A!

Aalto University
School of Science

CS-E4070 — Computational learning theory

Slide set 02 : Occam’s razor

Cigdem Aslay and Aris Gionis
Aalto University

spring 2019

reading material

o K&V, chapter 2

e Blumer et al., “Occam’s razor”, IPL, 1987

Occam’s razor

e William of Ockham (1287 — 1347)

“entities are not to be multiplied
without necessity”

¢ has been used as guiding principle
in developing simple models

¢ in machine learning, simpler models
are considered to:
— capture better the underlying
structure
— be less sensitive to noise
— have better predictive power

Occam’s razor

e the parsimony principle has been applied to motivate
different computational approaches in machine learning

— minimum description length (MDL)
— Bayesian information criterion (BIC)
— ¢4 regularization

model pruning, etc.

e the principle is intuitive, has philosophical basis,
...and works well in practice

e but we can rigorously show that parsimony leads to
models with good predictive power?

Occam’s razor

e we now consider Occam algorithms
such algorithms focus only on parsimony
they produce a hypothesis that compresses the data

no attempt to make accurate predictions

o yet, we will show that in the PAC learning setting

Occam algorithms have predictive power

e thus, in our setting

compression = learning

Occam algorithm

e consider :
concept class C, target concept ¢ € C,
hypothesis representation class #,,
sample of cardinality m :

S = {1, c(x1));- -, (Xm, c(Xm))}

e an Occam algorithm A takes as input S and produces
a succinct hypothesis h € #, that compresses S, i.e.,

h(x;) = c(x;) foralli=1,....m

or alternatively, h is consistent with S

e succinct means that size(h) is growing asymptotically
slower than m and n

Occam algorithm — formalization

e consider constants & > 0and 0 < [3 < 1

e an algorithm Ais (v, 3)-Occam algorithm for C using #
if on input S of cardinality m, the algorithm produces
a hypothesis h € H such as

— his consistent with S
— size(h) < n®mP

o furthermore, A is an efficient (cv, 3)-Occam algorithm if
its running time is polynomial in m and n

Occam algorithm

in which sense is the hypothesis h succinct?

assuming m >> n, then size(h) < m”

since we require 3 < 1, this is asymptotically less than m

storing the sample S can be done in space O(nm)

thus, h can be seen as a compression of S

Occam’s razor — main result

efficient Occam algorithm = efficient PAC learning

o theorem: let A be an efficient (<, 7)-Occam algorithm
for C using #. Consider any c € C,any ¢ > 0,0 € (0, 1),
and any distribution D. Then, there exists a constant ¢
so that if A receives as input a sample of size m, drawn
from EX(D, c), and m satisfies

ot (™ B
mZ>cC 6095+<€>

then A returns a hypothesis h € C that satisfies
errorp(h) < € with probability at least 1 — 0.

1

. . . 1
moreover, A is polynomial in n, = and 5

Occam'’s razor — main result — proof sketch

recall our previous result:

a finite hypothesis class is PAC learnable

recall the proof:

consider h with error > ¢ that we worry that it may fool us
probability that 5 is consistent with S is at most (1 — €)”

probability that any such bad hypothesis is consistent
with S'is at most |#|(1 —€)"

requiring |#H|(1 — €)™ < § gives m > log(|H|/0) /€
so Pr[error(h) > €] < 0, or Prerror(h) < €] > 1 -9

number of samples should be as large as log |7, but not |#|

Occam'’s razor — main result — proof sketch

showing that Occam property and number of samples satisfying

1
1 1 n®\ -8
> —log < —
m=o(toad (7))
imply PAC learning
« since Ais an Occam algorithm, we have size(h) < n®*m”
e size(h) is number of bits to represent h, thus, [H| < onm”

e applying the second bound on m we get on*m” < (1 —¢€)~m/?

e applying the previous lemma we get that probability of error > ¢
is at most [H|(1 —€)” < (1 —¢€) 21 — €)™ = (1 —€)7/?

e applying the first bound on m we get that this probability is

less than o

learning decision lists

e a decision list is defined over a set of boolean variables

X{,...

aXn

e can be viewed as an sequence of if-then-else statements

e in a k-decision list each term is a conjunction of at most
k literals

example of 2-decision list:

List L
X AXg (¥ X, XyAXg N Xq AXg 31 X4 AXg |51 Xq AXg > 1
I
0 1 1 0 1 0

1

L (011011) = 1

expressive power of decision lists

¢ a k-DNF formula can be expressed as k-decision list

e since k-decision lists are closed under complement,
they can also express k-CNF formulas

e however, they are strictly more expressive :
there are formulas that can be represented by a k-decision
list but neither by a k-DNF nor by a k-CNF

learning decision lists

o theorem: for any fixed k > 1, the representation class
of k-decision lists is efficiently PAC learnable

learning decision lists

no no

yes yes l yes

e we will discuss the case of 1-decision list
— each term contains a single literal

e the general case, k > 1, can be handled similarly
to learning using k-CNF formulas

learning decision lists

o T3 Tyg Ty Y

L1

learning decision lists

ry T2 T3 T4 Tz Y
0 0 1 1 0 1
0 1 1 0 1 1
1 0 1 1 0 0
1 0 1 0 0 0
0 1 0 1 0 1
0 0 0 1 1 0

if (x2 = 1) then 1

learning decision lists

ry T2 T3 T4 Tz Y
0 0 1 1 0 1
0 1 1 0 1 1
1 0 1 1 0 0
1 0 1 0 0 0
0 1 0 1 0 1
0 0 0 1 1 0

if (x2 = 1) then 1
if (335 = 1) then 0

learning decision lists

L1 T2 T3 T4 T5 Y
0 0 1 1 0 1
0 1 1 0 1 1
1 0 1 1 0 0
1 0 1 0 0 0
0 1 0 1 0 1
0 0 0 1 1 0

if (x2 = 1) then 1

if (335 = 1) then 0

if (1 =1) then 0

learning decision lists

r1y T2 T3 T4 Ty Y
0 0 1 1 0 1
0 1 1 0 1 1
1 0 1 1 0 0
1 0 1 0 0 0
0 1 0 1 0 1
0 0 0 1 1 0

if (x2 = 1) then 1

if (335 = 1) then 0

if (1 =1) then 0

if (o = 0) then 1

learning decision lists

—»r, =17 no: rs = 17 no: xy =17 no: To —O?—no> 0
lyes lyes l ves l yes
1 0 0 1
if (x2 = 1) then 1
if (x5 = 1) then 0
if (1 =1) then 0
if (x2 = 0) then 1

learning decision lists — algorithm

e Sis the set of examples

start with an empty list

find a rule consistent with data

— find a literal z, which is set to 1 in a subset of
examples S;, so that S, is not empty and S,
consists of only positive or only negative examples

add the rule z = 1 to the end of decision list

remove S, from S

repeat until the no examples remain

consistency of the decision-list algorithm

e the decision-list algorithm succeeds in finding a hypothesis
consistent with the data, if such a hypothesis exists

« if the algorithm fails, then there is no decision list that is
consistent with the data

efficient PAC learning of decision lists

the algorithm we described is an Occam algorithm (!)

for any decision list /1 returned by the algorithm

size(h) = O(nlog n)

notice that, size(h) does not depend on m, i.e., 5 =0

thus, we can achieve PAC learning with
m>c 1Io 1+nlogn
=\ €

moreover, the algorithm runs in polynomial time

what about decision trees?

can we obtain efficient PAC learning for decision trees ?

we can find a decision tree consistent with the data

— how ?

can we apply a similar technique as for decision lists ?
— where does it break down ?
— number of leaves is proportional to m, thus, we cannot
find an Occam algorithm with 3 < 1
— (finite hypothesis class, thus, PAC learnable, but not
efficiently PAC learnable)

we would like to find the smallest decision tree consistent
with the data
— however, this is an NP-hard problem

discussion : drawbacks of PAC learning

e running time comparable to number of examples
— in real applications labeled data is much more
expensive than running time

we assumed that we know the class of the target concept
— in the real world we do not know if data come from
a tree model, a decision list, or a 4-CNF

realizability assumption too strong
— model does not allow for errors

does not account for other kinds of data
— unlabeled data, pairwise similarities

addresses only batch learning
— no online setting

