

Joachim Spoerhase

MinimumDegreeSpanningTree

Given: A connected graph Graph G = (V, E). Find: A spanning tree T which has the minimum maximum degree $\Delta(T)$ among all spanning trees of G.

Local Adjustment via Edge Flips

Improvement when $\deg_T(v) - 1 > \max\{\deg_T(u), \deg_T(w)\}$

Local Search

- $\bullet\,$ Start from any spanning tree T of G
- Perform edge flips until no flip improves the solution.

Flips don't always improve $\Delta(T)$!!

Local Search

- $\bullet\,$ Start from any spanning tree T of G
- Perform edge flips until no flip improves the solution.

NOTE: overly simplified visualization!

Spanning tree T of G

How to handle plateaus? What is the runtime?

Local Search

Algorithm MinDegSTLocalSearch(T) while there is an "improving flip" (*) in T for a vertex vwith $d_T(v) \ge \Delta(T) - \ell$ do perform the flip.

(*) $uw \in E(G) \setminus E(T)$ with $d_T(v) - 1 > \max\{d_T(u), d_T(w)\}$ such that $T \cup \{uw\}$ forms a cycle containing v.

- unclear whether it completes in polynomial time ...
- idea: flip only when the degree of v with $\deg(v) \ge \Delta(T) \ell$ is reduced where $\ell := \lceil \log_2 n \rceil$
- first the approximation factor, then the runtime

Approximation Factor

Thm. If T is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Let E' be the edges of G between distinct components $(K_i \neq K_j)$.

Approximation Factor

Thm. If *T* is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$. **Proof. Part 1:** Lower bound on OPT $\text{OPT} \geq k/|S|$ Let *E'* be the edges of *G* between distinct components ($K_i \neq K_i$).

Vertex Cover S of E'

Approximation Factor

Thm. If T is a locally optimal spanning tree, then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Part 1: $OPT \ge k/|S|$ Part 2: Applying the bound. Let S_i be the nodes in T with $d_T(v) \ge i$. Let E_i be the edges of T incident to S_i . Claim 1: For $i \ge \Delta(T) - \ell + 1$, (i) $|E_i| \ge (i-1)|S_i| + 1$, (ii) Each $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Claim 2: There is an *i* such that $|S_{i-1}| \leq 2|S_i|$.

By Part 1, and Claims 1 & 2 ... how do we choose k and S? $OPT \ge \frac{(i-1)|S_i|+1}{|S_{i-1}|} \ge \frac{(i-1)|S_i|+1}{2|S_i|} > \frac{i-1}{2} \ge \frac{\Delta(T)-\ell}{2}$

Runtime

- **Thm.** The algorithm finds a local optimal in polynomial time. **Proof.** Our potential function: $\Phi(T) = \sum_{v \in V(G)} 3^{d_T(v)}$ Via potenial function $\Phi(G,T)$. \rightsquigarrow a function measuring the value of a solution where, e.g., :
 - each iteration decreases the potential of a solution. Lemma: each iteration $\Phi(T') \leq (1 - \frac{2}{27n^3})\Phi(T)$.
 - the function is bounded both from above and below. For any spanning tree T, $\Phi(T) \in [3n, n3^n]$.

• executing f(n) iterations would exected this lower bound. Let $f(n) = \frac{27}{2}n^4 \cdot \ln 3$. How does $\Phi(T)$ change? shrinks by: $(1 - \frac{2}{27n^3})^{f(n)} \le (e^{-\frac{2}{27n^3}})^{f(n)} = 3^{-n}$ (i.e., $e^{-n \ln 3}$) Goal \rightsquigarrow after f(n) iterations $\Phi(T) = n < 3n$

Extensions

Cor. For a constant b > 1, and $\ell = \lceil \log_b n \rceil$, the local search algorithm runs in polynomial time and produces a spanning tree T where $\Delta(T) \le b \cdot \mathsf{OPT} + \lceil \log_b n \rceil$. **Proof.** Similar to before.

> Next Class: Approximation Schemes: $(1 + \epsilon)$ -approximation