CS-E4070 - Computational learning theory

Slide set 01 : introduction to PAC learning

Cigdem Aslay and Aris Gionis
Aalto University
spring 2019

reading material

- SS\&BD, chapters 2 and 3
- K\&V, chapter 1

stranded in a tropical island

need to buy papayas from the local market

- want to learn to recognize tasty fruits
- judge based on color and softness
- start learning after tasting few samples

papayas tasting data

softness

papayas tasting data

softness

papayas tasting data

papayas tasting data

formalization

- X : instance space, or input space the space in which we represent our input data
- Y : label space, e.g., $Y=\{0,1\}$ or $Y=\{-1,1\}$ the set of available labels
- $c: X \rightarrow Y:$ target concept the mapping we want to learn
- \mathcal{C} : concept class, i.e., $c \in \mathcal{C}$
a collection of concepts over X

formalization

- \mathcal{D} : a probability distribution over X
- $E X(\mathcal{D}, c)$: example (sample) generator returns an example (sample) (\mathbf{x}, y), where \mathbf{x} is sampled from \mathcal{D}, and $y=c(\mathbf{x})$
- $S=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}$: sample set, or training set each $(\mathbf{x}, y) \in S$ is generated by $E X(\mathcal{D}, c)$

the learner

- the learner observes sample set S and outputs
$h: X \rightarrow Y$: hypothesis, or predictor
also denoted h_{S} to emphasize dependence on S
- hypothesis h can be used to predict the label of future data points x
- particularly interested in quantifying the performance of the learner for predicting data drawn from \mathcal{D}

measures of success

- the error of the learner is defined as the probability that the learner does not predict the correct label on a random data point sampled from \mathcal{D}

$$
\operatorname{error}_{\mathcal{D}}(h)=\operatorname{Pr}_{\mathbf{x} \sim \mathcal{D}}[h(\mathbf{x}) \neq c(\mathbf{x})]
$$

other considerations

- the size m of the sample set S
- the running time of the learner
- the class required to represent the hypothesis h

empirical risk

- define empirical risk the error on the training set

$$
\operatorname{error}_{S}(h)=\frac{1}{m}\left|\left\{i \in[m] \mid h\left(\mathbf{x}_{i}\right) \neq y_{i}\right\}\right|=\frac{1}{m} \sum_{i=1}^{m} \mathbb{I}\left[h\left(\mathbf{x}_{i}\right) \neq y_{i}\right]
$$

where $S=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}$ a sample set of size m, $[n]=\{1, \ldots, n\}$, and \mathbb{I} the indicator function
we want to minimize empirical risk

- what may go wrong ?

overfitting

- the hypothesis

$$
h(\mathbf{x})= \begin{cases}y_{i} & \text { if } \mathbf{x}=\mathbf{x}_{i} \text { for some } i \\ 0 & \text { otherwise }\end{cases}
$$

achieves $\operatorname{error}_{S}(h)=0$ but has no generalization power

- such hypothesis may seem artificial, but could be achieved by a "natural" polynomial of sufficiently high degree

overfitting

$$
\text { sample } S=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}
$$

softness

overfitting

hypothesis h_{S}

softness

how to deal with overfitting

- do not consider arbritrarily complex hypotheses
- restrict search over a "natural" family of hypotheses
- \mathcal{H} : hypothesis class

$$
\text { - e.g., } \mathcal{H}=\text { set of axis-aligned rectangles }
$$

- such rectification is known as inductive bias
- bias is decided in advance; prior knowledge is needed
- empirical risk minimization rule becomes

$$
E X_{\mathcal{H}}(S)=\arg \min _{h \in \mathcal{H}} \operatorname{error}_{S}(h)
$$

the case of finite hypothesis class \mathcal{H}

- let's assume that \mathcal{H} is finite
- not an unreasonable assumption; we can always discretize
- the empirical risk minimization rule does not overfit

what do we want show?

- the empirical risk minimization rule gives hypothesis

$$
h_{S}=E X_{\mathcal{H}}(S)=\arg \min _{h \in \mathcal{H}} \operatorname{error}_{S}(h)
$$

- we want to show that $\operatorname{error}_{\mathcal{D}}\left(h_{S}\right)$ is small
- recall that S has been drawn from \mathcal{D}
- we assume independent samples, denoted by $S \sim \mathcal{D}^{m}$
- realizability assumption : there exists a hypothesis $h^{*} \in \mathcal{H}$ such that $\operatorname{error}_{\mathcal{D}}\left(h^{*}\right)=0$
- the realizability assumption implies that $\operatorname{error}_{S}\left(h^{*}\right)=0$, and thus, also errors $\left(h_{S}\right)=0$

what can we hope to show?

- we want to show that $\operatorname{error}_{\mathcal{D}}\left(h_{S}\right)$ is small
- we want to show that $\operatorname{error}_{\mathcal{D}}\left(h_{S}\right) \leq \epsilon$ where $\epsilon>0$ is an accuracy parameter
- in addition, we may get "unlucky" and draw a "bad" sample
- thus, we want $\operatorname{error}_{\mathcal{D}}\left(h_{S}\right) \leq \epsilon$ with high probability
- we introduce a confidence parameter $\delta \in(0,1)$
- we require $\operatorname{error}_{\mathcal{D}}\left(h_{S}\right) \leq \epsilon$ with probability at least $1-\delta$

what else do we want show?

- we also want to show that our learning scheme is efficient
- not "too many" samples are sufficient

finite hypothesis class and realizability

- assuming a finite hypothesis class and realizability the empirical risk minimization rule does not overfit
- theorem (FINITE) : consider a finite hypothesis class \mathcal{H} and assume realizability. Consider accuracy $\epsilon>0$, confidence $\delta \in(0,1)$, and sample size

$$
m \geq \frac{\log (|\mathcal{H}| / \delta)}{\epsilon}
$$

let h_{S} the hypothesis selected by the empirical risk minimization rule over a sample $S \sim \mathcal{D}^{m}$. Then

$$
\operatorname{error}_{\mathcal{D}}\left(h_{S}\right) \leq \epsilon
$$

with probability at least $1-\delta$.

proof of FINITE theorem (sketch)

- lemma: the probability that any hypothesis with error more than ϵ is consistent with a sample S of size m is less than $(1-\epsilon)^{m}|\mathcal{H}|$
- thus, the probability that all consistent hypotheses have error at most ϵ is at least $1-(1-\epsilon)^{m}|\mathcal{H}|$
- we want to select m so that

$$
(1-\epsilon)^{m}|\mathcal{H}| \leq \delta
$$

which gives

$$
m \geq \frac{1}{-\ln (1-\epsilon)}\left(\ln |\mathcal{H}|+\ln \left(\frac{1}{\delta}\right)\right) \geq \frac{1}{\epsilon}\left(\ln |\mathcal{H}|+\ln \left(\frac{1}{\delta}\right)\right)
$$

PAC learning

- previous statement has the form

- probably approximate correct (PAC) learning
- note that ϵ and δ can be arbitrarily close to 0

definition of PAC learning

- (preliminary) definition (PAC learning) :
a concept class \mathcal{C} is PAC learnable if there is a learning algorithm A with the following property:
for every concept $c \in \mathcal{C}$, every distribution \mathcal{D}, and every $\epsilon>0$ and $\delta \in(0,1)$, there is a number m so that if A is given a sample $S \sim \mathcal{D}^{m}$, it outputs a hypothesis $h \in \mathcal{C}$ that satisfies

$$
\operatorname{error}_{\mathcal{D}}(h) \leq \epsilon
$$

with probability at least $1-\delta$.

notes on PAC learning definition

- the sample data are drawn from \mathcal{D} and labeled according to a taget concept $c \in \mathcal{C}$
- realizability assumption holds because we require $h \in \mathcal{C}$
- the definition can be modified so that we can consider learning a target concept $c \in \mathcal{C}$ using a hypothesis h from a different class \mathcal{H}
- this is useful when we are agnostic about concept class \mathcal{C}

efficient PAC learning

- if the learning algorithm runs in time polynomial in $\frac{1}{\epsilon}$ and $\frac{1}{\delta}$ we say that the \mathcal{C} is efficiently PAC learnable
- this implies that m is polynomial in $\frac{1}{\epsilon}$ and $\frac{1}{\delta}$

applications

- theorem (FINITE) can be rephrased as
every finite hypothesis class is PAC learnable with sample complexity

$$
m_{\mathcal{H}} \leq \frac{\log (|\mathcal{H}| / \delta)}{\epsilon}
$$

application : no-free-lunch theorem

SS\&BD, chapter 5

- we can show that there is no universal learner
- some form of prior knowledge is necessary
- we should know something about \mathcal{D} and/or \mathcal{C}
- theorem (no-free-lunch) : let A be a learner over X.

Then there exists a distribution \mathcal{D} over $X \times\{0,1\}$ such that 1. there exists concept $c: X \rightarrow\{0,1\}$ with $\operatorname{error}_{\mathcal{D}}(c)=0$
2. with probability at least $1 / 7$ over $S \sim \mathcal{D}^{m}$ we have that $\operatorname{error}_{\mathcal{D}}(A(S)) \geq 1 / 8$

- corollary : let \mathcal{C} be the set of all mappings from an infinite domain X to $\{0,1\}$. Then, \mathcal{C} is not PAC learnable.

representation size

- efficient PAC learning = polynomial learning algorithm
- we have ignored representation issues
- however, the representation of the target concept matters
- different representations of the same concept may differ exponentially

examples

- boolean functions represented in DNF or not
- convex polytope represented by its vertices or by linear constraints of its faces

representation size

- for running-time considerations the hypothesis representation size is important
- hypothesis representation size is a lower bound on time complexity
- notice that we have no information about the representation of the target concept
- we only observe labeled data

representation scheme

- a representation scheme specifies how to represent a concept class with strings of a finite vocabulary
- e.g., a decision tree can be represented by a C program that implements the tree
- size (h) is the encoding in bits of a concept h
- for a target concept c (that we do not know how it is actually represented) we define

$$
\operatorname{size}(c)=\min _{\mathcal{R}(z)=c}\{\operatorname{size}(z)\}
$$

i.e., the minimum possible encoding

instance dimension

- we often parameterize an instance space and an associated concept class by a notion of dimension
- for example
- $X_{n}=\{0,1\}^{n}$: the set of n boolean variables
$-\mathcal{C}_{n}$: boolean formulas in 3-CNF over n variables
- $X=\bigcup_{n \geq 1} X_{n}$
$-\mathcal{C}=\bigcup_{n \geq 1} \mathcal{C}_{n}$

modified definition of PAC learning

- (modified) definition (PAC learning) :
a concept class \mathcal{C}_{n} over an instance space X_{n} is PAC learnable if there is a learning algorithm that satisfies the properties of the previous (preliminary) definition, and in addition the algorithm runs in polynomial time with respect to $n, \operatorname{size}(c), \frac{1}{\epsilon}$, and $\frac{1}{\delta}$, when learning a target concept $c \in \mathcal{C}_{n}$.

learning axis-aligned rectangles

K\&V, section 1.1

learning axis-aligned rectangles

learning algorithm

1. observe sample $S=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}$ drawn from distribution \mathcal{D}^{m}
2. return the tightest-fit axis-aligned rectangle that contains all positive examples
(by realizability assumption the returned rectangle does not contain any negative example)

learning axis-aligned rectangles

K\&V, section 1.1

learning axis-aligned rectangles

K\&V, section 1.1

- theorem
the class of axis-aligned rectangles is efficiently PAC learnable with sample complexity

$$
m_{\mathcal{R}} \leq \frac{4}{\epsilon} \ln \left(\frac{4}{\delta}\right)
$$

learning boolean conjunctions

K\&V, section 1.3

- consider n boolean variables x_{1}, \ldots, x_{n}
- instance space $X_{n}=\{0,1\}^{n}$ is the set of all truth assignments of the boolean variables x_{1}, \ldots, x_{n}
- we use a_{i} to denote the value of x_{i} in a truth assignment
- concept class \mathcal{C}_{n} is the set of all boolean conjunctions over X_{n}, e.g.,

$$
c\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} \wedge \bar{x}_{2} \wedge x_{4}
$$

- $\operatorname{size}(c) \leq 2 n$, and encoding requires $\mathcal{O}(n \log n)$ bits
- examples (a,y) drawn from $E X(\mathcal{D}, c)$ consist of truth assignments a and their evaluation $y=c(a) \in\{0,1\}$

learning boolean conjunctions

K\&V, section 1.3
learning algorithm

- initial hypothesis

$$
h\left(x_{1}, \ldots, x_{n}\right)=x_{1} \wedge \bar{x}_{1} \wedge x_{2} \wedge \bar{x}_{2} \wedge \ldots \wedge x_{n} \wedge \bar{x}_{n}
$$

(initially not satisfiable)

- negative examples drawn from $E X(\mathcal{D}, c)$ are ignored
- for positive examples
- if $a_{i}=0$ we delete literal x_{i} from h
- if $a_{i}=1$ we delete literal \bar{x}_{i} from h

learning boolean conjunctions

K\&V, section 1.3
analysis of the learning algorithm

- a literal is deleted from h if it is 0 in a positive example
- clearly, such a literal cannot be in the concept target c
- the literals of h include those of c
i.e., h is a more specific than c
- h will never err in a negative example
- h will only err in a positive example due to some literal that was not deleted in the training
- high-level idea : if such a literal is not likely to appear in the training set, then it is also not likely to appear in the test set

proof sketch

K\&V, section 1.3

- consider literal z that is in h but not in c
- z causes h to err in positive examples in which $z=0$
- define $p(z)=\operatorname{Pr}_{\mathbf{a} \in \mathcal{D}}[c(\mathbf{a})=1 \wedge z$ is 0 in $\mathbf{a}]$
- every error of h can be "blamed" to at least one literal z of h
- by union bound: error $(h) \leq \sum_{z \in h} p(z)$
- we call literal z "bad" if $p(z) \geq \epsilon /(2 n)$
- if h contains no bad literals then $\operatorname{error}(h) \leq(2 n) \epsilon /(2 n)=\epsilon$
- the probability that a bad literal is not removed from h (after seeing m examples) is at most $(1-\epsilon / 2 n)^{m}$
- the probability that some bad literal is not removed is at most $2 n(1-\epsilon / 2 n)^{m}$
- again, select m so that $2 n(1-\epsilon / 2 n)^{m} \leq \delta$

learning boolean conjunctions

K\&V, section 1.3

- theorem
the class of conjunctions of boolean literals is efficiently PAC learnable with sample complexity

$$
m_{\mathcal{C}} \leq \frac{2 n}{\epsilon}\left(\ln (2 n)+\ln \left(\frac{1}{\delta}\right)\right)
$$

intractability 3-term DNF formulas

K\&V, section 1.4

- concept class \mathcal{C}_{n} of 3-term DNF formulas is the set of all disjunctions

$$
T_{1} \vee T_{2} \vee T_{3}
$$

where T_{1}, T_{2}, and T_{3} are conjunctions of literals over boolean variables x_{1}, \ldots, x_{n}

- theorem
the class of 3-term DNF formulas is not efficiently
PAC learnable, unless RP = NP
- reduction from graph 3-coloring problem (!)

intractability proof sketch

- we want to show that \mathcal{C} is not PAC learnable
- obtain reduction from an NP-hard language A
- given a we want to answer whether $a \in A$
- we want to: map a to a sample set S_{a} so that
$a \in A$ if and only if \exists concept $c \in \mathcal{C}$ consistent with S_{a}
- we can use a PAC learning algorithm L to decide $a \in A$
- trick : set $\epsilon=1 /\left(2\left|S_{a}\right|\right)$ and \mathcal{D} uniform over S_{a}
- any h found by L would be consistent with S_{a} because even for one mistake, error would be $1 /\left|S_{a}\right|>\epsilon$

reduction from graph 3-coloring problem

Probably Approximately Correct Learning

Figure 1.5: A graph G with a legal 3-coloring, the associated sample, and the terms defined by the coloring.

avoiding intractability by using 3-CNF formulas

- the class of 3-CNF formulas is the set of conjunctions of clauses, where each clause is a disjunction of at most 3 literals over boolean variables x_{1}, \ldots, x_{n}
- 3-CNF formulas are more expressive than 3-term DNF formulas, as

$$
T_{1} \vee T_{2} \vee T_{3}=\bigwedge_{u \in T_{1}, v \in T_{2}, w \in T_{3}}(u \vee v \vee w)
$$

- theorem
the class of 3-term DNF formulas is efficiently PAC learnable using 3-CNF formulas

remark

- 3-CNF formulas are more expressive than 3-term DNF
- 3-term DNF formulas are not efficiently PAC learnable in their own representation class, but they are efficiently PAC learnable using 3-CNF formulas
- the choice of hypothesis representation is very important

final definition of PAC learning

- (final) definition (PAC learning) :
let \mathcal{C} be a concept class over an instance space X and \mathcal{H} be a representation class over X. We say that \mathcal{C} is efficiently PAC learnable using \mathcal{H} if the previous (modified) definition of PAC learning is satisfied by a learning algorithm that is allowed to output a hypothesis from \mathcal{H}.
\mathcal{H} needs to be at least as expressive as \mathcal{C}
We refer to \mathcal{H} as the hypothesis class of the PAC learning algorithm.

summary of previous results

K\&V, section 1.5

- the representation class of 1-term DNF formulas (conjunctions) is efficiently PAC learnable using 1-term DNF formulas
- for $k \geq 2$, the representation class of k-term DNF formulas is not efficiently PAC learnable using k-term DNF formulas, but it is efficiently PAC learnable using k-CNF formulas

reading assignment

study in detail the proofs of the theorems we discussed

- SS\&BD, chapters 2 and 3
- K\&V, chapter 1

