
2019

Joachim Spoerhase

Approximation Algorithms
A!

Aalto University
School of Science

Combinatorics of
Efficient
Computations

Lecture 7: Min. Degree Spanning Trees via
Local Search

MinimumDegreeSpanningTree

Given: A connected graph Graph G = (V,E).
Find: A spanning tree T which has the minimum maximum
degree ∆(T) among all spanning trees of G.

∆(T ∗) = 3

NP-hard :-(
Why?

Hamiltonian Path
is a special case!

Local Adjustment via Edge Flips

. . .
. . .

. . .

u

v

w

E(T)

E(G)− E(T)

e′

e

TT + eT + e− e′

Improvement when degT (v)− 1 > max{degT (u), degT (w)}

Local Search

• Start from any spanning tree T of G

Spanning tree T of G

• Perform edge flips until no flip improves the solution.

∆(T)

Plateau

Flips don’t always improve ∆(T) !!

NOTE: overly simplified visualization!

Local Search

• Start from any spanning tree T of G

Spanning tree T of G

• Perform edge flips until no flip improves the solution.

∆(T) Local optimum – no flip “improves” the solution.

OPT
apx factor?

global optimum

How to handle plateaus? What is the runtime?

NOTE: overly simplified visualization!

Local Search

• unclear whether it completes in polynomial time ...

• idea: flip only when the degree of v with
deg(v) ≥ ∆(T)− ` is reduced where ` := dlog2 ne

• first the approximation factor, then the runtime

Algorithm MinDegSTLocalSearch(T)
while there is an “improving flip”(*) in T for a vertex v

with dT (v) ≥ ∆(T)− ` do
perform the flip.

(*) uw ∈ E(G) \ E(T) with dT (v)− 1 > max{dT (u), dT (w)}
such that T ∪ {uw} forms a cycle containing v.

Approximation Factor

Thm. If T is a locally optimal spanning tree, then
∆(T) ≤ 2 · OPT + `, where ` = dlog2 ne.

K1
K2

K3

K4

K5

Let E′ be the edges of G between distinct components (Ki 6= Kj).

Approximation Factor

Thm. If T is a locally optimal spanning tree, then
∆(T) ≤ 2 · OPT + `, where ` = dlog2 ne.

K1
K2

K3

K4

K5

Let E′ be the edges of G between distinct components (Ki 6= Kj).

Vertex Cover S of E′

E(T ∗) ∩ E′ ≥ k for
an optimal spanning
tree T ∗

∑
v∈S degT∗(v) ≥ k

OPT ≥ k/|S|Proof. Part 1: Lower bound on OPT

Approximation Factor

Thm. If T is a locally optimal spanning tree, then
∆(T) ≤ 2 · OPT + `, where ` = dlog2 ne.

Part 1: OPT ≥ k/|S|Proof.
Part 2: Applying the bound.

Let Si be the nodes in T with dT (v) ≥ i.
Let Ei be the edges of T incident to Si.
Claim 1: For i ≥ ∆(T)− ` + 1,
(i) |Ei| ≥ (i− 1)|Si|+ 1,
(ii) Each e ∈ E(G) \ Ei connecting distinct components of
T \ Ei is incident to a node of Si−1.

Claim 2: There is an i such that |Si−1| ≤ 2|Si|.

OPT ≥ (i−1)|Si|+1
|Si−1| ≥ (i−1)|Si|+1

2|Si| > i−1
2 ≥

∆(T)−`
2

By Part 1, and Claims 1 & 2 ... how do we choose k and S?

Runtime

Thm. The algorithm finds a local optimal in polynomial time.

Proof.
Via potenial function Φ(G,T). a function measuring
the value of a solution where, e.g., :
• each iteration decreases the potential of a solution.

• the function is bounded both from above and below.

• executing f(n) iterations would execeed this lower bound.

Our potential function: Φ(T) =
∑

v∈V (G) 3dT (v)

Lemma: each iteration Φ(T ′) ≤ (1− 2
27n3)Φ(T).

For any spanning tree T , Φ(T) ∈ [3n, n3n].

Let f(n) = 27
2 n4 · ln 3. How does Φ(T) change?

shrinks by: (1− 2
27n3)f(n) ≤ (e−

2
27n3)f(n) = 3−n (i.e., e−n ln 3)

Goal after f(n) iterations Φ(T) = n < 3n

Extensions

Cor. For a constant b > 1, and ` = dlogb ne, the local
search algorithm runs in polynomial time and produces
a spanning tree T where ∆(T) ≤ b · OPT + dlogb ne.

Proof. Similar to before.

Next Class:
Approximation Schemes:
(1 + ε)-approximation

