Aalto University >
. Department of
School of Science 0 Computer Science

Approximation Algorithms

Lecture 7: Min. Degree Spanning Trees via
Local Search

Joachim Spoerhase

2019

=
L

ESPANNINGTR]

L

1

MINIMUMDEGR]]

Given: A connected graph Graph G = (V, F).
Find: A spanning tree T' which has the minimum maximum

degree A(T') among all spanning trees of G.

=
L

ESPANNINGTR]

L

1

MINIMUMDEGR]]

Given: A connected graph Graph G = (V, F).
Find: A spanning tree T' which has the minimum maximum

degree A(T') among all spanning trees of G.

A(T) =7

=
L

ESPANNINGTR]

L

1

MINIMUMDEGR]]

Given: A connected graph Graph G = (V, E).
Find: A spanning tree T' which has the minimum maximum

degree A(T') among all spanning trees of G.

=
L

ESPANNINGTR]

L

1

MINIMUMDEGR]]

Given: A connected graph Graph G = (V, E).
Find: A spanning tree T' which has the minimum maximum

degree A(T') among all spanning trees of G.
NP-hard :-(

=
L

ESPANNINGTR]

L

1

MINIMUMDEGR]]

Given: A connected graph Graph G = (V, E).
Find: A spanning tree T' which has the minimum maximum

degree A(T') among all spanning trees of G.

NP-hard :-(
Why?

=
L

ESPANNINGTR]

L

1

MINIMUMDEGR]]

Given: A connected graph Graph G = (V, E).
Find: A spanning tree T' which has the minimum maximum

degree A(T') among all spanning trees of G.

NP-hard :-(
Why?
Hamiltonian Path
Is a special case!

Local Adjustment via Edge Flips

_ B(T)

................ E(G) — E(T)

Local Adjustment via Edge Flips

T+ e

_ B(T)

................ E(G) — E(T)

Local Adjustment via Edge Flips

_ B(T)

................ E(G) — E(T)

Local Adjustment via Edge Flips

_ B(T)

................ E(G) — E(T)

Local Adjustment via Edge Flips

Improvement when deg,(v) — 1 > max{deg(u), deg(w)}

BT

................ E(G) — E(T)

Local Search

e Start from any spanning tree T' of G

Local Search

e Start from any spanning tree T' of G

e Perform edge flips until no flip improves the solution.

A(T) f

AN

>

Spanning tree T of G

Local Search

e Start from any spanning tree T' of G

e Perform edge flips until no flip improves the solution.

A(T) f

VAN

>

Spanning tree T of G

Local Search

e Start from any spanning tree T' of G

e Perform edge flips until no flip improves the solution.

A(T) f

s

>

Spanning tree T of G

Local Search

e Start from any spanning tree T' of G

e Perform edge flips until no flip improves the solution.

A(T) f

>

Spanning tree T of G

Local Search

e Start from any spanning tree T' of G
e Perform edge flips until no flip improves the solution.
a(r) |

Plateau

Y,

>

Spanning tree T of G
Flips don't always improve A(T) !!

Local Search

e Start from any spanning tree T' of G

e Perform edge flips until no flip improves the solution.

A(T) f

S

>

Spanning tree T of G

Local Search

e Start from any spanning tree T' of G

e Perform edge flips until no flip improves the solution.

A(T) f

S

>

Spanning tree T of G

Local Search

e Start from any spanning tree T' of G

e Perform edge flips until no flip improves the solution.

A
A(T) Local optimum — no flip “improves” the solution.

PN

>

Spanning tree T of G

Local Search

e Start from any spanning tree T' of G

e Perform edge flips until no flip improves the solution.

A(T)

OPT

A

Local optimum — no flip “improves” the solution.

j\ \' global optimum

Spanning tree T of G

Local Search

e Start from any spanning tree T' of G

e Perform edge flips until no flip improves the solution.

A
A(T) Local optimum — no flip “improves” the solution.

j\ \' global optimum

1 apx factor? J
OPT |- M T

Spanning tree T of G

How to handle plateaus? What is the runtime?

Local Search

Algorithm MinDegSTLocalSearch(T)
while there is an “improving flip” (*) in T for a vertex v

with dr(v) > A(T) — ¢ do

L perform the flip.
(*) vw € E(G) \ E(T) with dp(v) — 1 > max{dp(u), dr(w)}
such that T"U {uw} forms a cycle containing v.

Local Search

Algorithm MinDegSTLocalSearch(T)
while there is an “improving flip” (*) in T for a vertex v

with dr(v) > A(T) — ¢ do

L perform the flip.
(*) vw € E(G) \ E(T) with dr(v) — 1 > max{dr(u), dr(w)}
such that T"U {uw} forms a cycle containing v.

e unclear whether it completes in polynomial time ...

Local Search

Algorithm MinDegSTLocalSearch(T)
while there is an “improving flip” (*) in T for a vertex v

with dr(v) > A(T) — ¢ do

L perform the flip.
(*) vw € E(G) \ E(T) with dr(v) — 1 > max{dr(u), dr(w)}
such that T"U {uw} forms a cycle containing v.

e unclear whether it completes in polynomial time ...

e idea: flip only when the degree of v with
deg(v) > A(T) — £ is reduced where ¢ := [log, n|

Local Search

Algorithm MinDegSTLocalSearch(T)
while there is an “improving flip” (*) in T for a vertex v

with dr(v) > A(T) — ¢ do
L perform the flip.

(*) vw € E(G) \ E(T) with dr(v) — 1 > max{dr(u), dr(w)}
such that T"U {uw} forms a cycle containing v.

e unclear whether it completes in polynomial time ...

e idea: flip only when the degree of v with
deg(v) > A(T) — £ is reduced where ¢ := [log, n|

e first the approximation factor, then the runtime

Approximation Factor

Thm. If T" is a locally optimal spanning tree, then
A(T) <2-0PT + ¢, where ¢ = [log, n]|.

Approximation Factor

Thm. If T" is a locally optimal spanning tree, then
A(T) <2-0PT + ¢, where ¢ = [log, n]|.

Proof. Part 1: Lower bound on OPT

Removing k edges partitions 1" in k + 1 components

Approximation Factor

Thm. If T" is a locally optimal spanning tree, then
A(T) <2-0PT + ¢, where ¢ = [log, n]|.

Let £’ be the edges of G between distinct components (K; # K;).

Approximation Factor

Thm. If T" is a locally optimal spanning tree, then
A(T) <2-0PT + ¢, where ¢ = [log, n]|.

Proof. Part 1: Lower bound on OPT
Let £’ be the edges of G between distinct components (K; # K;).

Vertex Cover S of E’

Approximation Factor

Thm. If T" is a locally optimal spanning tree, then
A(T) <2-0PT + ¢, where ¢ = [log, n]|.

Proof. Part 1: Lower bound on OPT
Let £’ be the edges of G between distinct components (K; # K;).

E(T*)NE" > k for
an optimal spanning

Vertex Cover S of E’

Approximation Factor

Thm. If T" is a locally optimal spanning tree, then
A(T) <2-0PT + ¢, where ¢ = [log, n]|.

Proof. Part 1: Lower bound on OPT
Let £’ be the edges of G between distinct components (K; # K;).

E(T*)NE" > k for
an optimal spanning

Vertex Cover S of E’

Approximation Factor

Thm. If T" is a locally optimal spanning tree, then
A(T) <2-0PT + ¢, where ¢ = [log, n]|.

Proof. Part 1: Lower bound on OPT OPT > k/|S|

Let £’ be the edges of G between distinct components (K; # K;).

E(T*)NE" > k for
an optimal spanning

Vertex Cover S of E’

Approximation Factor

Thm. If T" is a locally optimal spanning tree, then
A(T) <2-0PT + ¢, where ¢ = [log, n]|.

Proof. Part 1: OPT > £/|S]|
Part 2: Applying the bound.

Approximation Factor

Thm. If T" is a locally optimal spanning tree, then
A(T) <2-0PT + ¢, where ¢ = [log, n]|.
Proof. Part 1: OPT > £/|S]|
Part 2: Applying the bound.

Let S; be the nodes in T with dp(v) > 1.
Let F; be the edges of 1" incident to §;.

Approximation Factor

Thm. If T" is a locally optimal spanning tree, then
A(T) <2-0PT + ¢, where ¢ = [log, n]|.

Proof. Part 1: OPT > £/|S]|
Part 2: Applying the bound.
Let .S; be the nodes in T with dp(v) > .
Let F; be the edges of 1" incident to §;.
Claim 1: For i > A(T) — ¢ + 1,
() |Ei| > (i = 1)]Si] + 1.
(ii) Each e € E(G) \ E; connecting distinct components of
T\ E; is incident to a node of S;_1.

Approximation Factor

Thm. If T" is a locally optimal spanning tree, then
A(T) <2-0PT + ¢, where ¢ = [log, n]|.

Proof. Part 1: OPT > £/|S]|
Part 2: Applying the bound.
Let .S; be the nodes in T with dp(v) > .
Let F; be the edges of 1" incident to §;.
Claim 1: For i > A(T) — ¢ + 1,
() |Ei| > (i = 1)]Si] + 1.
(ii) Each e € E(G) \ E; connecting distinct components of
T\ E; is incident to a node of S;_1.

Claim 2: There is an ¢ such that |.S;_1| < 2|5;|.

Approximation Factor

Thm. If T" is a locally optimal spanning tree, then
A(T) <2-0PT + ¢, where ¢ = [log, n]|.

Proof. Part 1: OPT > £/|S]|
Part 2: Applying the bound.
Let .S; be the nodes in T with dp(v) > .
Let F; be the edges of 1" incident to §;.
Claim 1: For i > A(T) — ¢ + 1,
() |Ei| > (i — D)|S:] +1
(ii) Each e € E(G) \ E; connecting distinct components of
T\ E; is incident to a node of S;_1.

Claim 2: There is an ¢ such that |S;_1| < 2|5;|.
By Part 1, and Claims 1 & 2 ... how do we choose k£ and S7

Approximation Factor

Thm. If T" is a locally optimal spanning tree, then
A(T) <2-0PT + ¢, where ¢ = [log, n]|.

Proof. Part 1: OPT > £/|S]|
Part 2: Applying the bound.
Let .S; be the nodes in T with dp(v) > .
Let F; be the edges of 1" incident to §;.
Claim 1: For i > A(T) — ¢ + 1,
() |Ei| > (i — D)|S:] +1
(ii) Each e € E(G) \ E; connecting distinct components of
T\ E; is incident to a node of S;_1.

Claim 2: There is an ¢ such that |S;_1| < 2|5;|.

By Part 1, and Claims 1 & 2 ... how do we choose k£ and S7

(—1)ISi[+1 G=D)IS;+1 _ i1 A(T)—¢
OPT =2 =g~ 2"=Er > 7 2~

Approximation Factor

Thm. If T" is a locally optimal spanning tree, then
A(T) <2-0PT + ¢, where ¢ = [log, n]|.

Proof. Part 1: OPT > £/|S]|
Part 2: Applying the bound.
Let .S; be the nodes in T with dp(v) > .
Let F; be the edges of 1" incident to §;.
Claim 1: For i > A(T) — ¢ + 1,
() |Ei| > (i — D)|S:] +1
(ii) Each e € E(G) \ E; connecting distinct components of
T\ E; is incident to a node of S;_1.

Claim 2: There is an ¢ such that |S;_1| < 2|5;|.

By Part 1, and Claims 1 & 2 ... how do we choose k£ and S7

(—DISi|+1 (=LISi+1 i1 < A(T)=¢
OPT > =55 225 > 2 2~ 2 0

Runtime

Thm. The algorithm finds a local optimal in polynomial time.
Proof.

Runtime

Thm. The algorithm finds a local optimal in polynomial time.

Proof.
Via potenial function ®(G,T). ~» a function measuring
the value of a solution where, e.g., :
e each iteration decreases the potential of a solution.

Runtime

Thm. The algorithm finds a local optimal in polynomial time.

Proof.
Via potenial function ®(G,T). ~» a function measuring
the value of a solution where, e.g., :
e each iteration decreases the potential of a solution.

e the function is bounded both from above and below.

Runtime

Thm. The algorithm finds a local optimal in polynomial time.

Proof.
Via potenial function ®(G,T). ~ a function measuring

the value of a solution where, e.g., :
e each iteration decreases the potential of a solution.

e the function is bounded both from above and below.

e executing f(n) iterations would execeed this lower bound.

Runtime

Thm. The algorithm finds a local optimal in polynomial time.
Proof. Our potential function: ®(7T") = ZUEV(G) 3d7(v)

Via potenial function ®(G,T). ~» a function measuring
the value of a solution where, e.g., :
e each iteration decreases the potential of a solution.

e the function is bounded both from above and below.

e executing f(n) iterations would execeed this lower bound.

Runtime

Thm. The algorithm finds a local optimal in polynomial time.
Proof. Our potential function: ®(7T") = ZUGV(G) 3d7(v)

Via potenial function ®(G,T). ~ a function measuring
the value of a solution where, e.g., :

e each iteration decreases the potential of a solution.
Lemma: each iteration ®(7") < (1 — 525)d(T).

e the function is bounded both from above and below.

e executing f(n) iterations would execeed this lower bound.

Runtime

Thm. The algorithm finds a local optimal in polynomial time.
Proof. Our potential function: ®(7T") = ZUGV(G) 3d7(v)

Via potenial function ®(G,T). ~ a function measuring
the value of a solution where, e.g., :

e each iteration decreases the potential of a solution.
Lemma: each iteration ®(7") < (1 — 525)d(T).

e the function is bounded both from above and below.
For any spanning tree T', ®(T') € [3n,n3"].

e executing f(n) iterations would execeed this lower bound.

Runtime

Thm. The algorithm finds a local optimal in polynomial time.
Proof. Our potential function: ®(7T") = ZUGV(G) 3d7(v)

Via potenial function ®(G,T). ~ a function measuring
the value of a solution where, e.g., :

e each iteration decreases the potential of a solution.
Lemma: each iteration ®(7") < (1 — 525)d(T).

e the function is bounded both from above and below.
For any spanning tree T', ®(T') € [3n,n3"].

e executing f(n) iterations would execeed this lower bound.
How does ®(7T") change?

Runtime

Thm. The algorithm finds a local optimal in polynomial time.
Proof. Our potential function: ®(7T") = ZUGV(G) 3d7(v)

Via potenial function ®(G,T). ~ a function measuring
the value of a solution where, e.g., :

e cach iteration decreases the potential of a solution.
Lemma: each iteration ®(7") < (1 — 525)d(T).

e the function is bounded both from above and below.
For any spanning tree T', ®(T') € [3n,n3"].

e executing f(n) iterations would execeed this lower bound.

How does CD(T) change?
shrinks by: (1 — 272713)10(”) < (e~ T)/ (")

Runtime

Thm. The algorithm finds a local optimal in polynomial time.
Proof. Our potential function: ®(7T") = ZUGV(G) 3d7(v)

Via potenial function ®(G,T). ~ a function measuring
the value of a solution where, e.g., :

e cach iteration decreases the potential of a solution.
Lemma: each iteration ®(7") < (1 —)O(T).

YT

e the function is bounded both from above and below.

For any spanning tree T', ®(T') € [3n,n3"].

e executing f(n) iterations would execeed this lower bound.
How does CD(T) change?

shrinks by: (1 — 272713)10(”) < (e~ 73)/ (")

Goal ~~ after f(n) iterations (7)) =n < 3n

Runtime

Thm. The algorithm finds a local optimal in polynomial time.
Proof. Our potential function: ®(7T") = ZUGV(G) 3d7(v)

Via potenial function ®(G,T). ~ a function measuring
the value of a solution where, e.g., :

e cach iteration decreases the potential of a solution.
Lemma: each iteration ®(7") < (1 —)O(T).

27 3
e the function is bounded both from above and below.
For any spanning tree T', ®(T') € [3n,n3"].

e executing f(n) iterations would execeed this lower bound.
Let f(n) = &n* - In3. How does CD(T) change?

shrinks by: (1 — 2727%3)10(”) < (e~ T) f(n) = 3-7 (je., e~™In3)

Goal ~~ after f(n) iterations (1) =n < 3n

Runtime

Thm. The algorithm finds a local optimal in polynomial time.
Proof. Our potential function: ®(7T") = ZUGV(G) 3d7(v)

Via potenial function ®(G,T). ~ a function measuring
the value of a solution where, e.g., :

e cach iteration decreases the potential of a solution.
Lemma: each iteration ®(7") < (1 —)O(T).

27 3
e the function is bounded both from above and below.
For any spanning tree T', ®(T') € [3n,n3"].

e executing f(n) iterations would execeed this lower bound.
Let f(n) = &n* - In3. How does CD(T) change?

shrinks by: (1 — 2727%3)10(”) < (e~ T) f(n) = 3-7 (je., e~™In3)

Goal ~~ after f(n) iterations (1) =n < 3n 0

Extensions

Cor. For a constant b > 1, and ¢ = [log, n], the local
search algorithm runs in polynomial time and produces

a spanning tree T where A(T) < b-OPT + |log, n].

Proof. Similar to before. 0

Extensions

Cor. For a constant b > 1, and ¢ = [log, n], the local
search algorithm runs in polynomial time and produces

a spanning tree T where A(T) < b-OPT + |log, n].

Proof. Similar to before. 0

Next Class:
Approximation Schemes:
(1 + ¢)-approximation

