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Approximation Scheme

Let Π be an optimization problem. An algorithm A is called
polynomial time approximation scheme (PTAS), if it
computes for every (I, ε) with I ∈ DΠ and ε > 0 a solution
s ∈ SΠ(I) with the following properties:
• objΠ(I, s) ≤ (1 + ε) · OPT, if Π is a minimization problem,
• objΠ(I, s) ≥ (1− ε) · OPT, if Π is a maximization problem.

The running time of A is polynomial in |I| for every fixed
ε > 0.
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Let Π be an optimization problem. An algorithm A is called
polynomial time approximation scheme (PTAS), if it
computes for every (I, ε) with I ∈ DΠ and ε > 0 a solution
s ∈ SΠ(I) with the following properties:
• objΠ(I, s) ≤ (1 + ε) · OPT, if Π is a minimization problem,
• objΠ(I, s) ≥ (1− ε) · OPT, if Π is a maximization problem.

The running time of A is polynomial in |I| for every fixed
ε > 0.

A is called fully polynomial time approximation scheme
(FPTAS), if its running time is polynomial in |I| and 1/ε.
Example running times
• O(n1/ε)  polynomial time approximation scheme
• O(21/εn4)  polynomial time approximation scheme
• O(n3/ε2)  fully polynomial time approximation scheme

(FPTAS)



Knapsack Problem

We are given a set S = {a1, . . . , an} of objects. For every
object ai, i = 1, . . . , n two quantities size(ai) ∈ N+ and
profit(ai) ∈ N+ are specified. Moreover, we are given a
knapsack capacity B ∈ N+. We are looking for a subset of
objects whose total size is at most B and whose total profit is
maximized.
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NP-hard



Pseudopolynomial Algorithm

Let Π be an optimization problem whose instances are
specified by discrete objects (for example sets, graphs, or
strings) and numbers (such as costs, weights, profits). By |I|
we denote (as usual) the size of the instance I ∈ DΠ where all
numbers in I are encoded in binary. By |Iu| we denote the size
of I when all numbers in I are encoded in unary.
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Let Π be an optimization problem whose instances are
specified by discrete objects (for example sets, graphs, or
strings) and numbers (such as costs, weights, profits). By |I|
we denote (as usual) the size of the instance I ∈ DΠ where all
numbers in I are encoded in binary. By |Iu| we denote the size
of I when all numbers in I are encoded in unary.

• The running time of a polynomial algorithm for Π is
polynomial in |I|.

• The running time of a pseudo-polynomial algorithm is
polynomial in |Iu|

• The running time of a pseudo-polynomial algorithm is not
always polynomial in |I|
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• P := maxi profit(ai)  OPT ≤ nP

• For every i = 1, . . . , n and every p ∈ {1, . . . , nP} let Si,p
be a subset of {a1, . . . , ai} whose total profit is exactly p
and whose total size is minimum among all subsets with
these properties.

• A(i, p) denotes the total size of the set Si,p (we set
A(i, p) =∞ if such a set does not exist).

• If all A(i, p) are known then OPT can be determined by
max{ p | A(n, p) ≤ B }
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• A(1, p) is known for all p ∈ {0, . . . , nP}

• A(i+ 1, p) = min{A(i, p), size(ai+1) +A(i, p−profit(ai+1)}

• We set A(i, p) :=∞ for p < 0

•  All values A(i, p) and therefore OPT can be computed
in O(n2P ) time

Knapsack can be solved in
pseudo-polynomial time
O(n2P ).
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FPTAS for Knapsack via Scaling

• Running time O(n2P ) polynomial in n, if P is polynomial
in n

• FPTAS idea: Scale profits to polynomial size (depending
on the required error parameter ε).
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FPTAS for Knapsack via Scaling

KnapsackFPTAS(I,ε)
K ← εP

n

profit′(ai) :=
⌊

profit(ai)
K

⌋
compute optimum solution S′ for I with respect to profit′(·)
return S′

Lemma The solution S′ satisfies profit(S′) ≥ (1− ε) ·OPT .

Theorem KnapsackFPTAS is an FPTAS for Knapsack with
running time O(n3/ε).



Strong NP-Hardness

An optimization problem is strongly NP-hard, if it remains
NP-hard also with unary numbers.

Theorem A strongly NP-hard problem has no
pseudo-polynomial algorithm unless P = NP.



FPTAS and Pseudo-Polynomial Algorithms

Theorem Let p be a polynomial. Let Π be an NP-hard
minimization problem with integer objective
function and with OPT(I) < p(|Iu|) for all
instances I of Π. If Π admits an FPTAS then
there is also a pseudo-polynomial algorithm for Π.



FPTAS und Strong NP-Hardness

Corollary Let Π be an NP-hard optimization problem, that
satisfies the requirements of the previous theorem.
If Π is strongly NP-hard then there is no FPTAS
for Π unless P = NP.


