Aalto University
School of Science

# Approximation Algorithms 

Lecture 7: Min. Degree Spanning Trees via Local Search

Joachim Spoerhase

## MinimumDegreeSpanningTree

Given: A connected graph Graph $G=(V, E)$.
Find: A spanning tree $T$ which has the minimum maximum degree $\Delta(T)$ among all spanning trees of G .


## MinimumDegreeSpanningTree

Given: A connected graph Graph $G=(V, E)$.
Find: A spanning tree $T$ which has the minimum maximum degree $\Delta(T)$ among all spanning trees of G .


## MinimumDegreeSpanningTree

Given: A connected graph Graph $G=(V, E)$.
Find: A spanning tree $T$ which has the minimum maximum degree $\Delta(T)$ among all spanning trees of G .


## MinimumDegreeSpanningTree

Given: A connected graph Graph $G=(V, E)$.
Find: A spanning tree $T$ which has the minimum maximum degree $\Delta(T)$ among all spanning trees of G .

NP-hard :-(


## MinimumDegreeSpanningTree

Given: A connected graph Graph $G=(V, E)$.
Find: A spanning tree $T$ which has the minimum maximum degree $\Delta(T)$ among all spanning trees of G .


## MinimumDegreeSpanningTree

Given: A connected graph Graph $G=(V, E)$.
Find: A spanning tree $T$ which has the minimum maximum degree $\Delta(T)$ among all spanning trees of G .

NP-hard :-( Why?
Hamiltonian Path is a special case!

$$
\Delta\left(T^{*}\right)=3
$$

## Local Adjustment via Edge Flips



## Local Adjustment via Edge Flips

Improvement when $\operatorname{deg}_{T}(v)-1>\max \left\{\operatorname{deg}_{T}(u), \operatorname{deg}_{T}(w)\right\}$


## Local Search

- Start from any spanning tree $T$ of $G$


## Local Search

- Start from any spanning tree $T$ of $G$
- Perform edge flips until no flip improves the solution.


Spanning tree $T$ of $G$

## Local Search

- Start from any spanning tree $T$ of $G$
- Perform edge flips until no flip improves the solution.


Spanning tree $T$ of $G$

## Local Search

- Start from any spanning tree $T$ of $G$
- Perform edge flips until no flip improves the solution.


Spanning tree $T$ of $G$

## Local Search

- Start from any spanning tree $T$ of $G$
- Perform edge flips until no flip improves the solution.


Spanning tree $T$ of $G$

## Local Search

- Start from any spanning tree $T$ of $G$
- Perform edge flips until no flip improves the solution.


NOTE: overly simplified visualization!
Flips don't always improve $\Delta(T)$ !!

Spanning tree $T$ of $G$

## Local Search

- Start from any spanning tree $T$ of $G$
- Perform edge flips until no flip improves the solution.


Spanning tree $T$ of $G$

## Local Search

- Start from any spanning tree $T$ of $G$
- Perform edge flips until no flip improves the solution.


Spanning tree $T$ of $G$

## Local Search

- Start from any spanning tree $T$ of $G$
- Perform edge flips until no flip improves the solution.


Spanning tree $T$ of $G$

## Local Search

- Start from any spanning tree $T$ of $G$
- Perform edge flips until no flip improves the solution.


Spanning tree $T$ of $G$

## Local Search

- Start from any spanning tree $T$ of $G$
- Perform edge flips until no flip improves the solution.


NOTE: overly simplified visualization!
Spanning tree $T$ of $G$
How to handle plateaus? What is the runtime?

## Local Search

Algorithm MinDegSTLocalSearch $(T)$
while there is an "improving flip" $\left({ }^{*}\right)$ in $T$ for a vertex $v$ with $d_{T}(v) \geq \Delta(T)-\ell$ do perform the flip.
$\left.{ }^{*}\right) u w \in E(G) \backslash E(T)$ with $d_{T}(v)-1>\max \left\{d_{T}(u), d_{T}(w)\right\}$ such that $T \cup\{u w\}$ forms a cycle containing $v$.

## Local Search

Algorithm MinDegSTLocalSearch $(T)$
while there is an "improving flip" $\left.{ }^{*}\right)$ in $T$ for a vertex $v$ with $d_{T}(v) \geq \Delta(T)-\ell$ do perform the flip.
$\left.{ }^{*}\right) u w \in E(G) \backslash E(T)$ with $d_{T}(v)-1>\max \left\{d_{T}(u), d_{T}(w)\right\}$ such that $T \cup\{u w\}$ forms a cycle containing $v$.

- unclear whether it completes in polynomial time ...


## Local Search

Algorithm MinDegSTLocalSearch $(T)$
while there is an "improving flip" $\left.{ }^{*}\right)$ in $T$ for a vertex $v$ with $d_{T}(v) \geq \Delta(T)-\ell$ do perform the flip.
$\left.{ }^{*}\right) u w \in E(G) \backslash E(T)$ with $d_{T}(v)-1>\max \left\{d_{T}(u), d_{T}(w)\right\}$ such that $T \cup\{u w\}$ forms a cycle containing $v$.

- unclear whether it completes in polynomial time ...
- idea: flip only when the degree of $v$ with $\operatorname{deg}(v) \geq \Delta(T)-\ell$ is reduced where $\ell:=\left\lceil\log _{2} n\right\rceil$


## Local Search

Algorithm MinDegSTLocalSearch( $T$ )
while there is an "improving flip" (*) in $T$ for a vertex $v$ with $d_{T}(v) \geq \Delta(T)-\ell$ do perform the flip.
$\left(^{*}\right) u w \in E(G) \backslash E(T)$ with $d_{T}(v)-1>\max \left\{d_{T}(u), d_{T}(w)\right\}$ such that $T \cup\{u w\}$ forms a cycle containing $v$.

- unclear whether it completes in polynomial time ...
- idea: flip only when the degree of $v$ with $\operatorname{deg}(v) \geq \Delta(T)-\ell$ is reduced where $\ell:=\left\lceil\log _{2} n\right\rceil$
- first the approximation factor, then the runtime


## Approximation Factor

Thm. If $T$ is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot$ OPT $+\ell$, where $\ell=\left\lceil\log _{2} n\right\rceil$.

## Approximation Factor

Thm. If $T$ is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot$ OPT $+\ell$, where $\ell=\left\lceil\log _{2} n\right\rceil$.
Proof. Part 1: Lower bound on OPT


Removing $k$ edges partitions $T$ in $k+1$ components

## Approximation Factor

Thm. If $T$ is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot$ OPT $+\ell$, where $\ell=\left\lceil\log _{2} n\right\rceil$.

Let $E^{\prime}$ be the edges of $G$ between distinct components $\left(K_{i} \neq K_{j}\right)$.


## Approximation Factor

Thm. If $T$ is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot$ OPT $+\ell$, where $\ell=\left\lceil\log _{2} n\right\rceil$.
Proof. Part 1: Lower bound on OPT
Let $E^{\prime}$ be the edges of $G$ between distinct components $\left(K_{i} \neq K_{j}\right)$.


Vertex Cover $S$ of $E^{\prime}$

## Approximation Factor

Thm. If $T$ is a locally optimal spanning tree, then
$\Delta(T) \leq 2 \cdot$ OPT $+\ell$, where $\ell=\left\lceil\log _{2} n\right\rceil$.
Proof. Part 1: Lower bound on OPT
Let $E^{\prime}$ be the edges of $G$ between distinct components ( $K_{i} \neq K_{j}$ ).


## Approximation Factor

Thm. If $T$ is a locally optimal spanning tree, then
$\Delta(T) \leq 2 \cdot$ OPT $+\ell$, where $\ell=\left\lceil\log _{2} n\right\rceil$.
Proof. Part 1: Lower bound on OPT
Let $E^{\prime}$ be the edges of $G$ between distinct components $\left(K_{i} \neq K_{j}\right)$.


## Approximation Factor

Thm. If $T$ is a locally optimal spanning tree, then
$\Delta(T) \leq 2 \cdot$ OPT $+\ell$, where $\ell=\left\lceil\log _{2} n\right\rceil$.
Proof. Part 1: Lower bound on OPT $\quad$ OPT $\geq k /|S|$
Let $E^{\prime}$ be the edges of $G$ between distinct components $\left(K_{i} \neq K_{j}\right)$.


## Approximation Factor

Thm. If $T$ is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot$ OPT $+\ell$, where $\ell=\left\lceil\log _{2} n\right\rceil$.
Proof. Part 1: OPT $\geq k /|S|$
Part 2: Applying the bound.

## Approximation Factor

Thm. If $T$ is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot$ OPT $+\ell$, where $\ell=\left\lceil\log _{2} n\right\rceil$.
Proof. Part 1: OPT $\geq k /|S|$
Part 2: Applying the bound.
Let $S_{i}$ be the nodes in $T$ with $d_{T}(v) \geq i$.
Let $E_{i}$ be the edges of $T$ incident to $S_{i}$.

## Approximation Factor

Thm. If $T$ is a locally optimal spanning tree, then

$$
\Delta(T) \leq 2 \cdot \text { OPT }+\ell, \text { where } \ell=\left\lceil\log _{2} n\right\rceil .
$$

Proof. Part 1: OPT $\geq k /|S|$
Part 2: Applying the bound.
Let $S_{i}$ be the nodes in $T$ with $d_{T}(v) \geq i$.
Let $E_{i}$ be the edges of $T$ incident to $S_{i}$.
Claim 1: For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)\left|S_{i}\right|+1$,
(ii) Each $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of $S_{i-1}$.

## Approximation Factor

Thm. If $T$ is a locally optimal spanning tree, then

$$
\Delta(T) \leq 2 \cdot \text { OPT }+\ell, \text { where } \ell=\left\lceil\log _{2} n\right\rceil .
$$

Proof. Part 1: OPT $\geq k /|S|$
Part 2: Applying the bound.
Let $S_{i}$ be the nodes in $T$ with $d_{T}(v) \geq i$.
Let $E_{i}$ be the edges of $T$ incident to $S_{i}$.
Claim 1: For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)\left|S_{i}\right|+1$,
(ii) Each $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of $S_{i-1}$.
Claim 2: There is an $i$ such that $\left|S_{i-1}\right| \leq 2\left|S_{i}\right|$.

## Approximation Factor

Thm. If $T$ is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot$ OPT $+\ell$, where $\ell=\left\lceil\log _{2} n\right\rceil$.
Proof. Part 1: OPT $\geq k /|S|$
Part 2: Applying the bound.
Let $S_{i}$ be the nodes in $T$ with $d_{T}(v) \geq i$.
Let $E_{i}$ be the edges of $T$ incident to $S_{i}$.
Claim 1: For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)\left|S_{i}\right|+1$,
(ii) Each $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of $S_{i-1}$.
Claim 2: There is an $i$ such that $\left|S_{i-1}\right| \leq 2\left|S_{i}\right|$.
By Part 1, and Claims $1 \& 2 \ldots$ how do we choose $k$ and $S$ ?

## Approximation Factor

Thm. If $T$ is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot$ OPT $+\ell$, where $\ell=\left\lceil\log _{2} n\right\rceil$.
Proof. Part 1: OPT $\geq k /|S|$
Part 2: Applying the bound.
Let $S_{i}$ be the nodes in $T$ with $d_{T}(v) \geq i$.
Let $E_{i}$ be the edges of $T$ incident to $S_{i}$.
Claim 1: For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)\left|S_{i}\right|+1$,
(ii) Each $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of $S_{i-1}$.
Claim 2: There is an $i$ such that $\left|S_{i-1}\right| \leq 2\left|S_{i}\right|$.
By Part 1, and Claims $1 \& 2 \ldots$ how do we choose $k$ and $S$ ?

$$
\mathrm{OPT} \geq \frac{(i-1)\left|S_{i}\right|+1}{\left|S_{i-1}\right|} \geq \frac{(i-1)\left|S_{i}\right|+1}{2\left|S_{i}\right|}>\frac{i-1}{2} \geq \frac{\Delta(T)-\ell}{2}
$$

## Approximation Factor

Thm. If $T$ is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot$ OPT $+\ell$, where $\ell=\left\lceil\log _{2} n\right\rceil$.
Proof. Part 1: OPT $\geq k /|S|$
Part 2: Applying the bound.
Let $S_{i}$ be the nodes in $T$ with $d_{T}(v) \geq i$.
Let $E_{i}$ be the edges of $T$ incident to $S_{i}$.
Claim 1: For $i \geq \Delta(T)-\ell+1$,
(i) $\left|E_{i}\right| \geq(i-1)\left|S_{i}\right|+1$,
(ii) Each $e \in E(G) \backslash E_{i}$ connecting distinct components of $T \backslash E_{i}$ is incident to a node of $S_{i-1}$.
Claim 2: There is an $i$ such that $\left|S_{i-1}\right| \leq 2\left|S_{i}\right|$.
By Part 1, and Claims $1 \& 2 \ldots$ how do we choose $k$ and $S$ ?

$$
\mathrm{OPT} \geq \frac{(i-1)\left|S_{i}\right|+1}{\left|S_{i-1}\right|} \geq \frac{(i-1)\left|S_{i}\right|+1}{2\left|S_{i}\right|}>\frac{i-1}{2} \geq \frac{\Delta(T)-\ell}{2}
$$

$\square$

## Runtime

Thm. The algorithm finds a local optimal in polynomial time. Proof.

## Runtime

Thm. The algorithm finds a local optimal in polynomial time.

## Proof.

Via potenial function $\Phi(G, T)$. $\rightsquigarrow$ a function measuring the value of a solution where, e.g., :

- each iteration decreases the potential of a solution.


## Runtime

Thm. The algorithm finds a local optimal in polynomial time.

## Proof.

Via potenial function $\Phi(G, T)$. $\rightsquigarrow$ a function measuring the value of a solution where, e.g., :

- each iteration decreases the potential of a solution.
- the function is bounded both from above and below.


## Runtime

Thm. The algorithm finds a local optimal in polynomial time.

## Proof.

Via potenial function $\Phi(G, T)$. $\rightsquigarrow$ a function measuring the value of a solution where, e.g., :

- each iteration decreases the potential of a solution.
- the function is bounded both from above and below.
- executing $f(n)$ iterations would execeed this lower bound.


## Runtime

Thm. The algorithm finds a local optimal in polynomial time.
Proof. Our potential function: $\Phi(T)=\sum_{v \in V(G)} 3^{d_{T}(v)}$ Via potenial function $\Phi(G, T)$. $\rightsquigarrow$ a function measuring the value of a solution where, e.g., :

- each iteration decreases the potential of a solution.
- the function is bounded both from above and below.
- executing $f(n)$ iterations would execeed this lower bound.


## Runtime

Thm. The algorithm finds a local optimal in polynomial time.
Proof. Our potential function: $\Phi(T)=\sum_{v \in V(G)} 3^{d_{T}(v)}$ Via potenial function $\Phi(G, T)$. $\rightsquigarrow$ a function measuring the value of a solution where, e.g., :

- each iteration decreases the potential of a solution. Lemma: each iteration $\Phi\left(T^{\prime}\right) \leq\left(1-\frac{2}{27 n^{3}}\right) \Phi(T)$.
- the function is bounded both from above and below.
- executing $f(n)$ iterations would execeed this lower bound.


## Runtime

Thm. The algorithm finds a local optimal in polynomial time.
Proof. Our potential function: $\Phi(T)=\sum_{v \in V(G)} 3^{d_{T}(v)}$ Via potenial function $\Phi(G, T)$. $\rightsquigarrow$ a function measuring the value of a solution where, e.g., :

- each iteration decreases the potential of a solution. Lemma: each iteration $\Phi\left(T^{\prime}\right) \leq\left(1-\frac{2}{27 n^{3}}\right) \Phi(T)$.
- the function is bounded both from above and below. For any spanning tree $T, \Phi(T) \in\left[3 n, n 3^{n}\right]$.
- executing $f(n)$ iterations would execeed this lower bound.


## Runtime

Thm. The algorithm finds a local optimal in polynomial time.
Proof. Our potential function: $\Phi(T)=\sum_{v \in V(G)} 3^{d_{T}(v)}$ Via potenial function $\Phi(G, T)$. $\rightsquigarrow$ a function measuring the value of a solution where, e.g., :

- each iteration decreases the potential of a solution. Lemma: each iteration $\Phi\left(T^{\prime}\right) \leq\left(1-\frac{2}{27 n^{3}}\right) \Phi(T)$.
- the function is bounded both from above and below. For any spanning tree $T, \Phi(T) \in\left[3 n, n 3^{n}\right]$.
- executing $f(n)$ iterations would execeed this lower bound. How does $\Phi(T)$ change?


## Runtime

Thm. The algorithm finds a local optimal in polynomial time.
Proof. Our potential function: $\Phi(T)=\sum_{v \in V(G)} 3^{d_{T}(v)}$ Via potenial function $\Phi(G, T)$. $\rightsquigarrow$ a function measuring the value of a solution where, e.g., :

- each iteration decreases the potential of a solution. Lemma: each iteration $\Phi\left(T^{\prime}\right) \leq\left(1-\frac{2}{27 n^{3}}\right) \Phi(T)$.
- the function is bounded both from above and below. For any spanning tree $T, \Phi(T) \in\left[3 n, n 3^{n}\right]$.
- executing $f(n)$ iterations would execeed this lower bound.

How does $\Phi(T)$ change?
shrinks by: $\left(1-\frac{2}{27 n^{3}}\right)^{f(n)} \leq\left(e^{-\frac{2}{27 n^{3}}}\right)^{f(n)}$

## Runtime

Thm. The algorithm finds a local optimal in polynomial time.
Proof. Our potential function: $\Phi(T)=\sum_{v \in V(G)} 3^{d_{T}(v)}$ Via potenial function $\Phi(G, T) . \rightsquigarrow$ a function measuring the value of a solution where, e.g., :

- each iteration decreases the potential of a solution. Lemma: each iteration $\Phi\left(T^{\prime}\right) \leq\left(1-\frac{2}{27 n^{3}}\right) \Phi(T)$.
- the function is bounded both from above and below. For any spanning tree $T, \Phi(T) \in\left[3 n, n 3^{n}\right]$.
- executing $f(n)$ iterations would execeed this lower bound.

How does $\Phi(T)$ change?
shrinks by: $\left(1-\frac{2}{27 n^{3}}\right)^{f(n)} \leq\left(e^{-\frac{2}{27 n^{3}}}\right)^{f(n)}$
Goal $\rightsquigarrow \operatorname{after} f(n)$ iterations $\Phi(T)=n<3 n$

## Runtime

Thm. The algorithm finds a local optimal in polynomial time.
Proof. Our potential function: $\Phi(T)=\sum_{v \in V(G)} 3^{d_{T}(v)}$ Via potenial function $\Phi(G, T) . \rightsquigarrow$ a function measuring the value of a solution where, e.g., :

- each iteration decreases the potential of a solution. Lemma: each iteration $\Phi\left(T^{\prime}\right) \leq\left(1-\frac{2}{27 n^{3}}\right) \Phi(T)$.
- the function is bounded both from above and below. For any spanning tree $T, \Phi(T) \in\left[3 n, n 3^{n}\right]$.
- executing $f(n)$ iterations would execeed this lower bound. Let $f(n)=\frac{27}{2} n^{4} \cdot \ln 3$. How does $\Phi(T)$ change? shrinks by: $\left(1-\frac{2}{27 n^{3}}\right)^{f(n)} \leq\left(e^{-\frac{2}{27 n^{3}}}\right)^{f(n)}=3^{-n}$ (i.e., $e^{-n \ln 3}$ ) Goal $\rightsquigarrow \operatorname{after} f(n)$ iterations $\Phi(T)=n<3 n$


## Runtime

Thm. The algorithm finds a local optimal in polynomial time.
Proof. Our potential function: $\Phi(T)=\sum_{v \in V(G)} 3^{d_{T}(v)}$ Via potenial function $\Phi(G, T) . \rightsquigarrow$ a function measuring the value of a solution where, e.g., :

- each iteration decreases the potential of a solution. Lemma: each iteration $\Phi\left(T^{\prime}\right) \leq\left(1-\frac{2}{27 n^{3}}\right) \Phi(T)$.
- the function is bounded both from above and below. For any spanning tree $T, \Phi(T) \in\left[3 n, n 3^{n}\right]$.
- executing $f(n)$ iterations would execeed this lower bound. Let $f(n)=\frac{27}{2} n^{4} \cdot \ln 3$. How does $\Phi(T)$ change? shrinks by: $\left(1-\frac{2}{27 n^{3}}\right)^{f(n)} \leq\left(e^{-\frac{2}{27 n^{3}}}\right)^{f(n)}=3^{-n}$ (i.e., $e^{-n \ln 3}$ ) Goal $\rightsquigarrow$ after $f(n)$ iterations $\Phi(T)=n<3 n$


## Extensions

Cor. For a constant $b>1$, and $\ell=\left\lceil\log _{b} n\right\rceil$, the local search algorithm runs in polynomial time and produces a spanning tree $T$ where $\Delta(T) \leq b \cdot$ OPT $+\left\lceil\log _{b} n\right\rceil$.
Proof. Similar to before.
$\square$

## Extensions

Cor. For a constant $b>1$, and $\ell=\left\lceil\log _{b} n\right\rceil$, the local search algorithm runs in polynomial time and produces a spanning tree $T$ where $\Delta(T) \leq b \cdot \mathrm{OPT}+\left\lceil\log _{b} n\right\rceil$.
Proof. Similar to before.
$\square$

> Next Class:
> Approximation Schemes: $(1+\epsilon)$-approximation

