

Combinatorics of Efficient Computations

Approximation Algorithms

Lecture 7: Min. Degree Spanning Trees via Local Search

Joachim Spoerhase

Given: A connected graph Graph G = (V, E).

Given: A connected graph Graph G = (V, E).

Given: A connected graph Graph G = (V, E).

Given: A connected graph Graph G = (V, E).

Find: A spanning tree T which has the minimum maximum degree $\Delta(T)$ among all spanning trees of G.

NP-hard :-(

Given: A connected graph Graph G = (V, E).

Given: A connected graph Graph G = (V, E).

Improvement when $\deg_T(v) - 1 > \max\{\deg_T(u), \deg_T(w)\}$

 \bullet Start from any spanning tree T of G

- ullet Start from any spanning tree T of G
- Perform edge flips until no flip improves the solution.

Spanning tree T of G

- ullet Start from any spanning tree T of G
- Perform edge flips until no flip improves the solution.

Spanning tree T of G

- ullet Start from any spanning tree T of G
- Perform edge flips until no flip improves the solution.

Spanning tree T of G

- ullet Start from any spanning tree T of G
- Perform edge flips until no flip improves the solution.

Spanning tree T of G

- ullet Start from any spanning tree T of G
- Perform edge flips until no flip improves the solution.

NOTE: overly simplified visualization!

Spanning tree T of G

Flips don't always improve $\Delta(T)$!!

- ullet Start from any spanning tree T of G
- Perform edge flips until no flip improves the solution.

Spanning tree T of G

- ullet Start from any spanning tree T of G
- Perform edge flips until no flip improves the solution.

Spanning tree T of G

- ullet Start from any spanning tree T of G
- Perform edge flips until no flip improves the solution.

NOTE: overly simplified visualization!

Spanning tree T of G

- ullet Start from any spanning tree T of G
- Perform edge flips until no flip improves the solution.

Spanning tree T of G

- ullet Start from any spanning tree T of G
- Perform edge flips until no flip improves the solution.

How to handle plateaus? What is the runtime?

```
Algorithm MinDegSTLocalSearch(T) while there is an "improving flip" (*) in T for a vertex v with d_T(v) \geq \Delta(T) - \ell do \  perform the flip. (*) \ uw \in E(G) \setminus E(T) \ \text{with} \ d_T(v) - 1 > \max\{d_T(u), d_T(w)\} such that T \cup \{uw\} forms a cycle containing v.
```

```
Algorithm MinDegSTLocalSearch(T) while there is an "improving flip" (*) in T for a vertex v with d_T(v) \geq \Delta(T) - \ell do perform the flip.
```

- (*) $uw \in E(G) \setminus E(T)$ with $d_T(v) 1 > \max\{d_T(u), d_T(w)\}$ such that $T \cup \{uw\}$ forms a cycle containing v.
 - unclear whether it completes in polynomial time ...

```
Algorithm MinDegSTLocalSearch(T) while there is an "improving flip" (*) in T for a vertex v with d_T(v) \geq \Delta(T) - \ell do perform the flip.
```

- (*) $uw \in E(G) \setminus E(T)$ with $d_T(v) 1 > \max\{d_T(u), d_T(w)\}$ such that $T \cup \{uw\}$ forms a cycle containing v.
 - unclear whether it completes in polynomial time ...
 - idea: flip only when the degree of v with $\deg(v) \geq \Delta(T) \ell$ is reduced where $\ell := \lceil \log_2 n \rceil$

```
Algorithm MinDegSTLocalSearch(T) while there is an "improving flip" (*) in T for a vertex v with d_T(v) \geq \Delta(T) - \ell do perform the flip.
```

- (*) $uw \in E(G) \setminus E(T)$ with $d_T(v) 1 > \max\{d_T(u), d_T(w)\}$ such that $T \cup \{uw\}$ forms a cycle containing v.
 - unclear whether it completes in polynomial time ...
 - idea: flip only when the degree of v with $\deg(v) \geq \Delta(T) \ell$ is reduced where $\ell := \lceil \log_2 n \rceil$
 - first the approximation factor, then the runtime

Thm. If T is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Thm. If T is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Part 1: Lower bound on OPT

Removing k edges partitions T in k+1 components

Thm. If T is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Let E' be the edges of G between distinct components $(K_i \neq K_j)$.

Thm. If T is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Part 1: Lower bound on OPT

Let E' be the edges of G between distinct components $(K_i \neq K_j)$.

Thm. If T is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Part 1: Lower bound on OPT

Let E' be the edges of G between distinct components $(K_i \neq K_i)$.

Thm. If T is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Part 1: Lower bound on OPT

Let E' be the edges of G between distinct components $(K_i \neq K_i)$.

Thm. If T is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Part 1: Lower bound on OPT

 $\mathsf{OPT} \geq k/|S|$

Let E' be the edges of G between distinct components $(K_i \neq K_i)$.

Thm. If T is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Part 1: OPT $\geq k/|S|$

Part 2: Applying the bound.

Thm. If T is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Part 1: OPT $\geq k/|S|$

Part 2: Applying the bound.

Let S_i be the nodes in T with $d_T(v) \geq i$.

Let E_i be the edges of T incident to S_i .

Thm. If T is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Part 1: OPT $\geq k/|S|$

Part 2: Applying the bound.

Let S_i be the nodes in T with $d_T(v) \geq i$.

Let E_i be the edges of T incident to S_i .

Claim 1: For $i \geq \Delta(T) - \ell + 1$,

- (i) $|E_i| \ge (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Thm. If T is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Part 1: OPT $\geq k/|S|$

Part 2: Applying the bound.

Let S_i be the nodes in T with $d_T(v) \geq i$.

Let E_i be the edges of T incident to S_i .

Claim 1: For $i \geq \Delta(T) - \ell + 1$,

- (i) $|E_i| \ge (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Claim 2: There is an i such that $|S_{i-1}| \leq 2|S_i|$.

Thm. If T is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Part 1: OPT $\geq k/|S|$

Part 2: Applying the bound.

Let S_i be the nodes in T with $d_T(v) \geq i$.

Let E_i be the edges of T incident to S_i .

Claim 1: For $i \geq \Delta(T) - \ell + 1$,

- (i) $|E_i| \ge (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Claim 2: There is an i such that $|S_{i-1}| \leq 2|S_i|$.

By Part 1, and Claims 1 & 2 ... how do we choose k and S?

Thm. If T is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Part 1: OPT $\geq k/|S|$

Part 2: Applying the bound.

Let S_i be the nodes in T with $d_T(v) \geq i$.

Let E_i be the edges of T incident to S_i .

Claim 1: For $i \geq \Delta(T) - \ell + 1$,

- (i) $|E_i| \ge (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Claim 2: There is an i such that $|S_{i-1}| \leq 2|S_i|$.

By Part 1, and Claims 1 & 2 ... how do we choose k and S?

$$\mathsf{OPT} \ge \frac{(i-1)|S_i|+1}{|S_{i-1}|} \ge \frac{(i-1)|S_i|+1}{2|S_i|} > \frac{i-1}{2} \ge \frac{\Delta(T)-\ell}{2}$$

Thm. If T is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Part 1: OPT $\geq k/|S|$

Part 2: Applying the bound.

Let S_i be the nodes in T with $d_T(v) \geq i$.

Let E_i be the edges of T incident to S_i .

Claim 1: For $i \geq \Delta(T) - \ell + 1$,

- (i) $|E_i| \ge (i-1)|S_i| + 1$,
- (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Claim 2: There is an i such that $|S_{i-1}| \leq 2|S_i|$.

By Part 1, and Claims 1 & 2 ... how do we choose k and S?

$$\mathsf{OPT} \ge \frac{(i-1)|S_i|+1}{|S_{i-1}|} \ge \frac{(i-1)|S_i|+1}{2|S_i|} > \frac{i-1}{2} \ge \frac{\Delta(T)-\ell}{2}$$

Thm. The algorithm finds a local optimal in polynomial time.

Proof.

Thm. The algorithm finds a local optimal in polynomial time. **Proof.**

Via potenial function $\Phi(G,T)$. \rightsquigarrow a function measuring the value of a solution where, e.g., :

each iteration decreases the potential of a solution.

Thm. The algorithm finds a local optimal in polynomial time. **Proof.**

Via potenial function $\Phi(G,T)$. \rightsquigarrow a function measuring the value of a solution where, e.g., :

each iteration decreases the potential of a solution.

the function is bounded both from above and below.

Thm. The algorithm finds a local optimal in polynomial time. **Proof.**

Via potenial function $\Phi(G,T)$. \rightsquigarrow a function measuring the value of a solution where, e.g., :

- each iteration decreases the potential of a solution.
- the function is bounded both from above and below.

 \bullet executing f(n) iterations would execeed this lower bound.

Thm. The algorithm finds a local optimal in polynomial time.

Proof. Our potential function: $\Phi(T) = \sum_{v \in V(G)} 3^{d_T(v)}$

Via potenial function $\Phi(G,T)$. \rightsquigarrow a function measuring the value of a solution where, e.g., :

- each iteration decreases the potential of a solution.
- the function is bounded both from above and below.

• executing f(n) iterations would execeed this lower bound.

Thm. The algorithm finds a local optimal in polynomial time.

Proof. Our potential function: $\Phi(T) = \sum_{v \in V(G)} 3^{d_T(v)}$

Via potenial function $\Phi(G,T)$. \rightsquigarrow a function measuring the value of a solution where, e.g., :

• each iteration decreases the potential of a solution.

Lemma: each iteration $\Phi(T') \leq (1 - \frac{2}{27n^3})\Phi(T)$.

the function is bounded both from above and below.

• executing f(n) iterations would execeed this lower bound.

Thm. The algorithm finds a local optimal in polynomial time.

Proof. Our potential function: $\Phi(T) = \sum_{v \in V(G)} 3^{d_T(v)}$

Via potenial function $\Phi(G,T)$. \rightsquigarrow a function measuring the value of a solution where, e.g., :

• each iteration decreases the potential of a solution.

Lemma: each iteration $\Phi(T') \leq (1 - \frac{2}{27n^3})\Phi(T)$.

- the function is bounded both from above and below. For any spanning tree T, $\Phi(T) \in [3n, n3^n]$.
- executing f(n) iterations would execeed this lower bound.

Thm. The algorithm finds a local optimal in polynomial time.

Proof. Our potential function: $\Phi(T) = \sum_{v \in V(G)} 3^{d_T(v)}$

Via potenial function $\Phi(G,T)$. \rightsquigarrow a function measuring the value of a solution where, e.g., :

- each iteration decreases the potential of a solution. **Lemma:** each iteration $\Phi(T') \leq (1 \frac{2}{27n^3})\Phi(T)$.
- the function is bounded both from above and below. For any spanning tree T, $\Phi(T) \in [3n, n3^n]$.
- executing f(n) iterations would execeed this lower bound. How does $\Phi(T)$ change?

Thm. The algorithm finds a local optimal in polynomial time.

Proof. Our potential function: $\Phi(T) = \sum_{v \in V(G)} 3^{d_T(v)}$

Via potenial function $\Phi(G,T)$. \rightsquigarrow a function measuring the value of a solution where, e.g., :

• each iteration decreases the potential of a solution.

Lemma: each iteration $\Phi(T') \leq (1 - \frac{2}{27n^3})\Phi(T)$.

- the function is bounded both from above and below. For any spanning tree T, $\Phi(T) \in [3n, n3^n]$.
- executing f(n) iterations would execeed this lower bound.

How does $\Phi(T)$ change?

shrinks by: $(1 - \frac{2}{27n^3})^{f(n)} \le (e^{-\frac{2}{27n^3}})^{f(n)}$

Thm. The algorithm finds a local optimal in polynomial time.

Proof. Our potential function: $\Phi(T) = \sum_{v \in V(G)} 3^{d_T(v)}$

Via potenial function $\Phi(G,T)$. \rightsquigarrow a function measuring the value of a solution where, e.g., :

• each iteration decreases the potential of a solution.

Lemma: each iteration $\Phi(T') \leq (1 - \frac{2}{27n^3})\Phi(T)$.

- the function is bounded both from above and below. For any spanning tree T, $\Phi(T) \in [3n, n3^n]$.
- executing f(n) iterations would execeed this lower bound.

How does $\Phi(T)$ change?

shrinks by: $(1 - \frac{2}{27n^3})^{f(n)} \le (e^{-\frac{2}{27n^3}})^{f(n)}$ Goal \leadsto after f(n) iterations $\Phi(T) = n < 3n$

Thm. The algorithm finds a local optimal in polynomial time.

Proof. Our potential function: $\Phi(T) = \sum_{v \in V(G)} 3^{d_T(v)}$

Via potenial function $\Phi(G,T)$. \rightsquigarrow a function measuring the value of a solution where, e.g., :

- each iteration decreases the potential of a solution. **Lemma:** each iteration $\Phi(T') \leq (1 \frac{2}{27n^3})\Phi(T)$.
- the function is bounded both from above and below. For any spanning tree T, $\Phi(T) \in [3n, n3^n]$.
- executing f(n) iterations would execeed this lower bound.

Let $f(n) = \frac{27}{2} n^4 \cdot \ln 3$. How does $\Phi(T)$ change? shrinks by: $(1 - \frac{2}{27n^3})^{f(n)} \le (e^{-\frac{2}{27n^3}})^{f(n)} = 3^{-n}$ (i.e., $e^{-n \ln 3}$) Goal \leadsto after f(n) iterations $\Phi(T) = n < 3n$

Thm. The algorithm finds a local optimal in polynomial time.

Proof. Our potential function: $\Phi(T) = \sum_{v \in V(G)} 3^{d_T(v)}$

Via potenial function $\Phi(G,T)$. \rightsquigarrow a function measuring the value of a solution where, e.g., :

- each iteration decreases the potential of a solution. **Lemma:** each iteration $\Phi(T') \leq (1 \frac{2}{27n^3})\Phi(T)$.
- the function is bounded both from above and below. For any spanning tree T, $\Phi(T) \in [3n, n3^n]$.
- executing f(n) iterations would execeed this lower bound.

Let $f(n) = \frac{27}{2} n^4 \cdot \ln 3$. How does $\Phi(T)$ change? shrinks by: $(1 - \frac{2}{27n^3})^{f(n)} \le (e^{-\frac{2}{27n^3}})^{f(n)} = 3^{-n}$ (i.e., $e^{-n \ln 3}$) Goal \leadsto after f(n) iterations $\Phi(T) = n < 3n$

Extensions

Cor. For a constant b > 1, and $\ell = \lceil \log_b n \rceil$, the local search algorithm runs in polynomial time and produces a spanning tree T where $\Delta(T) \leq b \cdot \mathsf{OPT} + \lceil \log_b n \rceil$.

Proof. Similar to before.

Extensions

Cor. For a constant b > 1, and $\ell = \lceil \log_b n \rceil$, the local search algorithm runs in polynomial time and produces a spanning tree T where $\Delta(T) \leq b \cdot \mathsf{OPT} + \lceil \log_b n \rceil$.

Proof. Similar to before.

Next Class: Approximation Schemes: $(1+\epsilon)$ -approximation