

CS-E4070 — Computational learning theory

Slide set 02 : Occam's razor

Cigdem Aslay and Aris Gionis

Aalto University

spring 2019

reading material

- K&V, chapter 2
- Blumer et al., "Occam's razor", IPL, 1987

Occam's razor

- William of Ockham (1287 1347)
 "entities are not to be multiplied without necessity"
- has been used as guiding principle in developing simple models
- in machine learning, simpler models are considered to:
 - capture better the underlying structure
 - be less sensitive to noise
 - have better predictive power

Occam's razor

- the parsimony principle has been applied to motivate different computational approaches in machine learning
 - minimum description length (MDL)
 - Bayesian information criterion (BIC)
 - ℓ_1 regularization
 - model pruning, etc.
- the principle is intuitive, has philosophical basis,
 ... and works well in practice
- but we can rigorously show that parsimony leads to models with good predictive power?

Occam's razor

- we now consider Occam algorithms
 such algorithms focus only on parsimony
 they produce a hypothesis that compresses the data
 no attempt to make accurate predictions
- yet, we will show that in the PAC learning setting
 Occam algorithms have predictive power
- thus, in our setting
 compression ⇒ learning

Occam algorithm

consider :

concept class C_n , target concept $c \in C_n$ hypothesis representation class \mathcal{H}_n , sample of cardinality m:

$$\mathcal{S} = \{\langle \mathbf{x}_1, c(\mathbf{x}_1) \rangle, \dots, \langle \mathbf{x}_m, c(\mathbf{x}_m) \rangle\}$$

 an Occam algorithm A takes as input S and produces a succinct hypothesis h∈ Hn that compresses S, i.e.,

$$h(\mathbf{x}_i) = c(\mathbf{x}_i)$$
 for all $i = 1, \dots, m$

or alternatively, h is consistent with S

 succinct means that size(h) is growing asymptotically slower than m and n

Occam algorithm — formalization

- consider constants $\alpha \geq 0$ and $0 \leq \beta < 1$
- an algorithm A is (α, β)-Occam algorithm for C using H
 if on input S of cardinality m, the algorithm produces
 a hypothesis h ∈ H such as
 - h is consistent with S
 - size(h) ≤ $n^{\alpha}m^{\beta}$
- furthermore, A is an efficient (α, β) -Occam algorithm if its running time is polynomial in m and n

Occam algorithm

- in which sense is the hypothesis *h* succinct?
- assuming m >> n, then $size(h) \leq m^{\beta}$
- since we require β < 1, this is asymptotically less than m
- storing the sample S can be done in space $\mathcal{O}(nm)$
- thus, h can be seen as a compression of S

Occam's razor — main result

efficient Occam algorithm ⇒ efficient PAC learning

• **theorem:** let A be an efficient (α, β) -Occam algorithm for $\mathcal C$ using $\mathcal H$. Consider any $c \in \mathcal C$, any $\epsilon > 0$, $\delta \in (0,1)$, and any distribution $\mathcal D$. Then, there exists a constant c so that if A receives as input a sample of size m, drawn from $EX(\mathcal D,c)$, and m satisfies

$$m \ge c \left(\frac{1}{\epsilon} \log \frac{1}{\delta} + \left(\frac{n^{\alpha}}{\epsilon} \right)^{\frac{1}{1-\beta}} \right)$$

then *A* returns a hypothesis $h \in \mathcal{C}$ that satisfies $error_{\mathcal{D}}(h) \leq \epsilon$ with probability at least $1 - \delta$.

moreover, A is polynomial in n, $\frac{1}{\epsilon}$, and $\frac{1}{\delta}$

Occam's razor — main result — proof sketch

recall our previous result:

a finite hypothesis class is PAC learnable

recall the proof:

- consider h with $error > \epsilon$ that we worry that it may fool us
- probability that h is consistent with S is at most $(1 \epsilon)^m$
- probability that any such bad hypothesis is consistent with S is at most $|\mathcal{H}|(1-\epsilon)^m$
- requiring $|\mathcal{H}|(1-\epsilon)^m \le \delta$ gives $m \ge \log(|\mathcal{H}|/\delta)/\epsilon$
- so $\Pr[error(h) > \epsilon] \le \delta$, or $\Pr[error(h) \le \epsilon] \ge 1 \delta$

number of samples should be as large as log $|\mathcal{H}|,$ but not $|\mathcal{H}|$

Occam's razor — main result — proof sketch

showing that Occam property and number of samples satisfying

$$m \ge c \left(\frac{1}{\epsilon} \log \frac{1}{\delta} + \left(\frac{n^{\alpha}}{\epsilon} \right)^{\frac{1}{1-\beta}} \right)$$

imply PAC learning

- since A is an Occam algorithm, we have $size(h) \le n^{\alpha} m^{\beta}$
- size(h) is number of bits to represent h, thus, $|\mathcal{H}| \leq 2^{n^{\alpha}m^{\beta}}$
- applying the second bound on m we get $2^{n^{\alpha}m^{\beta}} \leq (1-\epsilon)^{-m/2}$
- applying the previous lemma we get that probability of $error > \epsilon$ is at most $|\mathcal{H}|(1-\epsilon)^m \le (1-\epsilon)^{-m/2}(1-\epsilon)^m = (1-\epsilon)^{m/2}$
- applying the first bound on \emph{m} we get that this probability is less than δ

- a decision list is defined over a set of boolean variables
 x₁,...,x_n
- can be viewed as an sequence of if-then-else statements
- in a k-decision list each term is a conjunction of at most k literals

example of 2-decision list:

expressive power of decision lists

- a k-DNF formula can be expressed as k-decision list
- since k-decision lists are closed under complement, they can also express k-CNF formulas
- however, they are strictly more expressive:
 there are formulas that can be represented by a k-decision list but neither by a k-DNF nor by a k-CNF

 theorem: for any fixed k ≥ 1, the representation class of k-decision lists is efficiently PAC learnable

- we will discuss the case of 1-decision list
 - each term contains a single literal
- the general case, k > 1, can be handled similarly to learning using k-CNF formulas

x_1	x_2	x_3	x_4	x_5	y	
0	0	1	1	0	1	
0	1	1	0	1	1	
1	0	1	1	0	0	
1	0	1	0	0	0	
0	1	0	1	0	1	
0	0	0	1	1	0	

$\overline{x_1}$	x_2	x_3	x_4	x_5	y
0	0	1	1	0	1
0	1	1	0	1	1
1	0	1	1	0	0
1	0	1	0	0	0
0	1	0	1	0	1
0	0	0	1	1	0

if $(x_2 = 1)$ then 1

$\overline{x_1}$	x_2	x_3	x_4	x_5	y
0	0	1	1	0	1
0	1	1	0	1	1
1	0	1	1	0	0
1	0	1	0	0	0
0	1	0	1	0	1
0	0	0	1	1	0

if $(x_2 = 1)$ then 1 if $(x_5 = 1)$ then 0

$\overline{x_1}$	x_2	x_3	x_4	x_5	y
0	0	1	1	0	1
0	1	1	0	1	1
1	0	1	1	0	0
1	0	1	0	0	0
0	1	0	1	0	1
0	0	0	1	1	0

if
$$(x_2 = 1)$$
 then 1
if $(x_5 = 1)$ then 0
if $(x_1 = 1)$ then 0

x_1	x_2	x_3	x_4	x_5	y
0	0	1	1	0	1
0	1	1	0	1	1
1	0	1	1	0	0
1	0	1	0	0	0
0	1	0	1	0	1
0	0	0	1	1	0

if
$$(x_2 = 1)$$
 then 1
if $(x_5 = 1)$ then 0
if $(x_1 = 1)$ then 0
if $(x_2 = 0)$ then 1

if
$$(x_2 = 1)$$
 then 1
if $(x_5 = 1)$ then 0
if $(x_1 = 1)$ then 0
if $(x_2 = 0)$ then 1

learning decision lists — algorithm

- S is the set of examples
- · start with an empty list
- find a rule consistent with data
 - find a literal z, which is set to 1 in a subset of examples S_z, so that S_z is not empty and S_z consists of only positive or only negative examples
- add the rule z = 1 to the end of decision list
- remove S_z from S
- repeat until the no examples remain

consistency of the decision-list algorithm

- the decision-list algorithm succeeds in finding a hypothesis consistent with the data, if such a hypothesis exists
- if the algorithm fails, then there is no decision list that is consistent with the data

efficient PAC learning of decision lists

- the algorithm we described is an Occam algorithm (!)
- for any decision list h returned by the algorithm

$$size(h) = \mathcal{O}(n \log n)$$

- notice that, size(h) does not depend on m, i.e., $\beta = 0$
- thus, we can achieve PAC learning with

$$m \ge c \left(\frac{1}{\epsilon} \log \frac{1}{\delta} + \frac{n \log n}{\epsilon}\right)$$

moreover, the algorithm runs in polynomial time

what about decision trees?

- can we obtain efficient PAC learning for decision trees?
- we can find a decision tree consistent with the data
 - how?
- can we apply a similar technique as for decision lists?
 - where does it break down?
 - number of leaves is proportional to m, thus, we cannot find an Occam algorithm with $\beta < 1$
 - (finite hypothesis class, thus, PAC learnable, but not efficiently PAC learnable)
- we would like to find the smallest decision tree consistent with the data
 - however, this is an NP-hard problem

discussion: drawbacks of PAC learning

- running time comparable to number of examples
 - in real applications labeled data is much more expensive than running time
- we assumed that we know the class of the target concept
 - in the real world we do not know if data come from a tree model, a decision list, or a 4-CNF
- realizability assumption too strong
 - model does not allow for errors
- does not account for other kinds of data
 - unlabeled data, pairwise similarities
- addresses only batch learning
 - no online setting