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Approximation Scheme

Let [1 be an optimization problem. An algorithm A is called
polynomial time approximation scheme (PTAS), if it
computes for every (I,€) with I € Dp and € > 0 a solution
s € Sn(I) with the following properties:
e objn(7,s) < (1+¢€)-OPT, if I1is a minimization problem,
e objn(7,s) > (1 —¢€)-OPT, if 1 is a maximization problem.
The running time of A is polynomial in |I| for every fixed
e > 0.
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Approximation Scheme

Let [1 be an optimization problem. An algorithm A is called
polynomial time approximation scheme (PTAS), if it
computes for every (I,€) with I € Dp and € > 0 a solution
s € Sn(I) with the following properties:
e objn(7,s) < (1+¢€)-OPT, if I1is a minimization problem,
e objn(7,s) > (1 —¢€)-OPT, if 1 is a maximization problem.
The running time of A is polynomial in |I| for every fixed
e > 0.

A is called fully polynomial time approximation scheme
(FPTAS), if its running time is polynomial in |I| and 1/e.
Example running times

o O(n'/¢) ~» polynomial time approximation scheme

o O(2Yn*) ~» polynomial time approximation scheme

e O(n3/e?) ~ fully polynomial time approximation scheme
(FPTAS)



Knapsack Problem

We are given a set S = {az,...,a,} of objects. For every
object a;, i = 1,...,n two quantities size(a;) € N* and
profit(a;) € NT are specified. Moreover, we are given a
knapsack capacity B € NT. We are looking for a subset of

objects whose total size is at most B and whose total profit is
maximized.
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NP-hard



Pseudopolynomial Algorithm

Let 1 be an optimization problem whose instances are
specified by discrete objects (for example sets, graphs, or
strings) and numbers (such as costs, weights, profits). By |I]
we denote (as usual) the size of the instance I € Dp where all
numbers in I are encoded in binary. By |I,| we denote the size
of I when all numbers in I are encoded in unary.
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Let 1 be an optimization problem whose instances are
specified by discrete objects (for example sets, graphs, or
strings) and numbers (such as costs, weights, profits). By |I]
we denote (as usual) the size of the instance I € Dp where all
numbers in I are encoded in binary. By |I,| we denote the size
of I when all numbers in I are encoded in unary.

e The running time of a polynomial algorithm for 1 is
polynomial in |I|.

e The running time of a pseudo-polynomial algorithm is
polynomial in |1,

e The running time of a pseudo-polynomial algorithm is not
always polynomial in ||
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Pseudopolynomial algorithm for KNAPSACK
e P := max; profit(a;) ~» OPT < nP

e Foreveryi=1,...,nand every pe {1,...,nP} let 5;,
be a subset of {ai,...,a;} whose total profit is exactly p
and whose total size is minimum among all subsets with
these properties.

e A(7,p) denotes the total size of the set S; , (we set
A(i,p) = oo if such a set does not exist).

e If all A(7,p) are known then OPT can be determined by
maxip | A(n,p) < B}
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Pseudo-Polynomial Algorithm for KNAPSACK

e A(1,p) is known for all p € {0,...,nP}
o We set A(i,p) := oo for p < 0

e A(t+1,p) = min{A(%,p),size(a;+1)+ A(i, p— profit(a;.1)}

e ~~ All values A(7,p) and therefore OPT can be computed
in O(n?P) time

KNAPSACK can be solved in
pseudo-polynomial time

O(n?P).
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e Running time O(n?P) polynomial in n, if P is polynomial

In n
e FPTAS idea: Scale profits to polynomial size (depending

on the required error parameter ¢).
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KnapsackFPTAS(/ ¢)
K+ £

profit’(ai) - \‘profit(az‘)J

K

compute optimum solution S’ for I with respect to profit’(-)
return S’
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FPTAS for KNAPSACK via Scaling

KnapsackFPTAS(/ ¢)
K+ £
: L rofit(a;)
profit’(a;) := {pOK J
compute optimum solution S’ for I with respect to profit’(-)
return S’

Lemma  The solution S’ satisfies profit(S’) > (1 —¢) - OPT.

Theorem KnapsackFPTAS is an FPTAS for KNAPSACK with
running time O(n3/e).



Strong NP-Hardness

An optimization problem is strongly NP-hard, if it remains
NP-hard also with unary numbers.

Theorem A strongly NP-hard problem has no
pseudo-polynomial algorithm unless P = NP.



FPTAS and Pseudo-Polynomial Algorithms

Theorem

Let p be a polynomial. Let 1 be an NP-hard
minimization problem with integer objective

function and with OPT(I) < p(|1,]) for all
instances I of 1. If I1 admits an FPTAS then

there is also a pseudo-polynomial algorithm for I1.



FPTAS und Strong NP-Hardness

Corollary Let I1 be an NP-hard optimization problem, that
satisfies the requirements of the previous theorem.
If 1 is strongly NP-hard then there is no FPTAS
for Il unless P = NP.



