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reading material

• SS&BD, chapters 3, 4, and 5



what we have seen so far

• S = {(x1, y1), . . . , (xm, ym)} where x is sampled from D,
and y = c(x) labeled by the target concept c : X → Y that
we want to learn

• the learner observes sample set S and outputs hypothesis
h : X → Y for predicting the label of unseen data points
drawn from D.

• the error of the learner is defined as the probability that
the learner does not predict the correct label on a random
data point sampled from D

errorD(h) = Prx∼D[h(x) 6= c(x)]



what we have assumed so far

• learning task: learning from examples with binary labels

• example generation: the sample data are drawn from D

and labeled according to a target concept c ∈ C

• realizability assumption: there exists a hypothesis h∗ ∈ H

such that errorD(h∗) = 0

• concept class C is finite or can efficiently be discretized



relaxing the realizability assumption

• realizability assumption: there exists a hypothesis h∗ ∈ H
such that errorD(h∗) = 0 (with probability 1)

– requires that labels are fully determined
– by the features we measure on input elements

– e.g., papayas with same color and softness will have
– the same taste

• in many practical problems this assumption does not hold

• so how do we remove the realizability assumption?



relaxing the realizability assumption

• sampling process under realizability assumption for an
example (x, y) ∈ S:

– x is sampled from D

– y = c(x) labeled by the target concept c : X → Y

• unrealizable setting: modify the sampling process to allow
for noise

• replace the target concept labeling with a data-labels
generating distribution

– define the sampling distribution D to be a
– joint distribution over X × Y



relaxing the realizability assumption

• we can view D (x,y ) as product of two distributions

– the marginal distribution Dx over unlabeled data x

– the conditional distribution Dy |x = D((x, y) | x)
– over labels for each data x

• the conditional distribution D((x, y) | x) over labels
introduces noise

– the same example can have different labels in
– different draws

• generalization error can be redefined as

errorD(h) = Pr(x,y)∼D [h(x) 6= y ] = D( {(x, y) | h(x) 6= y} )



optimal Bayes hypothesis

• given any probability distribution D over X × {0,1},
the best hypothesis we can hope for is b : X → Y , s.t.

b(x) =
{

1 if PrDy|x [y = 1 | x] ≥ 1/2
0 otherwise

• for any other hypothesis h and for any distribution D

errorD(b) ≤ errorD(h)

• learner does not have access to distribution D, so we
cannot find the optimal Bayes hypothesis

• but learner has access to sample set S drawn from D



agnostic PAC learning

• extension of PAC learning to unrealizable setting

• learner is agnostic to the data-labels distribution

– no assumption on D

– no learner can guarantee an arbitrarily small error

• in contrast to PAC learning, the learner is not required
to achieve a small error in absolute terms, but relative
to the minimum possible error achievable by the
hypothesis class



agnostic PAC learning

• learner can declare success if the generalization error is
not much larger than the smallest error achievable by a
hypothesis from H

• approximately correct criterion: we want to find an h
such that

errorD(h) ≤ min
h′∈H

errorD(h′) + ε

• if the realizability assumption holds, agnostic PAC learning
provides the same guarantees as in PAC learning



agnostic PAC learnability

• definition (agnostic PAC learning):
a hypothesis class H is agnostic PAC learnable if there
exists a function mH : (0,1)2 → N and a learning
algorithm A with the following property:

for every ε, δ ∈ (0,1) and for every distribution D over
X × Y , when running A on m ≥ mH(ε, δ) i.i.d. examples
generated by D, A returns a hypothesis h that satisfies

errorD(h) ≤ min
h′∈H

errorD(h′) + ε

with probability at least 1− δ (over the choice of
examples).



scope of learning problems

• so far we have focused on examples with binary labels

• formalization can be generalized to other types of learning
from examples

• regression: find a linear function that best predicts a baby’s
birth from ultrasound measures of his head circumference,
abdominal circumference, and femur length

– X : possible values of ultrasound measurements,
– set of triplets in R3

– Y : possible values of weight at birth, R



scope of learning problems

• given H and domain X × Y , a loss function
` : H× (X × Y )→ R+ quantifies how good h is on (x, y)

• errorD(h) is the expected loss of hypothesis h
with respect to distribution D over X × Y

errorD(h) = E(x,y)∼D [`(h, (x, y))]

• errorS(h) is the empirical loss over a given sample S

errorS(h) =
1
m

m∑
i=1

`(h, (x, y))



example loss functions

• 0-1 loss:

`(h, (x, y)) =
{

0 if h(x) = y
1 if h(x) 6= y

• square loss:
`(h, (x, y)) = (h(x)− y)2

• absolute value loss:

`(h, (x, y)) = |h(x)− y |



learnability for general loss functions

• definition (agnostic PAC learning):
a hypothesis class H is agnostic PAC learnable with
respect to a domain X × Y and a loss function
` : H× (X × Y )→ R+ if there exists a function
mH : (0,1)2 → N and a learning algorithm A with the
following property:

for every ε, δ ∈ (0,1) and for every distribution D over
X × Y , when running A on m ≥ mH(ε, δ) i.i.d. examples
generated by D, A returns a hypothesis h such that with
probability at least 1− δ

errorD(h) ≤ min
h′∈H

errorD(h′) + ε,

where errorD(h) = E(x,y)∼D [`(h, (x , y))]



learning via uniform convergence

• the definition(s) of (agnostic) PAC learning states when we
can learn something

• it does not provide much information about what and how
we can learn

• how well we can learn a hypothesis from a sample
depends on the quality of that sample

• a sample has good quality when the estimated error of any
hypothesis on the sample is close to its true error



learning via uniform convergence

• remember the empirical risk minimization rule ERMH(S)

– given a sample set S of m examples, return the
– hypothesis hS from finite H such that

hS = arg min
h∈H

errorS(h)

• under the realizability assumption we have

– errorS(hS) = 0, and

– Pr [errorD(hS) ≤ ε] ≥ 1− δ when m ≥ log(|H|/δ)
ε

• what about the unrealizable setting?



learning via uniform convergence

• recall that errorD(h) = E(x,y)∼D [`(h, (x , y))]

• if we can ensure that empirical risks of all members of H
are good approximations of their true error, ERMH(S) can
return a hypothesis h that has error close to minimum
possible error

• in other words, we want to obtain, uniformly over all
members of H, an empirical risk that is close to its
expectation



learning via uniform convergence

• ε-representative sample:

– a sample set S is ε-representative with respect to a

– domain X × Y , hypothesis class H, loss function `,

– and distribution D if

∀h ∈ H, |errorD(h)− errorS(h)| ≤ ε



learning via uniform convergence

• lemma: assume that a sample set S is ε/2-representative,
then any output hS of ERMH(S) satisfies

errorD(hS) ≤ min
h′∈H

errorD(h′) + ε

• proof: for every h ∈ H we have

errorD(hS) ≤ errorS(hS) +
ε
2

≤ errorS(h) +
ε
2

≤ errorD(h) +
ε
2
+
ε
2

≤ errorD(h) + ε



learning via uniform convergence

• to ensure that ERMH(S) is an agnostic PAC learner,
it is sufficient to have an ε-representative sample with
probability at least 1− δ (over the randomness of S)

• uniform convergence formalizes this sufficiency condition



learning via uniform convergence

• uniform convergence: a hypothesis class H has the
uniform convergence property with respect to domain
X × Y and loss function `, if there exists a function
mUC
H : (0,1)2 → N such that:

– for every ε, δ ∈ (0,1) and for every distribution D over
– X × Y , a sample S of m ≥ mUC

H (ε, δ) i.i.d. examples
– drawn from D is ε-representative with probability
– at least 1− δ.

• the term uniform refers to the fact that the (minimal)
sample complexity mUC

H (ε, δ) is the same for all hypothesis
in H and all probability distributions D.



learning via uniform convergence

• to prove that we can agnostic PAC learn a hypothesis class,
just prove that it has the uniform convergence property

• corollary: if H has the uniform convergence property with
a function mUC

H : (0,1)2 → N, then H is agnostic PAC

learnable with sample complexity mH(ε, δ) ≤ mUC
H (ε/2, δ).

Furthermore, in that case, ERMH(S) is a successful
agnostic PAC learner for H.



finite classes are agnostic PAC learnable

• theorem: let H be a finite hypothesis class and let
` : H× (X × Y )→ [a,b] be a bounded loss function.
Then H is agnostic PAC learnable using ERMH(S)

with sample complexity

mH(ε, δ) ≤
⌈

2(b − a)2 log(2|H|/δ)
ε2

⌉



Hoeffding’s inequality

• let θ1, · · · , θm be a sequence of i.i.d. random variables
and assume that ∀i ,E [θi ] = µ and Pr [a ≤ θi ≤ b] = 1.
Then, for any ε ≥ 0,

Pr

[∣∣∣∣∣ 1
m

m∑
i=1

θi − µ

∣∣∣∣∣ > ε
]
≤ 2e

− 2mε2

(b−a)2



finite classes are agnostic PAC learnable

• proof: it suffices to show that H has the uniform
convergence property with

mH(ε, δ) ≤
⌈

2(b − a)2 log(2|H|/δ)
ε2

⌉
.

• so we need to find mUC
H (ε/2, δ) for fixed ε and δ such

that for any distribution D, an i.i.d. sample S of
m ≥ mUC

H (ε/2, δ)

Dm({S : ∃h ∈ H, |errorD(h)− errorS(h)| > ε}) < δ.



finite classes are agnostic PAC learnable

• proof cont’d: from union bound, we have

Dm({S : ∃h ∈ H, |errorD(h)− errorS(h)| > ε})

≤
∑
h∈H
Dm({S : |errorD(h)− errorS(h)| > ε})

• so if we can prove that for a large enough m each

Dm({S : |errorD(h)− errorS(h)| > ε})

is small enough, result follows.



finite classes are agnostic PAC learnable

• proof cont’d: we know that

errorD(h) = E(x,y)∼D [`(h, (x , y))]

• using Hoeffding’s inequality we have

Dm({S : |errorD(h)− errorS(h)| > ε}) ≤ 2e
− 2mε2

(b−a)2

• which implies

Dm({S : ∃h ∈ H, |errorD(h)− errorS(h)| > ε}) ≤ 2|H|e−
2mε2

(b−a)2

• so if m ≥ 2(b−a)2 log(2|H|/δ)
ε2 , then the RHS is at most δ as

required



finite classes are agnostic PAC learnable

• proof cont’d: we know that

errorD(h) = E(x,y)∼D [`(h, (x , y))]

• using Hoeffding’s inequality we have

Dm({S : |errorD(h)− errorS(h)| > ε}) ≤ 2e
− 2mε2

(b−a)2

• which implies

Dm({S : ∃h ∈ H, |errorD(h)− errorS(h)| > ε}) ≤ 2|H|e−
2mε2

(b−a)2

• so if m ≥ 2(b−a)2 log(2|H|/δ)
ε2 , then the RHS is at most δ as

required



discussion of sample complexity

• we started with realizability assumption and 0-1 loss and
obtained

mH(ε, δ) ≤
⌈

log(|H|/δ)
ε

⌉
• by relaxing the realizability assumption and assuming

general loss functions, we ended up with

mH(ε, δ) ≤
⌈

2(b − a)2 log(2|H|/δ)
ε2

⌉
.

• for the same level of accuracy, sample complexity grows
by a factor of 1/ε

• contribution of a general loss function is smaller
([a,b] can often be normalized to [0,1])



the discretization trick

• allows to get a good estimate of practical sample
complexity of infinite hypothesis classes

• consider the class of signum functions: X = R
and Y = {+1,−1}.

• let H = {hθ : θ ∈ R} where hθ = sign(x− θ)

• each hθ is parametrized by one parameter, θ ∈ R
and outputs −1 for instances smaller than θ



the discretization trick

• H is infinite but in practice we only need 64 bits to maintain
a real number using floating point representation

• so H is parametrized by set of scalars represented using
a 64 bits floating point number

• there are at most 264 such numbers hence actual size of H
is at most 264

• so sample complexity of H is bounded by

128 + 2 log(2/δ)
ε2

• practical estimate but dependent on machine-specific
representation of R



we have seen that

• finite classes are PAC learnable with sample complexity

mH(ε, δ) ≤
⌈

log(|H|/δ)
ε

⌉
• finite classes are agnostic PAC learnable with sample

complexity

mH(ε, δ) ≤
⌈

2 log(2|H|/δ)
ε2

⌉
• discretization trick can allow to obtain a practical estimate

of the sample complexity for infinite classes
– e.g., class of signum functions



application : no-free-lunch theorem

SS&BD, chapter 5

• we can show that there is no universal learner
– some form of prior knowledge is necessary
– we should know something about D and/or C

• theorem (no-free-lunch) : let A be a learner over X .
Then there exists a distribution D over X × {0,1} such that

1. there exists concept c : X → {0,1} with errorD(c) = 0
2. with probability at least 1/7 over S ∼ Dm we have

that errorD(A(S)) ≥ 1/8

• corollary : let C be the set of all mappings from an infinite
domain X to {0,1}. Then, C is not PAC learnable.



no-free-lunch theorem

• no-free-lunch theorem: without restricting the hypothesis
class, for any learning algorithm, an adversary can
construct a distribution for which the learning algorithm will
perform poorly, while there is another algorithm that will
succeed in the same distribution

• corollary: let C be the set of all mappings from an infinite
domain X to {0,1}. Then, C is not PAC learnable.

• so an infinite class with rich representation cannot be
(agnostic) PAC learned

• so how do we learn an infinite hypothesis class H?



learning threshold functions

• lemma: let H = {ha : a ∈ R} be the set of threshold
functions over the real line where ∀ha ∈ H

ha : R→ {0,1},ha(x) = I [x ≤ a]

• H is PAC learnable using the ERM rule with sample
complexity

mH(ε, δ) ≤
⌈

log(2|H|/δ)
ε

⌉



learning threshold functions

• H is of infinite size

• we want to get close to the true threshold value
we just need to prove that for any D, ERM rule will
probably get us close

• we know that all values to the left are classified as
negative, all values to the right are classified as positive



proof (sketch)

• let a∗ be the true value and define a1,a2 ∈ R such that

Prx∼Dx [x ∈ (a1,a∗)] = Prx∼Dx [x ∈ (a∗,a2)] = ε

• we want to prove that we most likely get an example from
– this interval

• given a sample S,

– let b1 = max{x : (x,1) ∈ S},

– let b2 = min{x : (x,0) ∈ S}, and

– let bS denote the threshold of ERM hypothesis hS

– which implies bS ∈ (b1,b2)



proof (sketch)

• a sufficient condition for errorD(hS) ≤ ε is to have b1 ≥ a1

and b2 ≤ a2

PrS∼Dm [errorD(hS) > ε] ≤ PrS∼Dm [b1 < a1] + PrS∼Dm [b2 > a2]

• the event b1 < a1 happens iff there exists no x ∈ S
such that x ∈ (a1,a∗)

PrS∼Dm [b1 < a1] = (1− ε)m ≤ e−εm ≤ δ/2.



free lunch vs threshold functions

• so finiteness of H is a sufficient condition for
PAC learnability, but not a necessary condition

• does learnability of threshold functions contradict the
no-free-lunch theorem?



free lunch vs threshold functions

• the class of threshold functions is so simple that an
adversary has no room to create an adversarial distribution

• if two threshold functions agree on a large enough sample,
their respective thresholds will be close to each other

• there is no way you can force them to behave differently on
unseen examples

• so a necessary condition for PAC learnability is that H
should not be too expressive?



how expressive H should be?

• consider binary classification: h : X → {0,1}

• expressiveness of H is a measure of how many functions
it can express

• from the corollary of no-free-lunch theorem, we should
consider not only functions on X but also functions on
(finite) subsets of X



the Vapnik-Chervonenkis dimension theory

• developed during 1960− 1990 by Vladimir Vapnik and
Alexey Chervonenkis

• provides a combinatorial measure to quantify the bias
of the hypothesis class

• main idea: do not measure the size of the hypothesis class
but the number of distinct instances that can be completely
discriminated using H


