all possible functions G)
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Black-Scholes Differential Equation
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The value of the portfolio  is given by
ƒ      ƒ       

The change in its value in time   is given by
ƒ      ƒ       
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The Derivation  of the Black-Scholes 
Differential Equation continued
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The Derivation  of the Black-Scholes 
Differential Equation 
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The return on the portfolio must be the risk-free
 rate.  Hence
       
We substitute for ƒ and   in these equations
to get the Black-Scholes differential equation:
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Note: The value of the portfolio π does 
not depend on z, hence no risk
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The Differential Equation
• Any security whose price is dependent  on the 

stock price satisfies the differential equation
• The particular security being valued is determined 

by the boundary conditions of the differential 
equation

• In an option the boundary condition is
ƒ = max(S  – K;0), when t =T
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The solution is:
Black-Scholes Formula
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The Differential Equation for 
Forward Contract

• In a forward contract the boundary condition 
is ƒ = S  – K when t =T

• The solution to the equation is
ƒ = S – K e–r (T – t )

Exercise: Check!
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3. Martingales and 
Risk Neutral Pricing in 

Continuous Time
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Martingales and Risk Neutral 
Pricing

• Definition of a Martingale:
• Et θt+1 = θt
• Here: dθ = dz

• Here Et refers to expectation at time t

• Still assume single source of uncertainty z
• Consider two assets f1 and f2

– df1 = μ1f1dt +σ1f1dz
– df2 = μ2f2dt +σ2f2dz
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Martingales and Risk Neutral Pricing
• Let Π = (σ2f2) f1 –(σ1f1)f2

• dz terms cancel, Π is riskless → hence drift = rΠdt 

• We obtain: 

• (σ2f2) f1 μ1dt –(σ1f1)f2 μ2dt  = rΠdt 

= r[(σ2f2) f1 –(σ1f1)f2]dt

This implies that we must have that (otherwise??)

• (μ1-r)/ σ1 = (μ2-r)/ σ2 
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Martingales and Risk Neutral Pricing
• No arbitrage implies that there exists λ such that 

λ = (μi-r)/ σi for all assets i

• Define λ = (μi-r)/ σi as market price of risk
• σi is then the level of risk

• Now each security where only source of uncertainty is z 
must evolve according to:

– df / f = (r + λσf)dt + σfdz (1)
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Martingales and Risk Neutral Pricing
• Equivalent to ”risk neutral probabilities” in the binomial 

model in the derivatives course 

• In the derivatives course we defined risk neutral probablity 
as a ”probability” p such that if E* is the expectation operator 
that corresponds with p,

St = E*t(St+1) / (1+r)

• Note that p was not a real probability of stock price going up

• Here also we change the ”probability measure” so that drift 
is equal to zero (or rdt in case of a discounted martingale).



4/15/19

Martingales and Risk Neutral Pricing
• Risk neutral probability measure in continuous time: 
• Consider again two securities f, g:

– df = μffdt +σffdz (2)
– dg = μggdt +σggdz (3)

– Now look at the relative price  Φ= f/g
– That is the price of f in units of g (g being the numeraire 

instead of $)
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Equivalent martingale measure
• Equivalent martingale measure result: when there are no 

arbitrage opportunities Φ is a martingale for some choice of 
market price for risk

• In particular, if market price for risk λ = σg then Φ= f/g is a 
martingale for all f (p. 595 in Hull).** 

• Assuming a market price of risk λ = σg is equivalent to 
assuming p = (1+r-d)/(u-d) in the binomial framework. If we 
pretend this is the market price of risk, then pricing of 
securities is easy as (letting Eg denote expectation under this 
assumption) it follows that 

f0/g0= Eg,0(fT/gT)        

** HW: Prove this result showing all the steps (including all 
partial derivatives).



Proof that f/g a martingale under the previous assumption
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Example
• A dollar money market account is a security that is worth $1 at time zero and 

earns instantaneous risk free rate r at any given time. The variable r may be 
stochastic. If we set g equal to the money market account, then λ = 0. Then

– dg = rgdt

• Drift is stochastic but volatility of g is zero. 

• As λ=0, Eg  is equivalent to taking expectation E* in the ”traditional risk neutral 
world”

• Hence

• In this case: g0 = 1,                   and
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Questions

• What probability structure we should 
assume ”in the traditional risk neutral 
world”?

• That is, what is the evolution of the 
interest rate under the risk neutral 
probability measure?
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4. MODELLING TERM 
STRUCTURE OF INTEREST 

RATES
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Interest rate derivatives and 
models of short rate

Value of an interest rate derivative

f0 = E* (e – ∫0
T

rdt fT) = E* (e – r T fT) , r is 
average interest rate

Define P(t,T) as the period t price of a zero 
coupon bond that pays off 1 at T.

Pt = E* (e – r (T-t) )
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Interest rate derivatives and 
models of short rate

If R(t,T) is continuously compounded interest 
rate from t to T we have

R(t,T)  = - ln(P(t,T))/(T-t)
= - ln (E* (e – r (T-t) ) / (T-t)
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Models of short rate (to calculate the 
average rate in risk neutral world)

Vasicek’s model
dr = a(b-r)dt + σ dz

Cox-Ingersoll Ross model
dr = a(b-r)dt + σ√r dz

Hull-White Model: 
dr = a(θ(t)/a - r)dt + σ dz

where θ(t) is calculated from the initial yield curve. These 
models give closed form solutions to zero coupon bonds of 
all maturities as functions of the state variables (in the first 
two models only r). 
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Models of short rate 
solution to Vasicek’s model
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Solutions to the other models can be found in Ch 28 in Hull
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Hull-White Model

θ(t) = Ft(0,t) + a F(0,t) + σ2/(2a)* (1-exp(-2at))

- θ(t) is selected to fit the initial term structure of interest rates

- the drift in r is towards the initial term structure defined by 
F(0,t) as if we ignore the last term (which is typically small) 
the drift is:

Ft(0,t) + a[F(0,t) -r]

t

F(0,t)
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Black& Scoles can also be derived 
in the risk neutral world
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Multiple sources of uncertainty

• Suppose z a vector 

• Similar results but now market prices λi for all 
sources of uncertainty i

i

n

0i
i,f fdzdtdf å

=

s+µ=

å
=

sl=-µ
n

0i
iir



4/15/19

Application: B&S with stochastic 
interest rate
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B&S with stochastic interest rate
• Let P(t,T) be the numeraire security: 

– gT = P(T,T) = 1  

– g0 = P(0,T)

=> f0 = P(0,T) E*(fT) = e-RTE*(fT)

• Let fT = max(ST-K;0)

• Whereas in p.53 where we derived B&S with non-stochastic interest rate we had

we now have

implying that the result is similar except R replacing r in the B&S formula.
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5. CONTINUOUS TIME 
FINANCIAL MARKETS AND 
THE WEALTH EVOLUTION



4/15/19

Stochastic Integrals
• Ito’s lemma 

implies that
                   

dz b
x
Gdtb

x
G½

t
Ga

x
GdG  2

2

2

¶
¶

+÷÷
ø

ö
çç
è

æ
¶
¶

+
¶
¶

+
¶
¶

=

                   

dz b
x
Gdtb

x
G½

t
Ga

x
G)x(G)x(G  

T

0

T

0

2
2

2

0T òò ¶
¶

+÷÷
ø

ö
çç
è

æ
¶
¶

+
¶
¶

+
¶
¶

=-



4/15/19

Continuous Time Financial 
Markets: Wealth Evolution

• Suppose only one source of uncertainty: Brownian motion z(t)
• Let Ωt represent the information generated by the Brownian 
motion up to time t:
• Financial markets consist of two assets

- Riskless security 0:     dP0 = rP0dt 
P0(0) = 1 

- Risky security 1 (stock): dP1 =  μP1dt +  σP1dz(t)   
P1(0) > 0

HW: Use Ito’s Lemma to represent P1(t) explicitly as
a function of z(t) and t

{ }ts0:)s(z ££
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Solution to HW
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Wealth and Utility Maximization

( )T 0tt =P

Trading Strategies

Given initial wealth W(0), a trading strategy is a process

that is non-anticipating and satisfies

Π represents the investment in stock therefore W(t) – Π(t) is 

invested in riskless asset. Hence this trading strategy is strictly

self-financing.

dW(t) = [W(t)-Π(t)]rdt + Π(t)[μdt + σdz(t)]

This is a controlled diffusion where by 

changing Π(t) we change the variance of the 

process
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Wealth Evolution

• Using Ito’s lemma we can verify that discounted 
wealth 

is the solution to the evolution equation (defined 
below)
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Wealth Evolution

• We soon define a new “probability measure” where drift of this discounted 
wealth is zero, hence discounted wealth is a martingale.

• Definition: Absence of arbitrage. There exists no non-anticipating trading 
strategy that starts from W(0)=0 and leads to W(T) where P(W(T)>0)>0 and 
P(W(T) ≥ 0)=1.
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Equivalent Martingale Measure
• The absence of arbitrage is equivalent to existence of a 

probability measure p* under which discounted security 
prices are martingales.

• So under this probability measure all trading strategies Π
are discounted martingales:
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Martingale representation theorem /
Dynamically complete markets

• Martingale Representation Theorem: If           is a 
martingale with respect to Ωt then M(t) can be 
represented by a stochastic integral

and this representation is unique.

• Pricing of contingent claims: If σ > 0, a contingent claim 
fT is attainable in the sense that there exists a trading 
strategy that yields fT with probability 1. Let W(t) be the 
value of this trading strategy at time t. Then f(t) = W(t). 

- Why?
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APPENDIX: What is the probability measure 
that makes discounted wealth a martingale?
Theorem( Girsanov Transformation) Suppose z(t) is a standard 
Brownian motion and X a process such that 

is a martingale. Then under the measure P*(A) = E1AHT, the 
process 

is a Brownian motion. We apply this theorem for Xt=-θ=-(μ-r)/σ.
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APPENDIX: H(t) a martingale

• We can check that H(t) is a martingale

• So z*(t) = z(t)+θt =                         is a Brownian 
motion under measure P*
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Appendix: What is the probability measure 
that makes discounted wealth a martingale?
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Now HT is the change of probability measure from the true 

probability P to the risk neutral probability P*, that is 

HT = dP*/dP

and H(t) = E[HT │Ωt]

NOTE: f(t) = E*(f(T)) = E(H(T)f(T)) and f(t) thus depends only on 

H(t) and t. (You can now also verify our earlier statement that e-rtW(t) 

is a martingale under P*).                      
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Optimal Investment

• Max E U(W(T))
s.t. E* e-rT W(T) ≤ W(0)

• Max E U(W(T))
s.t. e-rT E [H(T)W(T)] ≤ W(0)

• Max E U(W(T)) +  l {W(0) - e-rT H(T)W(T)}
W(T)

=>         = Q (e-rT l H(T)),   where Q = U�-1 and l solves
E* e-rT Q (e-rT l H(T))=W(0), 

WÎw"

The optimal wealth for each state and the optimal trading strategy 
can now be found by looking at the following maximization problem:

)T(W
Ù
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Optimal Investment
The optimal trading strategy can be found as follows:

Recall that H(t) = E (H(T))
Now as wealth        that replicates         depends only on H(t) and t

On the other hand
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Optimal Investment CARA
The optimal trading strategy can be found as follows:
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Other common problems

• Max U(WT)
– s.t. E*e-rTW(T) = W(0)
– s.t. W(T) ≥ A

HW Many bonus points if you manage to 
characterize this as HW (see e.g., Grossman and 
Vila, Journal of Business).
Trick: Note terminal wealth just like an option 
max(W(T)-A;0)
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KEY ISSUES FROM THIS PART
• Wiener process / Brownian motion
• Ito processes

– Modeling stocks as an Ito-process
– Applications: 

– Forward price
– lnS

• E(ex)
• Derivation of the Black&Scholes differential equation

– Showing using the boundary condition and Black&Scholes 
differential equation that for the forward price

ƒ = S – K e–r (T – t )
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KEY ISSUES FROM THIS PART
• Concept of a martingale
• Martingales and arbitrage, risk neutral pricing
• Equivalent martingale measure result

– if market price for risk λ = σg then Φ= f/g is a martingale for all f

– Application: 
– Bonds

• Models for the risk free rate and the term structure of interest 
rates
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KEY ISSUES FROM THIS PART

• Wealth processes
• Risk neutral probabilities more generally
• Dynamically complete markets

• Portfolio optimization in dynamically complete 
markets
– Trading rule assuming CARA utilities


