

CS-E4070 — Computational learning theory

Slide set 03 : agnostic PAC learning and uniform convergence

Cigdem Aslay and Aris Gionis

Aalto University

spring 2019

reading material

• SS&BD, chapters 3, 4, and 5

what we have seen so far

- $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}$ where \mathbf{x} is sampled from \mathcal{D} , and $y = c(\mathbf{x})$ labeled by the target concept $c: X \to Y$ that we want to learn
- the learner observes sample set S and outputs hypothesis
 h: X → Y for predicting the label of unseen data points drawn from D.
- the error of the learner is defined as the probability that the learner does not predict the correct label on a random data point sampled from D

$$\textit{error}_{\mathcal{D}}(\textit{h}) = \textbf{Pr}_{\textbf{x} \sim \mathcal{D}}[\textit{h}(\textbf{x}) \neq \textit{c}(\textbf{x})]$$

what we have assumed so far

- learning task: learning from examples with binary labels
- example generation: the sample data are drawn from D
 and labeled according to a target concept c ∈ C
- realizability assumption: there exists a hypothesis h* ∈ H
 such that error_D(h*) = 0
- concept class $\mathcal C$ is finite or can efficiently be discretized

relaxing the realizability assumption

- realizability assumption: there exists a hypothesis $h^* \in \mathcal{H}$ such that $error_{\mathcal{D}}(h^*) = 0$ (with probability 1)
 - requires that labels are fully determined by the features we measure on input elements
 - e.g., papayas with same color and softness will have the same taste
- in many practical problems this assumption does not hold
- so how do we remove the realizability assumption?

relaxing the realizability assumption

- sampling process under realizability assumption for an example (x, y) ∈ S:
 - \mathbf{x} is sampled from \mathcal{D}
 - -y = c(x) labeled by the target concept c: X → Y
- unrealizable setting: modify the sampling process to allow for noise
- replace the target concept labeling with a data-labels generating distribution
 - define the sampling distribution D to be a joint distribution over X × Y

relaxing the realizability assumption

- we can view $\mathcal{D}(\mathbf{x}, \mathbf{y})$ as product of two distributions
 - the marginal distribution $\mathcal{D}_{\mathbf{x}}$ over unlabeled data \mathbf{x}
 - the conditional distribution $\mathcal{D}_{y|\mathbf{x}} = \mathcal{D}((\mathbf{x}, y) \mid \mathbf{x})$ over labels for each data \mathbf{x}
- the conditional distribution D((x, y) | x) over labels introduces noise
 - the same example can have different labels in different draws
- generalization error can be redefined as

$$error_{\mathcal{D}}(h) = \mathbf{Pr}_{(\mathbf{x}, y) \sim \mathcal{D}} [h(\mathbf{x}) \neq y] = \mathcal{D}(\{(\mathbf{x}, y) \mid h(\mathbf{x}) \neq y\})$$

optimal Bayes hypothesis

given any probability distribution D over X × {0, 1},
 the best hypothesis we can hope for is b: X → Y, s.t.

$$b(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{Pr}_{\mathcal{D}_{y|\mathbf{x}}} \left[y = 1 \mid \mathbf{x} \right] \ge 1/2 \\ 0 & \text{otherwise} \end{cases}$$

• for any other hypothesis h and for any distribution \mathcal{D}

$$error_{\mathcal{D}}(b) \leq error_{\mathcal{D}}(h)$$

- learner does not have access to distribution D, so we cannot find the optimal Bayes hypothesis
- but learner has access to sample set S drawn from \mathcal{D}

agnostic PAC learning

- extension of PAC learning to unrealizable setting
- learner is agnostic to the data-labels distribution
 - no assumption on \mathcal{D}
 - no learner can guarantee an arbitrarily small error
- in contrast to PAC learning, the learner is not required to achieve a small error in absolute terms, but relative to the minimum possible error achievable by the hypothesis class

agnostic PAC learning

- learner can declare success if the generalization error is not much larger than the smallest error achievable by a hypothesis from ${\cal H}$
- approximately correct criterion: we want to find an h such that

$$error_{\mathcal{D}}(h) \leq \min_{h' \in \mathcal{H}} error_{\mathcal{D}}(h') + \epsilon$$

 if the realizability assumption holds, agnostic PAC learning provides the same guarantees as in PAC learning

agnostic PAC learnability

• **definition** (agnostic PAC learning): a hypothesis class \mathcal{H} is agnostic PAC learnable if there exists a function $m_{\mathcal{H}}:(0,1)^2\to\mathbb{N}$ and a learning algorithm A with the following property:

for every $\epsilon, \delta \in (0,1)$ and for every distribution \mathcal{D} over $X \times Y$, when running A on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathcal{D} , A returns a hypothesis h that satisfies

$$error_{\mathcal{D}}(h) \leq \min_{h' \in \mathcal{H}} error_{\mathcal{D}}(h') + \epsilon$$

with probability at least 1 $-\,\delta$ $\,$ (over the choice of examples).

scope of learning problems

- so far we have focused on examples with binary labels
- formalization can be generalized to other types of learning from examples
- regression: find a linear function that best predicts a baby's birth from ultrasound measures of his head circumference, abdominal circumference, and femur length

X: possible values of ultrasound measurements, set of triplets in \mathbb{R}^3

Y: possible values of weight at birth, \mathbb{R}

scope of learning problems

- given H and domain X × Y, a loss function
 ℓ : H × (X × Y) → R+ quantifies how good h is on (x, y)
- error_D(h) is the expected loss of hypothesis h
 with respect to distribution D over X × Y

$$\textit{error}_{\mathcal{D}}(\textit{h}) = \mathbf{E}_{(\mathbf{x},\textit{y}) \sim \mathcal{D}} \left[\ell(\textit{h}, (\mathbf{x},\textit{y})) \right]$$

error_S(h) is the empirical loss over a given sample S

$$error_{\mathcal{S}}(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h, (\mathbf{x}, y))$$

example loss functions

• 0-1 loss:

$$\ell(h, (\mathbf{x}, y)) = \begin{cases} 0 & \text{if } h(\mathbf{x}) = y \\ 1 & \text{if } h(\mathbf{x}) \neq y \end{cases}$$

square loss:

$$\ell(h,(\mathbf{x},y))=(h(\mathbf{x})-y)^2$$

absolute value loss:

$$\ell(h,(\mathbf{x},y)) = |h(\mathbf{x}) - y|$$

learnability for general loss functions

• **definition** (agnostic PAC learning): a hypothesis class \mathcal{H} is agnostic PAC learnable with respect to a domain $X \times Y$ and a loss function $\ell: \mathcal{H} \times (X \times Y) \to \mathbb{R}_+$ if there exists a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ and a learning algorithm A with the following property:

for every $\epsilon, \delta \in (0,1)$ and for every distribution $\mathcal D$ over $X \times Y$, when running A on $m \geq m_{\mathcal H}(\epsilon,\delta)$ i.i.d. examples generated by $\mathcal D$, A returns a hypothesis h such that with probability at least $1-\delta$

$$error_{\mathcal{D}}(h) \leq \min_{h' \in \mathcal{H}} error_{\mathcal{D}}(h') + \epsilon,$$

where $error_{\mathcal{D}}(h) = \mathbf{E}_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}} \left[\ell(h, (\mathbf{x}, \mathbf{y})) \right]$

- the definition(s) of (agnostic) PAC learning states when we can learn something
- it does not provide much information about what and how we can learn
- how well we can learn a hypothesis from a sample depends on the quality of that sample
- a sample has good quality when the estimated error of any hypothesis on the sample is close to its true error

- remember the empirical risk minimization rule ERM_H(S)
 - given a sample set S of m examples, return the hypothesis h_S from finite $\mathcal H$ such that

$$h_{\mathcal{S}} = \arg\min_{h \in \mathcal{H}} error_{\mathcal{S}}(h)$$

under the realizability assumption we have

$$error_S(h_S) = 0$$
, and

$$\Pr\left[\textit{error}_{\mathcal{D}}(h_{\mathcal{S}}) \leq \epsilon\right] \geq 1 - \delta \text{ when } m \geq \frac{\log(|\mathcal{H}|/\delta)}{\epsilon}$$

what about the unrealizable setting?

- recall that $error_{\mathcal{D}}(h) = \mathbf{E}_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}} \left[\ell(h, (\mathbf{x}, \mathbf{y})) \right]$
- if we can ensure that empirical risks of all members of \mathcal{H} are good approximations of their true error, $ERM_{\mathcal{H}}(S)$ can return a hypothesis h that has error close to minimum possible error
- in other words, we want to obtain, uniformly over all members of H, an empirical risk that is close to its expectation

• ϵ -representative sample:

a sample set S is ϵ -representative with respect to a domain $X \times Y$, hypothesis class \mathcal{H} , loss function ℓ , and distribution \mathcal{D} if

$$\forall h \in \mathcal{H}, |\mathit{error}_{\mathcal{D}}(h) - \mathit{error}_{\mathcal{S}}(h)| \leq \epsilon$$

 lemma: assume that a sample set S is ε/2-representative, then any output h_S of ERM_H(S) satisfies

$$error_{\mathcal{D}}(h_{\mathcal{S}}) \leq \min_{h' \in \mathcal{H}} error_{\mathcal{D}}(h') + \epsilon$$

• proof: for every $h \in \mathcal{H}$ we have

$$egin{aligned} \mathit{error}_{\mathcal{D}}(h_{\mathcal{S}}) &\leq \mathit{error}_{\mathcal{S}}(h_{\mathcal{S}}) + \dfrac{\epsilon}{2} \\ &\leq \mathit{error}_{\mathcal{D}}(h) + \dfrac{\epsilon}{2} \\ &\leq \mathit{error}_{\mathcal{D}}(h) + \dfrac{\epsilon}{2} + \dfrac{\epsilon}{2} \\ &\leq \mathit{error}_{\mathcal{D}}(h) + \epsilon \end{aligned}$$

- to ensure that $ERM_{\mathcal{H}}(S)$ is an agnostic PAC learner, it is sufficient to have an ϵ -representative sample with probability at least 1 $-\delta$ (over the randomness of S)
- uniform convergence formalizes this sufficiency condition

• uniform convergence: a hypothesis class \mathcal{H} has the uniform convergence property with respect to domain $X \times Y$ and loss function ℓ , if there exists a function $m_{\mathcal{H}}^{UC}: (0,1)^2 \to \mathbb{N}$ such that: for every $\epsilon, \delta \in (0,1)$ and for every distribution \mathcal{D} over $X \times Y$, a sample S of $m \geq m_{\mathcal{H}}^{UC}(\epsilon, \delta)$ i.i.d. examples drawn from \mathcal{D} is ϵ -representative with probability at least $1-\delta$.

• the term uniform refers to the fact that the (minimal) sample complexity $m_{\mathcal{H}}^{\mathcal{UC}}(\epsilon,\delta)$ is the same for all hypothesis in \mathcal{H} and all probability distributions \mathcal{D} .

- to prove that we can agnostic PAC learn a hypothesis class, just prove that it has the uniform convergence property
- corollary: if \mathcal{H} has the uniform convergence property with a function $m_{\mathcal{H}}^{UC}:(0,1)^2\to\mathbb{N}$, then \mathcal{H} is agnostic PAC learnable with sample complexity $m_{\mathcal{H}}(\epsilon,\delta)\leq m_{\mathcal{H}}^{UC}(\epsilon/2,\delta)$. Furthermore, in that case, $ERM_{\mathcal{H}}(S)$ is a successful agnostic PAC learner for \mathcal{H} .

• theorem: let \mathcal{H} be a finite hypothesis class and let $\ell: \mathcal{H} \times (X \times Y) \to [a,b]$ be a bounded loss function. Then \mathcal{H} is agnostic PAC learnable using $ERM_{\mathcal{H}}(S)$ with sample complexity

$$m_{\mathcal{H}}(\epsilon, \delta) \leq \left\lceil \frac{2(b-a)^2 \log(2|\mathcal{H}|/\delta)}{\epsilon^2} \right\rceil$$

Hoeffding's inequality

• let $\theta_1, \dots, \theta_m$ be a sequence of i.i.d. random variables and assume that $\forall i, \mathbf{E} [\theta_i] = \mu$ and $\Pr[a \leq \theta_i \leq b] = 1$. Then, for any $\epsilon \geq 0$,

$$\Pr\left[\left|\frac{1}{m}\sum_{i=1}^{m}\theta_{i}-\mu\right|>\epsilon\right]\leq 2e^{-\frac{2me^{2}}{(b-a)^{2}}}$$

 proof: it suffices to show that H has the uniform convergence property with

$$m_{\mathcal{H}}(\epsilon,\delta) \leq \left\lceil \frac{2(b-a)^2 \log(2|\mathcal{H}|/\delta)}{\epsilon^2}
ight
ceil.$$

so we need to find m^{UC}_H(ε/2, δ) for fixed ε and δ such that for any distribution D, an i.i.d. sample S of m ≥ m^{UC}_H(ε/2, δ)

$$\mathcal{D}^{m}(\{S: \exists h \in \mathcal{H}, |error_{\mathcal{D}}(h) - error_{S}(h)| > \epsilon\}) < \delta.$$

proof cont'd: from union bound, we have

$$\mathcal{D}^{m}(\{S: \exists h \in \mathcal{H}, |error_{\mathcal{D}}(h) - error_{\mathcal{S}}(h)| > \epsilon\})$$

$$\leq \sum_{h \in \mathcal{H}} \mathcal{D}^{m}(\{S: |error_{\mathcal{D}}(h) - error_{\mathcal{S}}(h)| > \epsilon\})$$

so if we can prove that for a large enough m each

$$\mathcal{D}^{m}(\{S: |\textit{error}_{\mathcal{D}}(\textit{h}) - \textit{error}_{S}(\textit{h})| > \epsilon\})$$

is small enough, result follows.

proof cont'd: we know that

$$\textit{error}_{\mathcal{D}}(\textit{h}) = \mathbf{E}_{(\mathbf{x}, \textit{y}) \sim \mathcal{D}} \left[\ell(\textit{h}, (\textit{x}, \textit{y})) \right]$$

using Hoeffding's inequality we have

$$\mathcal{D}^{m}(\{S: |error_{\mathcal{D}}(h) - error_{S}(h)| > \epsilon\}) \leq 2e^{-\frac{2m\epsilon^{2}}{(b-a)^{2}}}$$

which implies

$$\mathcal{D}^{m}(\{S: \exists h \in \mathcal{H}, |error_{\mathcal{D}}(h) - error_{\mathcal{S}}(h)| > \epsilon\}) \leq 2|\mathcal{H}|e^{-\frac{2m\epsilon^{2}}{(b-a)^{2}}}$$

• so if $m \geq \frac{2(b-a)^2\log(2|\mathcal{H}|/\delta)}{\epsilon^2}$, then the RHS is at most δ as required

proof cont'd: we know that

$$\textit{error}_{\mathcal{D}}(\textit{h}) = \mathbf{E}_{(\mathbf{x}, \textit{y}) \sim \mathcal{D}} \left[\ell(\textit{h}, (\textit{x}, \textit{y})) \right]$$

using Hoeffding's inequality we have

$$\mathcal{D}^{m}(\{S: |error_{\mathcal{D}}(h) - error_{S}(h)| > \epsilon\}) \leq 2e^{-\frac{2m\epsilon^{2}}{(b-a)^{2}}}$$

which implies

$$\mathcal{D}^{m}(\{S: \exists h \in \mathcal{H}, |error_{\mathcal{D}}(h) - error_{\mathcal{S}}(h)| > \epsilon\}) \leq 2|\mathcal{H}|e^{-\frac{2m\epsilon^{2}}{(b-a)^{2}}}$$

• so if $m \geq \frac{2(b-a)^2\log(2|\mathcal{H}|/\delta)}{\epsilon^2}$, then the RHS is at most δ as required

discussion of sample complexity

we started with realizability assumption and 0-1 loss and obtained

$$m_{\mathcal{H}}(\epsilon, \delta) \leq \left\lceil \frac{\log(|\mathcal{H}|/\delta)}{\epsilon} \right\rceil$$

 by relaxing the realizability assumption and assuming general loss functions, we ended up with

$$m_{\mathcal{H}}(\epsilon,\delta) \leq \left\lceil \frac{2(b-a)^2 \log(2|\mathcal{H}|/\delta)}{\epsilon^2} \right\rceil.$$

- for the same level of accuracy, sample complexity grows by a factor of 1/ ϵ
- contribution of a general loss function is smaller ([a, b] can often be normalized to [0, 1])

the discretization trick

- allows to get a good estimate of practical sample complexity of infinite hypothesis classes
- consider the class of signum functions: $X = \mathbb{R}$ and $Y = \{+1, -1\}$.
- let $\mathcal{H} = \{h_{\theta} : \theta \in \mathbb{R}\}$ where $h_{\theta} = sign(\mathbf{x} \theta)$
- each h_{θ} is parametrized by one parameter, $\theta \in \mathbb{R}$ and outputs -1 for instances smaller than θ

the discretization trick

- H is infinite but in practice we only need 64 bits to maintain a real number using floating point representation
- so $\mathcal H$ is parametrized by set of scalars represented using a 64 bits floating point number
- there are at most 2^{64} such numbers hence actual size of ${\cal H}$ is at most 2^{64}
- so sample complexity of ${\mathcal H}$ is bounded by

$$\frac{128 + 2\log(2/\delta)}{\epsilon^2}$$

• practical estimate but dependent on machine-specific representation of $\ensuremath{\mathbb{R}}$

we have seen that

finite classes are PAC learnable with sample complexity

$$m_{\mathcal{H}}(\epsilon, \delta) \leq \left\lceil \frac{\log(|\mathcal{H}|/\delta)}{\epsilon} \right\rceil$$

finite classes are agnostic PAC learnable with sample complexity

$$m_{\mathcal{H}}(\epsilon, \delta) \leq \left\lceil \frac{2\log(2|\mathcal{H}|/\delta)}{\epsilon^2} \right\rceil$$

 discretization trick can allow to obtain a practical estimate of the sample complexity for infinite classes
 e.g., class of signum functions

application: no-free-lunch theorem

SS&BD, chapter 5

- we can show that there is no universal learner
 - some form of prior knowledge is necessary
 - we should know something about ${\mathcal D}$ and/or ${\mathcal C}$
- theorem (no-free-lunch): let A be a learner over X.
 Then there exists a distribution D over X × {0, 1} such that
 - 1. there exists concept $c: X \to \{0,1\}$ with $error_{\mathcal{D}}(c) = 0$
 - 2. with probability at least 1/7 over $S \sim \mathcal{D}^m$ we have that $error_{\mathcal{D}}(A(S)) \geq 1/8$
- **corollary** : let \mathcal{C} be the set of all mappings from an infinite domain X to $\{0,1\}$. Then, \mathcal{C} is not PAC learnable.

no-free-lunch theorem

- no-free-lunch theorem: without restricting the hypothesis class, for any learning algorithm, an adversary can construct a distribution for which the learning algorithm will perform poorly, while there is another algorithm that will succeed in the same distribution
- corollary: let C be the set of all mappings from an infinite domain X to $\{0,1\}$. Then, C is not PAC learnable.
- so an infinite class with rich representation cannot be (agnostic) PAC learned
- so how do we learn an infinite hypothesis class H?

learning threshold functions

• lemma: let $\mathcal{H} = \{h_a : a \in \mathbb{R}\}$ be the set of threshold functions over the real line where $\forall h_a \in \mathcal{H}$

$$h_a: \mathbb{R} \to \{0,1\}, h_a(\mathbf{x}) = \mathbb{I}\left[\mathbf{x} \le a\right]$$

 H is PAC learnable using the ERM rule with sample complexity

$$m_{\mathcal{H}}(\epsilon, \delta) \leq \left\lceil \frac{\log(2|\mathcal{H}|/\delta)}{\epsilon}
ight
ceil$$

learning threshold functions

- H is of infinite size
- we want to get close to the true threshold value
 we just need to prove that for any D, ERM rule will
 probably get us close
- we know that all values to the left are classified as negative, all values to the right are classified as positive

proof (sketch)

• let a^* be the true value and define $a_1, a_2 \in \mathbb{R}$ such that

$$\mathbf{Pr}_{\mathbf{x} \sim \mathcal{D}_{\mathbf{x}}} \left[\mathbf{x} \in (a_1, a^*) \right] = \mathbf{Pr}_{\mathbf{x} \sim \mathcal{D}_{\mathbf{x}}} \left[\mathbf{x} \in (a^*, a_2) \right] = \epsilon$$

- we want to prove that we most likely get an example from this interval
- given a sample S,
 - let $b_1 = max\{x : (x, 1) ∈ S\}$,
 - let $b_2 = min\{x : (x, 0) \in S\}$, and
 - let b_S denote the threshold of ERM hypothesis h_S which implies $b_S \in (b_1, b_2)$

proof (sketch)

 a sufficient condition for error_D(h_S) ≤ ε is to have b₁ ≥ a₁ and b₂ ≤ a₂

$$\textbf{Pr}_{\mathcal{S} \sim \mathcal{D}^m}\left[\textit{error}_{\mathcal{D}}(\textit{h}_{\mathcal{S}}) > \epsilon\right] \leq \textbf{Pr}_{\mathcal{S} \sim \mathcal{D}^m}\left[\textit{b}_1 < \textit{a}_1\right] + \textbf{Pr}_{\mathcal{S} \sim \mathcal{D}^m}\left[\textit{b}_2 > \textit{a}_2\right]$$

the event b₁ < a₁ happens iff there exists no x ∈ S such that x ∈ (a₁, a*)

$$\mathbf{Pr}_{S \sim \mathcal{D}^m} [b_1 < a_1] = (1 - \epsilon)^m \le e^{-\epsilon m} \le \delta/2.$$

free lunch vs threshold functions

- so finiteness of H is a sufficient condition for PAC learnability, but not a necessary condition
- does learnability of threshold functions contradict the no-free-lunch theorem?

free lunch vs threshold functions

- the class of threshold functions is so simple that an adversary has no room to create an adversarial distribution
- if two threshold functions agree on a large enough sample, their respective thresholds will be close to each other
- there is no way you can force them to behave differently on unseen examples
- so a necessary condition for PAC learnability is that ${\cal H}$ should not be too expressive?

how expressive $\mathcal H$ should be?

- consider binary classification: h: X → {0, 1}
- expressiveness of ${\mathcal H}$ is a measure of how many functions it can express
- from the corollary of no-free-lunch theorem, we should consider not only functions on X but also functions on (finite) subsets of X

the Vapnik-Chervonenkis dimension theory

- developed during 1960 1990 by Vladimir Vapnik and Alexey Chervonenkis
- provides a combinatorial measure to quantify the bias of the hypothesis class
- main idea: do not measure the size of the hypothesis class but the number of distinct instances that can be completely discriminated using ${\cal H}$