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reading material

e SS&BD, chapters 3, 4, and 5



what we have seen so far

o S={(X1,¥1),.-.,(Xm, ¥ )} where x is sampled from D,
and y = c¢(x) labeled by the target concept ¢ : X — Y that
we want to learn

« the learner observes sample set S and outputs hypothesis

h: X — Y for predicting the label of unseen data points
drawn from D.

e the error of the learner is defined as the probability that
the learner does not predict the correct label on a random
data point sampled from D

errorp(h) = Pry.p[h(X) # c(X)]



what we have assumed so far

e |earning task: learning from examples with binary labels

e example generation: the sample data are drawn from D

and labeled according to a target concept ¢ € C

e realizability assumption: there exists a hypothesis h* € H

such that errorp(h*) = 0

e concept class C is finite or can efficiently be discretized



relaxing the realizability assumption

e realizability assumption: there exists a hypothesis h* € H
such that errorp(h*) = 0 (with probability 1)

— requires that labels are fully determined
by the features we measure on input elements

— e.g., papayas with same color and softness will have
the same taste

e in many practical problems this assumption does not hold

¢ so how do we remove the realizability assumption?



relaxing the realizability assumption

e sampling process under realizability assumption for an
example (x,y) € S:

— X is sampled from D
— y = c(x) labeled by the target conceptc: X — Y

e unrealizable setting: modify the sampling process to allow
for noise

e replace the target concept labeling with a data-labels
generating distribution

— define the sampling distribution D to be a
joint distribution over X x Y



relaxing the realizability assumption

e we can view D (x,y) as product of two distributions
— the marginal distribution Dy over unlabeled data x
— the conditional distribution D, = D((x, y) | x)
over labels for each data x
« the conditional distribution D((x, y) | x) over labels
introduces noise

— the same example can have different labels in
different draws

e generalization error can be redefined as

errorp(h) = Prx ).p [h(X) # y] = D({(X,y) | h(x) # y})



optimal Bayes hypothesis

e given any probability distribution D over X x {0, 1},
the best hypothesis we can hope foris b : X — Y, s.t.

1 ifPrp, [y=1|x]>1/2
= Ix
b(x) { 0 othervyvise

« for any other hypothesis h and for any distribution D
errorp(b) < errorp(h)

e |learner does not have access to distribution D, so we
cannot find the optimal Bayes hypothesis

e but learner has access to sample set S drawn from D



agnostic PAC learning

e extension of PAC learning to unrealizable setting

e learner is agnostic to the data-labels distribution
— no assumption on D
— no learner can guarantee an arbitrarily small error
¢ in contrast to PAC learning, the learner is not required
to achieve a small error in absolute terms, but relative

to the minimum possible error achievable by the
hypothesis class



agnostic PAC learning

e learner can declare success if the generalization error is
not much larger than the smallest error achievable by a
hypothesis from #

e approximately correct criterion: we want to find an h

such that

errorp(h) < min errorp(h') + €
heH

« if the realizability assumption holds, agnostic PAC learning
provides the same guarantees as in PAC learning



agnostic PAC learnability

¢ definition (agnostic PAC learning):
a hypothesis class 7 is agnostic PAC learnable if there
exists a function m;, : (0,1)? — N and a learning
algorithm A with the following property:

for every €,0 < (0, 1) and for every distribution D over
X x Y, when running Aon m > my(¢,0) i.i.d. examples
generated by D, A returns a hypothesis 5 that satisfies

errorp(h) < min errorp(h') + €
her

with probability at least 1 — 0 (over the choice of
examples).



scope of learning problems

¢ so far we have focused on examples with binary labels

o formalization can be generalized to other types of learning
from examples

e regression: find a linear function that best predicts a baby’s
birth from ultrasound measures of his head circumference,
abdominal circumference, and femur length

X: possible values of ultrasound measurements,
set of triplets in R®

Y: possible values of weight at birth, R



scope of learning problems

e given # and domain X x Y, a loss function
0 H x (X x Y) — R, quantifies how good his on (x, y)

e errorp(h) is the expected loss of hypothesis h
with respect to distribution D over X x Y
errorp(h) = Ex y)~p [£(h, (X, ¥))]

e errors(h) is the empirical loss over a given sample S

m

errorg(h) = %Zf(h, (x.))

i=1



example loss functions

e 0-1 loss:



learnability for general loss functions

¢ definition (agnostic PAC learning):
a hypothesis class 7 is agnostic PAC learnable with
respect to a domain X x Y and a loss function
0 H x (X x Y)— Ry if there exists a function
my - (0,1)? — N and a learning algorithm A with the
following property:
for every €,0 < (0, 1) and for every distribution D over
X x Y, when running Aon m > my(¢,0) i.i.d. examples
generated by D, A returns a hypothesis h such that with
probability at least 1 — o

errorp(h) < min errorp(h') + €,
Wer

where errorp(h) = Ey ) [((h. (x. ¥))]



learning via uniform convergence

e the definition(s) of (agnostic) PAC learning states when we
can learn something

e it does not provide much information about what and how
we can learn

¢ how well we can learn a hypothesis from a sample
depends on the quality of that sample

e a sample has good quality when the estimated error of any
hypothesis on the sample is close to its true error



learning via uniform convergence

e remember the empirical risk minimization rule ERMy(S)

— given a sample set S of m examples, return the
hypothesis hs from finite 7/ such that

hg = arg hm€|7rl errors(h)

e under the realizability assumption we have

errors(hg) = 0, and
Pr [errorp(hs) < €] > 1 — § when m > w

e what about the unrealizable setting?



learning via uniform convergence

e recall that errorp(h) = Ex y).p [¢(h, (X, ¥))]

« if we can ensure that empirical risks of all members of +
are good approximations of their true error, ERMy(S) can
return a hypothesis h that has error close to minimum
possible error

¢ in other words, we want to obtain, uniformly over all
members of #, an empirical risk that is close to its
expectation



learning via uniform convergence

e e-representative sample:

a sample set S is e-representative with respect to a
domain X x Y, hypothesis class #, loss function /,
and distribution D if

Vh € H, |errorp(h) — errors(h)| < €



learning via uniform convergence

e lemma: assume that a sample set S is ¢/2-representative,
then any output hg of ERMy,(S) satisfies

errorp(hg) < min errorp(h) + €
WeH

e proof: for every h € H we have

errorp(hg) < errors(hg) + %
< errors(h) + g
€ €
< h+ -+ =
< errorp(h) + 5 + 5
< errorp(h) + €



learning via uniform convergence

e to ensure that ERMy(S) is an agnostic PAC learner,
it is sufficient to have an e-representative sample with
probability at least 1 — 0 (over the randomness of S)

e uniform convergence formalizes this sufficiency condition



learning via uniform convergence

¢ uniform convergence: a hypothesis class # has the
uniform convergence property with respect to domain
X x Y and loss function /, if there exists a function
myC : (0,1)? — N such that:

for every €, 0 € (0, 1) and for every distribution D over
X x Y, asample Sof m> myC(e.0)iid. examples
drawn from D is e-representative with probability
atleast 1 — 0.

e the term uniform refers to the fact that the (minimal)
sample complexity mYC (e, d) is the same for all hypothesis
in 7 and all probability distributions D.



learning via uniform convergence

e to prove that we can agnostic PAC learn a hypothesis class,
just prove that it has the uniform convergence property

e corollary: if H has the uniform convergence property with
a function m¥¢ : (0,1)? — N, then H is agnostic PAC
learnable with sample complexity my (e, 0) < mZF(e/2,0).
Furthermore, in that case, ERM(S) is a successful
agnostic PAC learner for .



finite classes are agnostic PAC learnable

e theorem: let # be a finite hypothesis class and let
0 H x (X xY)— [a, b] be a bounded loss function.
Then # is agnostic PAC learnable using ERMy,(S)
with sample complexity

2(b - a)? Iog(zm/é)]
62

my(€,0) < {



Hoeffding’s inequality

e letdy,- -, 0, be asequence of i.i.d. random variables
and assume that Vi, E [0;] = pand Pra < 0; < b] = 1.
Then, for any € > 0,

1 m
o 0: —
Pr!m; i — [

o 2m€2

> 6] < 2e (b-a?




finite classes are agnostic PAC learnable

e proof: it suffices to show that 7 has the uniform
convergence property with

2(b—a)? Iog(2|7—[/(5)—‘
€2 )

my(€,0) < {

« so we need to find m¥°(e/2, 9) for fixed € and J such
that for any distribution D, an i.i.d. sample S of
m > m¥C(e/2,0)

D™({S : 3h € H,|errorp(h) — errors(h)| > €}) < 6.



finite classes are agnostic PAC learnable

e proof cont’'d: from union bound, we have

D™({S: 3h € H, |errorp(h) — errors(h)| > €})

< Y D"({S: |errorp(h) — errors(h)| > €})
heH

¢ so if we can prove that for a large enough m each
D"({S : |errorp(h) — errors(h)| > €})

is small enough, result follows.



finite classes are agnostic PAC learnable

proof cont’'d: we know that

errorp(h) = Ex y)~p [((h, (X, ¥))]

using Hoeffding’s inequality we have

2m52

D™M({S : |errorp(h) — errorg(h)| > €}) < 2e (v-a?

which implies

2me?

D™({S: 3h € H, |errorp(h) — errors(h)| > €}) < 2|H|e ®-a7

so if m > 2b=a)° '2§(2|H‘/5), then the RHS is at most J as
required



finite classes are agnostic PAC learnable

proof cont’'d: we know that

errorp(h) = Ex y)~p [((h, (X, ¥))]

using Hoeffding’s inequality we have

2m52

D™M({S : |errorp(h) — errorg(h)| > €}) < 2e (v-a?

which implies

2me?

D™({S: 3h € H, |errorp(h) — errors(h)| > €}) < 2|H|e ®-a7

so if m > 2b=a)° '2§(2|H‘/5), then the RHS is at most J as
required



discussion of sample complexity

¢ we started with realizability assumption and 0-1 loss and

obtained
log(\’H/5)w
€

my(€,0) < {

¢ by relaxing the realizability assumption and assuming
general loss functions, we ended up with

2(b - a)? |09(2|’H/5W
€2 '

(e, 8) < (
o for the same level of accuracy, sample complexity grows
by a factor of 1 /¢

e contribution of a general loss function is smaller
([a, b] can often be normalized to [0, 1])



the discretization trick

¢ allows to get a good estimate of practical sample
complexity of infinite hypothesis classes

e consider the class of signum functions: X = R
and Y = {+1,—1}.

o letH = {hy: 0 c R} where hy = sign(x — 0)

e each hy is parametrized by one parameter, ¢ € R
and outputs —1 for instances smaller than ¢



the discretization trick

‘H is infinite but in practice we only need 64 bits to maintain
a real number using floating point representation

so # is parametrized by set of scalars represented using
a 64 bits floating point number

there are at most 254 such numbers hence actual size of
is at most 254

so sample complexity of # is bounded by

128 + 2log(2/9)
2

practical estimate but dependent on machine-specific
representation of R



we have seen that

e finite classes are PAC learnable with sample complexity

|09(\H/5)w

€

my(€,0) < {

e finite classes are agnostic PAC learnable with sample
complexity

mue.) < |
e discretization trick can allow to obtain a practical estimate

of the sample complexity for infinite classes
e.g., class of signum functions

2|09(2|H!/5)W

€2



application : no-free-lunch theorem

SS&BD, chapter 5

e we can show that there is no universal learner
— some form of prior knowledge is necessary
— we should know something about D and/or C

e theorem (no-free-lunch) : let A be a learner over X.
Then there exists a distribution D over X x {0, 1} such that
1. there exists concept ¢ : X — {0, 1} with errorp(c) =0
2. with probability at least 1/7 over S ~ D" we have
that errorp(A(S)) > 1/8

e corollary : let C be the set of all mappings from an infinite
domain X to {0, 1}. Then, C is not PAC learnable.



no-free-lunch theorem

e no-free-lunch theorem: without restricting the hypothesis
class, for any learning algorithm, an adversary can
construct a distribution for which the learning algorithm will
perform poorly, while there is another algorithm that will
succeed in the same distribution

e corollary: let C be the set of all mappings from an infinite
domain X to {0,1}. Then, C is not PAC learnable.

e so an infinite class with rich representation cannot be
(agnostic) PAC learned

e so how do we learn an infinite hypothesis class #?



learning threshold functions

e lemma: let # = {h; : a € R} be the set of threshold
functions over the real line where Vh, € H

ha:R — {0,1}, ha(x) =[x < 4]

e 7 is PAC learnable using the ERM rule with sample

complexity
e < [2SEHL)]



learning threshold functions

e 7 is of infinite size

e we want to get close to the true threshold value
we just need to prove that for any D, ERM rule will
probably get us close

e we know that all values to the left are classified as
negative, all values to the right are classified as positive



proof (sketch)

e let a* be the true value and define ay, a> € R such that

Prv.p, [X € (a1,a")] = Pryp, [X € (8", &@2)] =€

e we want to prove that we most likely get an example from
this interval
e given a sample S,
— let by = max{x: (x,1) € S},
— let b, = min{x : (x,0) € S}, and

— let bs denote the threshold of ERM hypothesis hg
which implies bs € (by, bo)



proof (sketch)

e a sufficient condition for errorp(hs) < € is to have by > ay
and b, < a»

Prg._pm[errorp(hg) > €] < Prg pm [by < ai] + Prgpm [bo > as]

e the event by < a; happens iff there exists no x € S
such that x € (ay, a")

Prg.pmlbi <ail=(1-€)"<e " <§/2.



free lunch vs threshold functions

« so finiteness of H is a sufficient condition for
PAC learnability, but not a necessary condition

¢ does learnability of threshold functions contradict the
no-free-lunch theorem?



free lunch vs threshold functions

e the class of threshold functions is so simple that an
adversary has no room to create an adversarial distribution

e if two threshold functions agree on a large enough sample,
their respective thresholds will be close to each other

¢ there is no way you can force them to behave differently on
unseen examples

e S0 a necessary condition for PAC learnability is that #
should not be too expressive?



how expressive 7 should be?

e consider binary classification: h: X — {0,1}

e expressiveness of H is a measure of how many functions
it can express

¢ from the corollary of no-free-lunch theorem, we should
consider not only functions on X but also functions on
(finite) subsets of X



the Vapnik-Chervonenkis dimension theory

e developed during 1960 — 1990 by Vladimir Vapnik and
Alexey Chervonenkis

e provides a combinatorial measure to quantify the bias
of the hypothesis class

e main idea: do not measure the size of the hypothesis class
but the number of distinct instances that can be completely
discriminated using H



