

Approximation Algorithms

Lecture 8: FPTAS for Knapsack via Scaling

Joachim Spoerhase

Approximation Scheme

Let Π be an optimization problem. An algorithm \mathcal{A} is called **polynomial time approximation scheme** (PTAS), if it computes for every (I, ϵ) with $I \in D_{\Pi}$ and $\epsilon > 0$ a solution $s \in S_{\Pi}(I)$ with the following properties:

- $\operatorname{obj}_{\Pi}(I,s) \leq (1+\epsilon) \cdot \operatorname{OPT}$, if Π is a minimization problem,
- $\operatorname{obj}_{\Pi}(I,s) \geq (1-\epsilon) \cdot \operatorname{OPT}$, if Π is a maximization problem. The running time of $\mathcal A$ is polynomial in |I| for every fixed $\epsilon > 0$.

Approximation Scheme

Let Π be an optimization problem. An algorithm \mathcal{A} is called **polynomial time approximation scheme** (PTAS), if it computes for every (I, ϵ) with $I \in D_{\Pi}$ and $\epsilon > 0$ a solution $s \in S_{\Pi}(I)$ with the following properties:

- $\operatorname{obj}_{\Pi}(I,s) \leq (1+\epsilon) \cdot \operatorname{OPT}$, if Π is a minimization problem,
- $\operatorname{obj}_{\Pi}(I,s) \geq (1-\epsilon) \cdot \operatorname{OPT}$, if Π is a maximization problem. The running time of $\mathcal A$ is polynomial in |I| for every fixed $\epsilon > 0$.

 \mathcal{A} is called **fully polynomial time approximation scheme** (FPTAS), if its running time is polynomial in |I| and $1/\epsilon$.

Approximation Scheme

Let Π be an optimization problem. An algorithm \mathcal{A} is called **polynomial time approximation scheme** (PTAS), if it computes for every (I, ϵ) with $I \in D_{\Pi}$ and $\epsilon > 0$ a solution $s \in S_{\Pi}(I)$ with the following properties:

- $\operatorname{obj}_{\Pi}(I,s) \leq (1+\epsilon) \cdot \operatorname{OPT}$, if Π is a minimization problem,
- $\operatorname{obj}_{\Pi}(I,s) \geq (1-\epsilon) \cdot \operatorname{OPT}$, if Π is a maximization problem. The running time of $\mathcal A$ is polynomial in |I| for every fixed $\epsilon > 0$.

 ${\cal A}$ is called **fully polynomial time approximation scheme** (FPTAS), if its running time is polynomial in |I| and $1/\epsilon$. Example running times

- $O(n^{1/\epsilon}) \leadsto \text{polynomial time approximation scheme}$
- $O(2^{1/\epsilon}n^4) \rightsquigarrow \text{polynomial time approximation scheme}$
- $O(n^3/\epsilon^2) \leadsto$ fully polynomial time approximation scheme (FPTAS)

Knapsack Problem

We are given a set $S = \{a_1, \ldots, a_n\}$ of **objects**. For every object a_i , $i = 1, \ldots, n$ two quantities $\operatorname{size}(a_i) \in \mathbb{N}^+$ and $\operatorname{profit}(a_i) \in \mathbb{N}^+$ are specified. Moreover, we are given a knapsack **capacity** $B \in \mathbb{N}^+$. We are looking for a subset of objects whose total size is at most B and whose total profit is maximized.

Knapsack Problem

We are given a set $S = \{a_1, \ldots, a_n\}$ of **objects**. For every object a_i , $i = 1, \ldots, n$ two quantities $\operatorname{size}(a_i) \in \mathbb{N}^+$ and $\operatorname{profit}(a_i) \in \mathbb{N}^+$ are specified. Moreover, we are given a knapsack **capacity** $B \in \mathbb{N}^+$. We are looking for a subset of objects whose total size is at most B and whose total profit is maximized.

NP-hard

Let Π be an optimization problem whose instances are specified by discrete **objects** (for example sets, graphs, or strings) and **numbers** (such as costs, weights, profits). By |I| we denote (as usual) the size of the instance $I \in D_{\Pi}$ where all numbers in I are encoded in **binary**. By $|I_{\mathsf{u}}|$ we denote the size of I when all numbers in I are encoded in **unary**.

Let Π be an optimization problem whose instances are specified by discrete **objects** (for example sets, graphs, or strings) and **numbers** (such as costs, weights, profits). By |I| we denote (as usual) the size of the instance $I \in D_{\Pi}$ where all numbers in I are encoded in **binary**. By $|I_{\mathsf{u}}|$ we denote the size of I when all numbers in I are encoded in **unary**.

ullet The running time of a polynomial algorithm for Π is polynomial in |I|.

Let Π be an optimization problem whose instances are specified by discrete **objects** (for example sets, graphs, or strings) and **numbers** (such as costs, weights, profits). By |I| we denote (as usual) the size of the instance $I \in D_{\Pi}$ where all numbers in I are encoded in **binary**. By $|I_{\mathsf{u}}|$ we denote the size of I when all numbers in I are encoded in **unary**.

- The running time of a polynomial algorithm for Π is polynomial in |I|.
- ullet The running time of a **pseudo-polynomial algorithm** is polynomial in $|I_{\rm u}|$

Let Π be an optimization problem whose instances are specified by discrete **objects** (for example sets, graphs, or strings) and **numbers** (such as costs, weights, profits). By |I| we denote (as usual) the size of the instance $I \in D_{\Pi}$ where all numbers in I are encoded in **binary**. By $|I_{\mathsf{u}}|$ we denote the size of I when all numbers in I are encoded in **unary**.

- The running time of a polynomial algorithm for Π is polynomial in |I|.
- ullet The running time of a **pseudo-polynomial algorithm** is polynomial in $|I_{\rm u}|$
- \bullet The running time of a pseudo-polynomial algorithm is not always polynomial in |I|

• $P := \max_i \operatorname{profit}(a_i) \leadsto \operatorname{OPT} \leq nP$

- $P := \max_i \operatorname{profit}(a_i) \leadsto \operatorname{OPT} \leq nP$
- For every $i=1,\ldots,n$ and every $p\in\{1,\ldots,nP\}$ let $S_{i,p}$ be a subset of $\{a_1,\ldots,a_i\}$ whose total profit is exactly p and whose total size is minimum among all subsets with these properties.

- $P := \max_i \operatorname{profit}(a_i) \leadsto \operatorname{OPT} \leq nP$
- For every $i=1,\ldots,n$ and every $p\in\{1,\ldots,nP\}$ let $S_{i,p}$ be a subset of $\{a_1,\ldots,a_i\}$ whose total profit is exactly p and whose total size is minimum among all subsets with these properties.
- A(i,p) denotes the total size of the set $S_{i,p}$ (we set $A(i,p) = \infty$ if such a set does not exist).

- $P := \max_i \operatorname{profit}(a_i) \leadsto \operatorname{OPT} \leq nP$
- For every $i=1,\ldots,n$ and every $p\in\{1,\ldots,nP\}$ let $S_{i,p}$ be a subset of $\{a_1,\ldots,a_i\}$ whose total profit is exactly p and whose total size is minimum among all subsets with these properties.
- A(i,p) denotes the total size of the set $S_{i,p}$ (we set $A(i,p) = \infty$ if such a set does not exist).
- If all A(i,p) are known then OPT can be determined by $\max\{p \mid A(n,p) \leq B\}$

• A(1,p) is known for all $p \in \{0,\ldots,nP\}$

- A(1,p) is known for all $p \in \{0,\ldots,nP\}$
- We set $A(i, p) := \infty$ for p < 0

- A(1,p) is known for all $p \in \{0,\ldots,nP\}$
- We set $A(i, p) := \infty$ for p < 0
- $A(i+1,p) = \min\{A(i,p), \text{size}(a_{i+1}) + A(i,p-\text{profit}(a_{i+1}))\}$

- A(1,p) is known for all $p \in \{0,\ldots,nP\}$
- We set $A(i, p) := \infty$ for p < 0
- $A(i+1,p) = \min\{A(i,p), \text{size}(a_{i+1}) + A(i,p-\text{profit}(a_{i+1}))\}$
- ullet \sim All values A(i,p) and therefore OPT can be computed in $O(n^2P)$ time

- A(1,p) is known for all $p \in \{0,\ldots,nP\}$
- We set $A(i, p) := \infty$ for p < 0
- $A(i+1,p) = \min\{A(i,p), \text{size}(a_{i+1}) + A(i,p-\text{profit}(a_{i+1}))\}$
- ullet \sim All values A(i,p) and therefore OPT can be computed in $O(n^2P)$ time

KNAPSACK can be solved in pseudo-polynomial time $O(n^2P)$.

• Running time $O(n^2P)$ polynomial in n, if P is polynomial in n

- Running time $O(n^2P)$ polynomial in n, if P is polynomial in n
- FPTAS idea: **Scale** profits to polynomial size (depending on the required error parameter ϵ).

 $\mathsf{KnapsackFPTAS}(I,\epsilon)$

$$K \leftarrow \frac{\epsilon P}{n}$$

$$\mathsf{profit}'(a_i) := \left\lfloor \frac{\mathsf{profit}(a_i)}{K} \right\rfloor$$

compute optimum solution S' for I with respect to profit $'(\cdot)$ return S'

 $\mathsf{KnapsackFPTAS}(I,\epsilon)$

$$K \leftarrow \frac{\epsilon P}{n}$$
 $\mathsf{profit}'(a_i) := \left \lfloor \frac{\mathsf{profit}(a_i)}{K} \right \rfloor$

compute optimum solution S' for I with respect to profit $'(\cdot)$ return S'

Lemma The solution S' satisfies $\operatorname{profit}(S') \geq (1 - \epsilon) \cdot \mathsf{OPT}$.

KnapsackFPTAS (I,ϵ)

$$K \leftarrow \frac{\epsilon P}{n}$$
 $\mathsf{profit}'(a_i) := \left \lfloor \frac{\mathsf{profit}(a_i)}{K} \right \rfloor$

compute optimum solution S' for I with respect to profit $'(\cdot)$ return S'

Lemma The solution S' satisfies $\operatorname{profit}(S') \geq (1 - \epsilon) \cdot \mathsf{OPT}$.

Theorem KnapsackFPTAS is an FPTAS for KNAPSACK with running time $O(n^3/\epsilon)$.

Strong NP-Hardness

An optimization problem is **strongly NP-hard**, if it remains NP-hard also with unary numbers.

Theorem

A strongly NP-hard problem has no pseudo-polynomial algorithm unless P = NP.

FPTAS and Pseudo-Polynomial Algorithms

Theorem

Let p be a polynomial. Let Π be an NP-hard minimization problem with integer objective function and with $\mathrm{OPT}(I) < p(|I_{\mathsf{u}}|)$ for all instances I of Π . If Π admits an FPTAS then there is also a pseudo-polynomial algorithm for Π .

FPTAS und Strong NP-Hardness

Corollary

Let Π be an NP-hard optimization problem, that satisfies the requirements of the previous theorem. If Π is strongly NP-hard then there is no FPTAS for Π unless P = NP.