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Given: A connected graph Graph G = (V, E).
Find: A spanning tree T' which has the minimum maximum

degree A(T') among all spanning trees of G.

NP-hard :-(
Why?
Hamiltonian Path
Is a special case!
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Local Adjustment via Edge Flips

Improvement when deg,(v) — 1 > max{deg(u), deg(w)}
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Local Search

e Start from any spanning tree T' of G

e Perform edge flips until no flip improves the solution.

A
A(T) Local optimum — no flip “improves” the solution.

j\ \' global optimum

1 apx factor? J
OPT |- M T

Spanning tree T of G

How to handle plateaus? What is the runtime?
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such that T"U {uw} forms a cycle containing v.



Local Search

Algorithm MinDegSTLocalSearch(T)
while there is an “improving flip” (*) in T for a vertex v

with dr(v) > A(T) — ¢ do

L perform the flip.
(*) vw € E(G) \ E(T) with dr(v) — 1 > max{dr(u), dr(w)}
such that T"U {uw} forms a cycle containing v.

e unclear whether it completes in polynomial time ...



Local Search

Algorithm MinDegSTLocalSearch(T)
while there is an “improving flip” (*) in T for a vertex v

with dr(v) > A(T) — ¢ do

L perform the flip.
(*) vw € E(G) \ E(T) with dr(v) — 1 > max{dr(u), dr(w)}
such that T"U {uw} forms a cycle containing v.

e unclear whether it completes in polynomial time ...

e idea: flip only when the degree of v with
deg(v) > A(T) — £ is reduced where ¢ := [log, n|



Local Search

Algorithm MinDegSTLocalSearch(T)
while there is an “improving flip” (*) in T for a vertex v

with dr(v) > A(T) — ¢ do
L perform the flip.

(*) vw € E(G) \ E(T) with dr(v) — 1 > max{dr(u), dr(w)}
such that T"U {uw} forms a cycle containing v.

e unclear whether it completes in polynomial time ...

e idea: flip only when the degree of v with
deg(v) > A(T) — £ is reduced where ¢ := [log, n|

e first the approximation factor, then the runtime
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Next Class:
Approximation Schemes:
(1 + ¢)-approximation



