

CS-E4070 — Computational learning theory Slide set 01 : introduction to PAC learning

Cigdem Aslay and Aris Gionis Aalto University

spring 2019

reading material

- SS&BD, chapters 2 and 3
- K&V, chapter 1

stranded in a tropical island

need to buy papayas from the local market

- want to learn to recognize tasty fruits
- judge based on color and softness
- start learning after tasting few samples

example from SS&BD

formalization

- X : instance space, or input space the space in which we represent our input data
- Y : label space, e.g., Y = {0, 1} or Y = {-1, 1} the set of available labels
- $c: X \to Y$: target concept

the mapping we want to learn

• C : concept class, i.e., $c \in C$

a collection of concepts over X

formalization

- D : a probability distribution over X
- EX(D, c) : example (sample) generator
 returns an example (sample) (x, y), where x is
 sampled from D, and y = c(x)
- S = {(x₁, y₁),..., (x_m, y_m)} : sample set, or training set each (x, y) ∈ S is generated by EX(D, c)

the learner

- the learner observes sample set S and outputs
 h: X → Y : hypothesis, or predictor
 also denoted h_S to emphasize dependence on S
- hypothesis *h* can be used to predict the label of future data points x
- particularly interested in quantifying the performance of the learner for predicting data drawn from ${\cal D}$

measures of success

 the error of the learner is defined as the probability that the learner does not predict the correct label on a random data point sampled from D

 $\textit{error}_{\mathcal{D}}(h) = \mathbf{Pr}_{\mathbf{x} \sim \mathcal{D}}[h(\mathbf{x}) \neq c(\mathbf{x})]$

other considerations

- the size *m* of the sample set S
- the running time of the learner
- the class required to represent the hypothesis h

empirical risk

• define empirical risk the error on the training set

*error*_S(*h*) =
$$\frac{1}{m} |\{i \in [m] \mid h(\mathbf{x}_i) \neq y_i\}| = \frac{1}{m} \sum_{i=1}^m \mathbb{I}[h(\mathbf{x}_i) \neq y_i]$$

where $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}$ a sample set of size *m*, $[n] = \{1, \dots, n\}$, and \mathbb{I} the indicator function

we want to minimize empirical risk

• what may go wrong ?

overfitting

• the hypothesis

$$h(\mathbf{x}) = \begin{cases} y_i & \text{if } \mathbf{x} = \mathbf{x}_i \text{ for some } i \\ 0 & \text{otherwise} \end{cases}$$

achieves $error_{S}(h) = 0$ but has no generalization power

 such hypothesis may seem artificial, but could be achieved by a "natural" polynomial of sufficiently high degree

overfitting

sample
$$S = \{(x_1, y_1), ..., (x_m, y_m)\}$$

hypothesis h_S

how to deal with overfitting

- do not consider arbritrarily complex hypotheses
- restrict search over a "natural" family of hypotheses
- \mathcal{H} : hypothesis class

- e.g., $\mathcal{H} =$ set of axis-aligned rectangles

- such rectification is known as inductive bias
- bias is decided in advance; prior knowledge is needed
- empirical risk minimization rule becomes

 $EX_{\mathcal{H}}(S) = \arg\min_{h\in\mathcal{H}} error_{S}(h)$

the case of finite hypothesis class ${\cal H}$

let's assume that H is finite

 not an unreasonable assumption; we can always discretize

the empirical risk minimization rule does not overfit

what do we want show?

• the empirical risk minimization rule gives hypothesis

 $h_{S} = EX_{\mathcal{H}}(S) = \arg\min_{h \in \mathcal{H}} error_{S}(h)$

- we want to show that $error_{\mathcal{D}}(h_S)$ is small
- recall that S has been drawn from $\mathcal D$
- we assume independent samples, denoted by $S \sim D^m$
- realizability assumption : there exists a hypothesis h^{*} ∈ H such that error_D(h^{*}) = 0
- the realizability assumption implies that error_S(h^{*}) = 0, and thus, also error_S(h_S) = 0

what can we hope to show?

- we want to show that $error_{\mathcal{D}}(h_S)$ is small
- we want to show that *error*_D(h_S) ≤ ε
 where ε > 0 is an accuracy parameter
- in addition, we may get "unlucky" and draw a "bad" sample
- thus, we want $error_{\mathcal{D}}(h_{\mathcal{S}}) \leq \epsilon$ with high probability
- we introduce a confidence parameter $\delta \in (0,1)$
- we require *error*_D(h_S) ≤ ε with probability at least 1 − δ

what else do we want show?

- · we also want to show that our learning scheme is efficient
- not "too many" samples are sufficient

finite hypothesis class and realizability

- assuming a finite hypothesis class and realizability the empirical risk minimization rule does not overfit
- theorem (FINITE) : consider a finite hypothesis class H and assume realizability. Consider accuracy ε > 0, confidence δ ∈ (0, 1), and sample size

$$m \geq rac{\log(|\mathcal{H}|/\delta)}{\epsilon}.$$

let h_S the hypothesis selected by the empirical risk minimization rule over a sample $S \sim D^m$. Then

 $error_{\mathcal{D}}(h_{\mathcal{S}}) \leq \epsilon$

with probability at least $1 - \delta$.

proof of FINITE theorem (sketch)

- lemma: the probability that any hypothesis with error more than *ϵ* is consistent with a sample *S* of size *m* is less than (1 − *ϵ*)^{*m*}|*H*|
- thus, the probability that all consistent hypotheses have error at most *ϵ* is at least 1 − (1 − *ϵ*)^m|*H*|
- we want to select m so that

 $(1-\epsilon)^m |\mathcal{H}| \le \delta$

which gives

$$m \geq \frac{1}{-\ln(1-\epsilon)} \left(\ln |\mathcal{H}| + \ln \left(\frac{1}{\delta} \right) \right) \geq \frac{1}{\epsilon} \left(\ln |\mathcal{H}| + \ln \left(\frac{1}{\delta} \right) \right)$$

PAC learning

previous statement has the form

- probably approximate correct (PAC) learning
 - note that ϵ and δ can be arbitrarily close to 0

definition of PAC learning

• (preliminary) definition (PAC learning) :

a concept class C is PAC learnable if there is a learning algorithm A with the following property:

for every concept $c \in C$, every distribution D, and every

 $\epsilon > 0$ and $\delta \in (0, 1)$, there is a number *m* so that if *A* is given a sample $S \sim D^m$, it outputs a hypothesis $h \in C$ that satisfies

error $_{\mathcal{D}}(h) \leq \epsilon$

with probability at least $1 - \delta$.

notes on PAC learning definition

- the sample data are drawn from D and labeled according to a taget concept c ∈ C
- realizability assumption holds because we require $h \in C$
- the definition can be modified so that we can consider learning a target concept c ∈ C using a hypothesis h from a different class H
- this is useful when we are agnostic about concept class $\mathcal C$

efficient PAC learning

- if the learning algorithm runs in time polynomial in $\frac{1}{\epsilon}$ and $\frac{1}{\delta}$ we say that the C is efficiently PAC learnable
- this implies that *m* is polynomial in $\frac{1}{\epsilon}$ and $\frac{1}{\delta}$

applications

• theorem (FINITE) can be rephrased as

every finite hypothesis class is PAC learnable with sample complexity

$$m_{\mathcal{H}} \leq rac{\log(|\mathcal{H}|/\delta)}{\epsilon}$$

application : no-free-lunch theorem

SS&BD, chapter 5

- we can show that there is no universal learner
 - some form of prior knowledge is necessary
 - we should know something about ${\mathcal D}$ and/or ${\mathcal C}$
- **theorem** (no-free-lunch) : let *A* be a learner over *X*.

Then there exists a distribution \mathcal{D} over $X \times \{0, 1\}$ such that

- 1. there exists concept $c: X \to \{0, 1\}$ with $error_{\mathcal{D}}(c) = 0$
- 2. with probability at least 1/7 over $S \sim D^m$ we have that $error_D(A(S)) \ge 1/8$
- corollary : let C be the set of all mappings from an infinite domain X to {0, 1}. Then, C is not PAC learnable.

representation size

- efficient PAC learning = polynomial learning algorithm
- we have ignored representation issues
- however, the representation of the target concept matters
 - different representations of the same concept may differ exponentially

examples

- boolean functions represented in DNF or not
- convex polytope represented by its vertices or by linear constraints of its faces

representation size

- for running-time considerations the hypothesis representation size is important
- hypothesis representation size is a lower bound on time complexity
- notice that we have no information about the representation of the target concept
 - we only observe labeled data

representation scheme

- a representation scheme specifies how to represent a concept class with strings of a finite vocabulary
 - e.g., a decision tree can be represented by a
 C program that implements the tree
- size(h) is the encoding in bits of a concept h
- for a target concept c (that we do not know how it is actually represented) we define

$$size(c) = \min_{\mathcal{R}(z)=c} \{size(z)\}$$

i.e., the minimum possible encoding

instance dimension

- we often parameterize an instance space and an associated concept class by a notion of dimension
- for example
 - $X_n = \{0, 1\}^n$: the set of *n* boolean variables
 - C_n : boolean formulas in 3-CNF over *n* variables
 - $X = \bigcup_{n \ge 1} X_n$
 - $C = \bigcup_{n \ge 1} C_n$

modified definition of PAC learning

• (modified) definition (PAC learning) :

a concept class C_n over an instance space X_n is PAC learnable if there is a learning algorithm that satisfies the properties of the previous (preliminary) definition, and in addition the algorithm runs in polynomial time with respect to n, size(c), $\frac{1}{\epsilon}$, and $\frac{1}{\delta}$, when learning a target concept $c \in C_n$.

learning axis-aligned rectangles

K&V, section 1.1

learning axis-aligned rectangles

learning algorithm

- 1. observe sample $S = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_m, \mathbf{y}_m)\}$ drawn from distribution \mathcal{D}^m
- 2. return the tightest-fit axis-aligned rectangle that contains all positive examples

(by realizability assumption the returned rectangle does not contain any negative example)

learning axis-aligned rectangles

K&V, section 1.1

learning axis-aligned rectangles

K&V, section 1.1

theorem

the class of axis-aligned rectangles is efficiently PAC learnable with sample complexity

$$m_{\mathcal{R}} \leq rac{4}{\epsilon} \ln \left(rac{4}{\delta}
ight)$$

K&V, section 1.3

- consider *n* boolean variables *x*₁,..., *x_n*
- instance space $X_n = \{0, 1\}^n$ is the set of all truth assignments of the boolean variables x_1, \ldots, x_n
- we use *a_i* to denote the value of *x_i* in a truth assignment
- concept class C_n is the set of all boolean conjunctions over X_n, e.g.,

 $c(x_1, x_2, x_3, x_4) = x_1 \wedge \overline{x}_2 \wedge x_4$

- $size(c) \le 2n$, and encoding requires $O(n \log n)$ bits
- examples (a, y) drawn from EX(D, c) consist of truth assignments a and their evaluation y = c(a) ∈ {0, 1}

K&V, section 1.3

learning algorithm

• initial hypothesis

 $h(x_1,\ldots,x_n)=x_1\wedge\overline{x}_1\wedge x_2\wedge\overline{x}_2\wedge\ldots\wedge x_n\wedge\overline{x}_n$

(initially not satisfiable)

- negative examples drawn from EX(D, c) are ignored
- for positive examples
 - if $a_i = 0$ we delete literal x_i from h
 - if $a_i = 1$ we delete literal \overline{x}_i from h

K&V, section 1.3

analysis of the learning algorithm

- a literal is deleted from *h* if it is 0 in a positive example
- clearly, such a literal cannot be in the concept target c
- the literals of *h* include those of *c* i.e., *h* is a more specific than *c*
- *h* will never err in a negative example
- *h* will only err in a positive example due to some literal that was not deleted in the training
- high-level idea : if such a literal is not likely to appear in the training set, then it is also not likely to appear in the test set

proof sketch

K&V, section 1.3

- consider literal z that is in h but not in c
- z causes h to err in positive examples in which z = 0
- define $p(z) = \Pr_{\mathbf{a} \in \mathcal{D}} [c(\mathbf{a}) = 1 \land z \text{ is } 0 \text{ in } \mathbf{a}]$
- every error of h can be "blamed" to at least one literal z of h
- by union bound: $error(h) \leq \sum_{z \in h} p(z)$
- we call literal z "bad" if $p(z) \ge \epsilon/(2n)$
- if *h* contains no bad literals then $error(h) \le (2n)\epsilon/(2n) = \epsilon$
- the probability that a bad literal is not removed from h (after seeing m examples) is at most (1 – ε/2n)^m
- the probability that some bad literal is not removed is at most 2n(1 - ε/2n)^m
- again, select *m* so that $2n(1 \epsilon/2n)^m \le \delta$

K&V, section 1.3

theorem

the class of conjunctions of boolean literals is efficiently PAC learnable with sample complexity

$$m_{\mathcal{C}} \leq \frac{2n}{\epsilon} \left(\ln(2n) + \ln\left(\frac{1}{\delta}\right) \right)$$

intractability 3-term DNF formulas

K&V, section 1.4

 concept class C_n of 3-term DNF formulas is the set of all disjunctions

 $T_1 \vee T_2 \vee T_3$

where T_1 , T_2 , and T_3 are conjunctions of literals over boolean variables x_1, \ldots, x_n

theorem

the class of 3-term DNF formulas is not efficiently PAC learnable, unless $\mathbf{RP} = \mathbf{NP}$

- reduction from graph 3-coloring problem (!)

intractability proof sketch

- we want to show that $\ensuremath{\mathcal{C}}$ is not PAC learnable
- obtain reduction from an NP-hard language A
- given a we want to answer whether $a \in A$
- we want to : map a to a sample set S_a so that

 $a \in A$ if and only if \exists concept $c \in C$ consistent with S_a

- we can use a PAC learning algorithm *L* to decide $a \in A$
- trick : set $\epsilon = 1/(2|S_a|)$ and \mathcal{D} uniform over S_a
- any *h* found by *L* would be consistent with S_a because even for one mistake, error would be 1/|S_a| > ε

reduction from graph 3-coloring problem

Probably Approximately Correct Learning

Figure 1.5: A graph G with a legal 3-coloring, the associated sample, and the terms defined by the coloring.

avoiding intractability by using 3-CNF formulas

- the class of 3-CNF formulas is the set of conjunctions of clauses, where each clause is a disjunction of at most 3 literals over boolean variables x₁,..., x_n
- 3-CNF formulas are more expressive than 3-term DNF formulas, as

$$T_1 \vee T_2 \vee T_3 = \bigwedge_{u \in T_1, v \in T_2, w \in T_3} (u \vee v \vee w)$$

theorem

K&V, section 1.5

the class of 3-term DNF formulas is efficiently PAC learnable using 3-CNF formulas

remark

- 3-CNF formulas are more expressive than 3-term DNF
- 3-term DNF formulas are not efficiently PAC learnable in their own representation class, but they are efficiently PAC learnable using 3-CNF formulas
- the choice of hypothesis representation is very important

final definition of PAC learning

• (final) definition (PAC learning) :

let C be a concept class over an instance space X and \mathcal{H} be a representation class over X. We say that C is efficiently PAC learnable using \mathcal{H} if the previous (modified) definition of PAC learning is satisfied by a learning algorithm that is allowed to output a hypothesis from \mathcal{H} .

 ${\mathcal H}$ needs to be at least as expressive as ${\mathcal C}$

We refer to ${\cal H}$ as the hypothesis class of the PAC learning algorithm.

summary of previous results

K&V, section 1.5

- the representation class of 1-term DNF formulas (conjunctions) is efficiently PAC learnable using 1-term DNF formulas
- for k ≥ 2, the representation class of k-term DNF formulas is not efficiently PAC learnable using k-term DNF formulas, but it is efficiently PAC learnable using k-CNF formulas

study in detail the proofs of the theorems we discussed

- SS&BD, chapters 2 and 3
- K&V, chapter 1