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Topics of this
Diffusion theory revisited

I Approximations and validity

I Two-group diffusion calculations

I Spatial homogenization

Full-core calculations:

I Global and local heterogeneous and homogeneous flux

I Discontinuity factors and equivalence theory

I Nodal diffusion method

I Pin-power reconstruction

Parametrization of group constants:

I Branch and history variations

I Fission product poisons

Example of homogenization and core simulation
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Diffusion theory revisited
As pointed out in the previous lecture, solution to the global transport problem is obtained by
dividing the calculation task into several parts.

Cross section measurementsCross section measurements
and nuclear modelsand nuclear models

Cross section measurementsCross section measurements
and nuclear modelsand nuclear models

Isotopic micro-groupIsotopic micro-group
cross sectionscross sections

Isotopic micro-groupIsotopic micro-group
cross sectionscross sections

Transport calculation atTransport calculation at
fuel assembly levelfuel assembly level

Transport calculation atTransport calculation at
fuel assembly levelfuel assembly level

Homogenized few-groupHomogenized few-group
constantsconstants

Homogenized few-groupHomogenized few-group
constantsconstants

Coupled full-coreCoupled full-core
simulationsimulation

Coupled full-coreCoupled full-core
simulationsimulation

The spatial scale of the modeled system is gradually
increased, while simultaneously moving towards more
simplified description of physics

Local reaction rate balance is preserved at each step, by
calculating flux-volume averaged cross sections based on the
solution to the local transport problem

A major part of the complicated interaction physics is included
already in the multi-group cross sections used in
assembly-level calculations, for example:

I Doppler-broadening of cross sections

I Corrections for spatial and resonance self-shielding

All information on microscopic reaction rates, including their
spatial distribution, is lost when the interaction physics is
condensed into a handful of few-group constants.

Spatial homogenization not only enables running the core-level calculations at an acceptable
computational cost, but also allows using diffusion theory for the flux solution.



Lecture 8: Full-core calculations and nodal diffusion method
April 25, 2019

4/55

Diffusion theory revisited: approximations and validity
As discussed in Lecture 4, diffusion theory is based on a number of approximations, in particular
Fick’s law, which couples together flux gradient and neutron current density:

Jg(r, t) = −Dg∇φg(r, t) (1)

This allows writing the transport problem in the form of a balance equation using a single density-
like function, Φ:1

1

vg

∂

∂t
Φg(r, t)−Dg∇2

Φg(r, t) + Σr,gΦg(r, t) = Qg(r, t) +
∑
g′ 6=g

Σs,g′gΦg′ (r, t)

+ χg

∑
g′
νΣf,g′Φg′ (r, t)

(2)

The main approximations in the derivation of (2) can be summarized as:

1) Neutron flux can be linearized with respect to angular coordinates (linear anisotropy)

2) The medium is infinite and homogeneous

3) Scattering is the dominant reaction mode, and isotropic in the L-frame

4) Wide energy groups in multi-group condensation

1Solution to the neutron diffusion equation is denoted here with a capital phi, Φ. For clarity, Φ is referred to as
the diffusion flux in contexts where it is easily confused with the scalar flux, φ, obtained from the solution of the
transport equation.
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Diffusion theory revisited: approximations and validity
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Figure 1: Left: Illustration of an isotropic and anisotropic vector field, for example, neutron current density.
In the isotropic case neutron directions are completely randomly distributed. In the anisotropic case there
is a clear preferential direction. Right: Anisotropy of elastic potential scattering in the laboratory
frame-of-reference (L-frame). Even though potential scattering is isotropic in the center-of-mass frame
(C-frame), i.e. the average scattering cosine is zero, the anisotropy increases in the L-frame with
decreasing nuclide mass. The curve shows that scattering from hydrogen, for example, has a clear
forward bias.
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Diffusion theory revisited: approximations and validity
Linear flux anisotropy is a poor approximation in or near:

1) Localized sources

2) Strong absorbers

3) Vacuum boundaries and low-density material regions

4) Large moderator regions

For strong absorbers and vacuum boundaries the anisotropy is caused by the lack of back-flow
through the boundary surface. For large moderator regions there is a large inward component of
fast neutrons and an outward component of thermal neutrons, which disrupts the flux isotropy.

Spatial homogenization at the fuel assembly level removes most of the problems caused by local
heterogeneities:

I The geometry consists of homogeneous regions that are large compared to neutron mfp
(good approximation to infinite homogeneous medium)

I Effects of localized strong absorbers in flux anisotropy are smoothed out

I Scattering becomes the dominant reaction mode when reaction probabilities are
averaged over the local geometry
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Diffusion theory revisited: approximations and validity

Figure 2: Flux gradient field in fast (left) and thermal (right) energy group in a BWR fuel assembly,
demonstrating the heterogeneity of the flux solution. Neutron density distribution is plotted in the
background. Energy group boundary is set to 0.625 eV. Calculations carried out using Monte Carlo
simulation.
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Diffusion theory revisited: approximations and validity
Spatial homogenization does not change the fact that scattering is an anisotropic reaction in
the L-frame,2 in particular for light elements (See Fig. 5). Since more than 90% of all neutron
interactions in LWR’s consist of elastic scattering from hydrogen in water, the requirement of
isotropic scattering is clearly not met.

This error is compensated to some extent by the transport-correction, which is seen in the defini-
tion of the transport cross section (out-scattering approximation):

Σtr,h ≈ Σh − µΣs,h , (3)

used in the calculation of the diffusion coefficient:

Dg =

∑
h∈g

∑
i

Φi,h

3Σtr,i,h∑
h∈g

∑
i

ViΦi,h

. (4)

In Lecture 4 the diffusion coefficient was associated with the distance migrated by the neutrons
in a homogeneous medium, which is increased by scattering anisotropy (µ > 0). In a way, the
directional component of the double-differential scattering rate is contained within the transport
cross section, while the group-transfer cross section contains the energy-transfer component.

2Scattering isotropy in the L-frame must not be confused with isotropy in the C-frame, which is generally a good
approximation.
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Diffusion theory revisited: two-group diffusion calculations
LWR core simulations are most typically based on two-group diffusion theory, in which the thermal
group covers the Maxwellian distribution of fully thermalized neutrons and the rest of the spectrum
is contained within the fast group. The group boundary is typically set to 0.625 eV.

The two-group diffusion equations can be written by setting χ1 = 1 and χ2 = 0 and re-grouping
some of the terms in (2). In the k-eigenvalue form the equations are written as:

−D1∇2
Φ1(r) + (Σa,1 + Σrem) Φ1(r) =

1

k

[
νΣf,1Φ1(r) + νΣf,2Φ2(r)

]
−D2∇2

Φ2(r) + Σa,2Φ2(r) = ΣremΦ1(r)

(5)

where the contribution from up-scattering is included in the removal cross section:

Σrem = Σs,12 −
Φ2

Φ1

Σs,21 (6)

The time-dependent form of Eq. (5) also includes the external source and time-derivative terms,
and the 1/k multiplier in the fission source is omitted. Delayed neutron emission couples the
two-group diffusion equations into the delayed neutron precursor equations with additional fission
source terms (see Lecture 2).
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Diffusion theory revisited: two-group diffusion calculations
In two-group diffusion theory, all the complicated interaction physics within the homogenized re-
gion is contained in 7 group constants:

I Fast and thermal absorption cross section Σa,1,Σa,2, defining the total rate at which
neutrons are removed from the population3

I Fast and thermal fission neutron production cross section νΣf,1, νΣf,2, defining the rate
at which new neutrons are produced

I Fast and thermal diffusion coefficient D1, D2, characterizing the migration of neutrons in
the homogeneous medium (and containing the angular-dependent part of the double-
differential scattering rate)

I Removal cross section Σrem, describing the net down-scattering of neutrons from fast to
thermal group (and containing the energy-dependent part of double-differential scattering
rate)

Time-dependent diffusion calculations also include the inverse neutron speeds 1/v1, 1/v2 and
effective delayed neutron parameters. The time constants are weighted with adjoint neutron flux,
as briefly noted in Lecture 2.

3Absorption in this context refers to all reactions in which the incident neutron is lost, including fission.
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Diffusion theory revisited: spatial homogenization
The homogenization of reaction cross sections can be formally written as:

Σg =

∫
V

∫ Eg−1

Eg

Σ(r, E)φ(r, E)dV dE∫
V

∫ Eg−1

Eg

φ(r, E)dV dE

(7)

Where the integrals are carried over the energy group and the homogenized geometry. These
integrals can be evaluated directly using Monte Carlo simulation, but the common approach is to
use deterministic lattice transport codes, in which case the flux solution is obtained in multi-group
space-discretized form. The homogenization procedure is then written as:

Σg =

∑
h∈g

∑
i

ViΣi,hφi,h∑
h∈g

∑
i

Viφi,h

(8)

where h refers to the multi-group division used in the heterogeneous solution and g to the final
few-group division. Index i refers to spatial sub-division, such as the flat-source regions in MOC.

Alternatively, the geometry is first homogenized while maintaining the original multi-group struc-
ture (or some subset of it), after which a leakage-corrected spectrum is obtained by solving the
B1 equations. This spectrum is then used for collapsing the data into the final few-group form
(see brief description of leakage corrections in Lecture 7).
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Diffusion theory revisited: spatial homogenization
The diffusion coefficient is calculated by collapsing the inverse of the transport cross section:

Dg =

∑
h∈g

∑
i

φi,h

3Σtr,i,h∑
h∈g

∑
i

Viφi,h

≈

∑
h∈g

∑
i

φi,h

3(Σi,h − µΣs,i,h)∑
h∈g

∑
i

Viφi,h

(9)

where µ is the average scattering angle in group h. The diffusion coefficient can also be obtained
from the critical buckling with the solution of the B1 equations.4

All information on isotopic compositions is lost in the process of homogenization, which means
that burnup calculation has to be performed before proceeding to the next stage in the calculation
chain.

Burnup calculation requires one-group transmutation cross sections used for forming the Bateman
depletion equations, which can be calculated similar to (8):

σ =

∑
h

σhφh∑
h

φh

(10)

4For details, see: R. Stamm’ler and M. Abbate, “Methods of Steady-State Reactor Physics in Nuclear Design.”
Academic Press Inc. 1983.
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Diffusion theory revisited: spatial homogenization
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Figure 3: Illustration of energy group condensation for flux (left) and total absorption cross section (right).
Condensation of flux is performed by integration over energy groups. Condensation of cross sections is
carried out by calculating flux-volume-weighted averages that preserve the reaction rate balance as in
Eq. (8).
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Full-core calculations
The core geometry is divided into homogeneous calculation nodes, typically the size of a single
fuel assembly divided into 20-30 axial zones.5 The cross sections for each node are obtained
from spatial homogenization, which provides the “building blocks” for the full-scale model.

The core-level calculation is based on the following assumptions:

I The reactor physical characteristics depend mainly on the assembly type and the local
operating conditions (fuel burnup, thermal-hydraulic state)

I The position of the assembly affects neutronics only indirectly, via the coupling between
local power and thermal hydraulics

I The heterogeneity of the core is limited to radial dimensions, the reactor physical
characteristics of fuel do not change sharply in the axial direction

The last assumption is a simplification resulting from the traditional design of fuel assemblies.
There are also axially heterogeneous cores where this assumption does not hold.

It should be noted that full-core calculation is a diverse topic, covering a multitude of implementa-
tions and solution methods. What is presented in the following is a generalization, demonstrating
the basic concepts of nodal methods, equivalence theory and the use of discontinuity factors.

5If the node size is too small, the validity of diffusion theory may be compromised. If the size is too large, the
solution fails to represent the spatial variation in flux and reaction rate.



Lecture 8: Full-core calculations and nodal diffusion method
April 25, 2019

15/55

Full-core calculations
The terminology related to full-core calculations can be somewhat confusing. The methodology
deals with two types of transport problems:

1) Heterogeneous problem – detailed description of geometry at assembly or core level

2) Homogeneous problem – homogenized description of geometry at assembly or core level

and two spatial scales:

1) Local scale – single fuel assembly (separated from its surroundings)

2) Global scale – core level

This results in four types of flux solutions:

1) Local heterogeneous flux, φ

2) Local homogeneous (diffusion) flux, Φ

3) Global homogeneous (diffusion) flux, Φ̂

4) Global heterogeneous flux, φ̂

The heterogeneous flux solution requires higher-order transport methods, and the homogeneous
problem is solved using simplified techniques, such as diffusion theory. All solutions are assumed
to exist, even though the last one cannot be obtained in practice.
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Full-core calculations

Local heterogeneous flux, φ

I Solution to the local heterogeneous
transport problem

I Obtained by deterministic transport
codes using a detailed 2D description of
a single fuel assembly

I 40, 70, 172, 238 (or so) energy groups

I Used for producing homogenized
few-group constants

Global heterogeneous flux, φ̂

I Solution to the global heterogeneous
transport problem

I The actual solution to the full-scale
problem that exists but is never reached

Local homogeneous (diffusion) flux, Φ

I Solution to the local homogeneous
transport problem

I Obtained by solving the few-group
diffusion equation in homogenized
assembly-level geometry

Global homogeneous (diffusion) flux, Φ̂

I Piece-wise continuous solution to the
global homogeneous transport problem

I Obtained by coupling intra-nodal
homogeneous diffusion flux solutions
together by continuity conditions

I Represents the solution to the full-scale
transport problem
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Full-core calculations

Figure 4: Illustration of heterogeneous and homogeneous flux inside a single fuel assembly. Top left: fast
heterogeneous flux, Top right: fast homogeneous flux, Bottom left: thermal heterogeneous flux, bottom
right: thermal homogeneous flux.



Lecture 8: Full-core calculations and nodal diffusion method
April 25, 2019

18/55

Discontinuity factors and equivalence theory
Even though the global heterogeneous and homogeneous flux are solutions to different problems,
they represent the same reaction rate distribution at the nodal level.6 The two solutions are also
assumed to be coupled to each other at the node boundaries via so-called assembly discontinuity
factors (ADF’s):

fg,k =
φ̂g,k

Φ̂g,k

(11)

where g is the energy group and k refers to a segment of the node boundary (most commonly a
node face) where the coupling is applied and over which the two fluxes are averaged.

If the two nodes on the two sides of surface k are denoted with − and +, the continuity of
heterogeneous flux can be written as:

φ̂
−
g,k = φ̂

+
g,k (12)

from which it results that the homogeneous flux is coupled by:

f
−
g,kΦ̂

−
g,k = f

+
g,kΦ̂

+
g,k (13)

where f−g,k and f+g,k are the ADF’s calculated for the nodes on the two sides of surface k.7

6This is how spatial homogenization was performed.
7It is important to note here that f−g,k and f+

g,k are two different numbers, because the homogeneous flux is not
continuous over the boundary (hence the name discontinuity factor).
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Discontinuity factors and equivalence theory
The global homogeneous flux, Φ̂, is what the whole procedure is aiming to solve and the fact that
the global heterogeneous flux, φ̂, cannot be solved was the reason to turn to simplified methods
in the first place. So how to obtain the discontinuity factors?

The solution is to assume equivalence between the local and global flux, i.e. that the results of
the assembly-level calculation represent the results of the full-core calculation inside the same
assembly type in same conditions.

The assembly discontinuity factor (11) can then be defined using the local flux variables as:

fg,k ≈
φg,k

Φg,k

(14)

The local heterogeneous flux, φg,k , is obtained from the same assembly calculation that pro-
duced the group constants, by collapsing the micro-group structure into the few-group structure
and integrating over segment k. The local homogeneous flux Φg,k is discussed shortly.

It should be noted that the same equivalence was actually already applied in the production of
homogenized group constants, since the cross sections were weighted with φ, not φ̂, and it results
from the previous assumptions that the reactor physical characteristics are more dependent on
the assembly type and local operating conditions and less on the position of the assembly within
the core.
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Discontinuity factors and equivalence theory
It is important to note that even though the local homogeneous flux, Φ, was defined earlier, it has
so far only been used in the definition of the assembly discontinuity factor in Eq. (14). In particular,
it is not the same thing as the intra-nodal homogeneous flux solution, which makes up the global

homogeneous flux, Φ̂.

The local homogeneous flux is instead the local equivalent of the intra-nodal homogeneous flux,
i.e. the solution to the diffusion equation in the homogenized assembly-level geometry.

Since both are solutions to the diffusion problem in homogeneous medium, characterized by the
same group constants, the only thing that separates the two are the boundary conditions:

I In the global homogeneous problem the boundary conditions are the continuity conditions
used to couple adjacent intra-nodal solutions together

I In the local homogeneous problem the boundary conditions depend on how the
assembly-level geometry is set up

So similar to homogenized group constants, the discontinuity factors can also be obtained from
the assembly-level calculation, but the exact procedure depends on the boundary conditions.
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Discontinuity factors and equivalence theory
The definition of the ADF in Eq (14) is written with the flux integrals as:

fg,k =
φg,k

Φg,k

=

1

Sk

∫
Sk

∫ Eg−1

Eg

φ(r, E)dSdE

1

Sk

∫
Sk

Φg(r)dS

(15)

where Sk is the area of surface k.

As mentioned earlier, spatial homogenization is most commonly performed using reflective bound-
ary conditions, which corresponds to an infinite array of identical fuel assemblies.

Each neutron crossing the outer boundary is reflected back, which means that inward and outward
currents cancel each other, resulting in zero net current over the assembly boundaries.

According to Fick’s law (1), this means that also the flux gradient is zero at the boundary:

Jg = 0 =⇒ ∇φg = 0 (16)

Since the geometry consists of homogeneous medium, there is nothing to change the flux shape,
which implies that:

When spatial homogenization is performed using reflective boundary conditions, the
homogeneous flux solution is constant over the entire volume.
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Discontinuity factors and equivalence theory
Since the flux is constant, the average over any boundary surface must be equal to the average
over the entire volume:

1

Sk

∫
Sk

Φg(r)dS =
1

V

∫
V

Φg(r)dV (17)

The preservation of reaction rates in turn necessitates that the volume-averaged homogeneous
flux is equal to the volume-averaged heterogeneous flux:

1

V

∫
V

Φg(r)dV =
1

V

∫
V

∫ Eg−1

Eg

φ(r, E)dV dE (18)

Combining the results of Eqs. (15), (17) and (18) gives:

fg,k =

1

Sk

∫
Sk

∫ Eg−1

Eg

φ(r, E)dSdE

1

V

∫
V

∫ Eg−1

Eg

φ(r, E)dV dE

(19)

In other words, if the fuel assembly is homogenized with reflective boundary conditions, the ADF’s
can be calculated as the ratio of surface-averaged to volume-averaged heterogeneous flux. The
local homogeneous flux is then not needed at all.
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Discontinuity factors and equivalence theory
Infinite-lattice calculations with reflective boundary conditions are a good approximation if the
heterogeneous flux gradient between adjacent assemblies is known to be small. This may not be
the case for:

1) Assemblies located at the core-reflector boundary

2) Assemblies located adjacent to very reactive or absorbent assemblies (for example,
mixed UOX/MOX loading)

In such case, the homogenized assembly can be modeled with its immediate surroundings, for
example, in a “colorset” configuration (see Fig. 9).

This removes the reflective boundary and ADF’s must be calculated from (15), with an explicit
solution to homogeneous flux, obtained by using net currents (provided by the heterogeneous
flux solution) as the boundary conditions.8

Non-zero net-current boundary conditions are also encountered in reflector and some control
absorber geometries, for which the only net source of neutrons is the inward current from the
surrounding fuel.

8It is important that the local homogeneous flux is solved using the same methods and approximations as used
for solving the global homogeneous problem in the nodal diffusion code.
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Nodal diffusion methods
Because the geometry is homogeneous inside each node, the shape of the intra-nodal diffusion
flux solution depends only on boundary conditions at the node boundary.

The general idea in nodal diffusion calculation is to describe the intra-nodal homogeneous dif-
fusion flux using group-wise shape functions, and apply a number of continuity conditions that
couple the node-wise solutions to each other, forming the global homogeneous flux.

The boundary conditions for the intra-nodal flux solution are determined by:

1. Continuity of current over node boundaries

2. Continuity of global heterogeneous flux over node boundaries

3. Coupling between global heterogeneous flux to global homogeneous flux at node
boundaries (via discontinuity factors)

It is important to note that the continuity of flux applies only to the global heterogeneous solution,
which is assumed to exist, but cannot be obtained computationally. The continuity of the global
homogeneous flux is relaxed, and the boundary values are instead coupled to the heterogeneous
flux using discontinuity factors.

The number and type of boundary conditions and the way in which this solution is written depends
on the implementation.
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Nodal diffusion methods
Nodal diffusion methods have been developed over a period of several decades, and limited com-
puter capacity has affected the practical implementation in calculation codes. The topic covers a
wide range of models, approximations and algorithms.9

The most significant differences between different nodal methods can be attributed to:

Treatment of the axial dimension:

I Separation of radial and axial solutions

I Transverse integration

I True 3D solution (AFEN / FENM)

Representation of shape functions:

I Polynomial approximation

I Exact solution to diffusion equations

Other determining factors include number of energy groups and applicability of the solution to
different geometry types (square vs. hex).

The following example represents an AFEN-type (Analytical Function Exansion Nodal) solution.

9For a general description, see: W. M. Stacey, “Nuclear Reactor Physics,” Wiley, 2001.
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Nodal diffusion methods
The multi-group diffusion equation can be written in matrix form as:

−D∇2
Φ̂ + ΣΦ̂ = ΣsΦ̂ +

1

k
χ(νΣf )

T
Φ̂ (20)

where the coefficients are constant matrices and Φ̂ is a vector containing the flux in each group.
This equation is simplified into the Helmholtz equation in matrix form:

∇2
Φ̂ = MΦ̂ (21)

where:
M = D

−1
A (22)

and
A = Σ−Σs −

1

k
χ(νΣf )

T (23)

The solution in Cartesian coordinates can be written as:

f(x, y, z) = e
B1x+B2y+B3zc (24)

where c is a constant vector and:

B
2
1 + B

2
2 + B

2
3 = M (25)

Functions of the form (24) are called the basis functions of the flux solution.
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Nodal diffusion methods
In theory, there is an infinite number of basis functions that satisfy Eq. (20) with condition (25), for
example:

B2 = 0;B3 = 0⇒ f(x) = e
±
√

Mx
c

B3 = 0;B1 = B2 ⇒ f(x, y) = e
±
√

M
2

(x+y)
c

(26)

The general solution is a linear combination of all basis functions. In practice, the number of terms
is limited by the number of continuity conditions, and the selection is based on the problem and
geometry type (for example, square vs. hexagonal fuel lattice).

In two dimensional square lattice the solution could be written as:

Φ̂(x, y) = e
√

Mx
c1 + e

−
√

Mx
c2 + e

√
My

c3 + e
−
√

My
c4 (27)

and coefficient vectors c1, c2, c3, c4 would be fixed by the continuity conditions applied at each
node face.

By providing additional continuity conditions for currents at node corners the solution could be
written as:

Φ̂(x, y) =e
√

Mx
c1 + e

−
√

Mx
c2 + e

√
My

c3 + e
−
√

My
c4

+ e
√

M(x+y)
c5 + e

−
√

M(x+y)
c6 + e

√
M(x−y)

c7 + e
−
√

M(x−y)
c8

(28)

The choice of basis functions is basically arbitrary, but it does effect the accuracy of the solution.
By including additional continuity conditions for corner currents allows more accurate description
of diagonal spatial dependence.
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Nodal diffusion methods
The continuity of current in group g over boundary k is written as:∫

Sk

J
−
g (r) · dS =

∫
Sk

J
+
g (r) · dS (29)

or applying Fick’s law: ∫
Sk

D
−
g ∇Φ̂

−
g (r) · dS =

∫
Sk

D
+
g ∇Φ̂

+
g (r) · dS (30)

The continuity of heterogeneous flux is written as∫
Sk

φ̂
−
g (r)dS =

∫
Sk

φ̂
+
g (r)dS (31)

from which the discontinuity of the homogeneous flux can be written using the discontinuity fac-
tors: ∫

Sk

f
−
g Φ̂
−
g (r)dS =

∫
Sk

f
+
g Φ̂

+
g (r)dS (32)
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Nodal diffusion methods
The continuity of current and discontinuity of homogeneous flux provide the sufficient equations
for fixing the unknown amplitude coefficients of the basis functions.

This is best seen by considering a system consisting of two rectangular nodes, for which the
two-group intra-nodal flux solutions are written using 4 basis functions per group as in as (27):

I The total number of unknown coefficients is 16 (2 nodes, 2 energy groups 4 basis
functions per group)

I The outer boundary conditions fix 12 unknown coefficients (6 outer faces, 2 energy
groups)

I The continuity of current at node boundary fixes 2 coefficients (1 equation per group)

I The discontinuity of flux at node boundary fixes 2 coefficients (1 equation per group)

The outer boundary conditions are typically vacuum, which is a good approximation if the active
core is surrounded by sufficient amount of non-multiplying reflector.

Discontinuity factors are traditionally not used at axial node boundaries, which essentially as-
sumes continuity of homogeneous flux. This is a good approximation if the material properties do
not exhibit sharp discontinuities. This assumption may lead to errors near control rod tips10 and
in assemblies with axially-profiled burnable absorber pins.

10The movement of control rods is not limited to node boundaries. Partial insertion within a node is accounted for
by axial re-homogenization, which averages the reactivity effect over the entire node volume.
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Pin-power reconstruction
Since the global homogeneous flux Φ̂ literally represents the solution to a homogenized problem,
it can provide information on the core power distribution only at node level. Since various safety
margins are based on the maximum temperature of the hottest pin, it is necessary to calculate
the power distribution also at pin level.

This can be accomplished by pin-power reconstruction, which means combining the homoge-
neous intra-nodal flux to form factors that represent the power distribution inside the assembly.
These form factors are obtained from the assembly-level calculation together with other group
constants:

pg,j =

∑
h∈g

κΣf,h,jφh,j

Φg,j

(33)

where κΣf is the fission energy production cross section and j is the pin index.

The local pin-powers are then obtained by multiplying the form factors with the global homoge-
neous flux from the full-core calculation and summing over energy groups:

Pj =
∑
g

pg,jΦ̂g,j (34)

The local homogeneous flux Φ is obtained as in the calculation of ADF’s – if the assembly is
surrounded by reflective boundary conditions, the flux is constant, if not it requires solution to the
homogenized problem with non-zero net current boundary conditions.
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Parametrization of group constants
As mentioned above, the dependence of interaction probabilities on fuel burnup and local thermal
hydraulic state is lost in the process of homogenization, as the heterogeneous geometry and
isotopic micro-group cross sections are replaced by macroscopic homogeneous group constants.

This information is recovered by repeating the procedure in such way that all reactor operating
conditions are covered. The result is a parametrized library of group constants, from which the
values corresponding to the local state can be obtained by interpolation.

Since the local operating conditions inside a fuel assembly also affect how the assembly is de-
pleted, the state-points by which the group constant data is parametrized are not completely
independent. The calculations are instead divided into:

Branch variations – taking into account the momentary changes in the operating conditions:
fuel temperature, moderator density and temperature, boron concentration,
insertion of control rods

History variations – taking into account conditions that persist for an extended period of time,
affecting the way the fuel is burnt: moderator temperature and density, boron
concentration, position of control rods

History variations are handled by running separate burnup calculations, and branch variations by
performing restarts to the given states.



Lecture 8: Full-core calculations and nodal diffusion method
April 25, 2019

32/55

Parametrization of group constants
Examples of branch variations:

I Fuel temperature varied between cold core (300 K), nominal operating temperature
(850 K) and elevated state (1500 K)

I Coolant temperature and density varied between cold core (300 K), average (560 K) and
high (600 K)

I Boron concentration varied between zero, cycle average (500 ppm) and high (2000 ppm)

I Control rods inserted and withdrawn

One state corresponds to nominal operating condition and the remaining two to extreme condi-
tions on both sides.

Examples of history variations:

I Coolant temperature and density varied between core inlet (550 K), core average (575 K)
and core outlet (600 K)

I Boron concentration varied between beginning of cycle (1000 ppm), cycle average
(500 ppm) and end of cycle (0 ppm)

I Presence of control rods in BWR’s11

11PWR’s are typically operated all rods out, which means that the presence of control rods has no impact on fuel
depletion.
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Parametrization of group constants
The dependence of cross sections on state variables can be taken into account by interpolating
between tabulated values or using polynomial fits, for example:

Σ = Σ0 + cT
2
f + dTf (35)

where Σ0 is the nominal state value, Tf is the variation in fuel temperature compared to nominal
value12 and c and d are two polynomial coefficients obtained by fitting a parabola on the data.

The variations can be considered independent of each other, or correlations can be accounted for
using cross terms:

Σ = Σ0 + eT
2
m + fTm + lB

2
+mB + pB

2
T

2
m + qB

2
Tm + vBT

2
m + wBTm (36)

where Tm is the variation in moderator temperature,B is the variation in boron concentration and
e, f, l,m, p, q, v and w are coefficients obtained by fitting a second-order surface on the data.

Polynomial interpolation works well especially when the cross sections dependent (almost) lin-
early on the state variables. Problems can occur when the changes are sharp or interpolation
turns to extrapolation, i.e. when the local state is beyond the extremes.

There are major differences between codes on how the parametrization is done in practice.

12Cross sections are also often parametrized as function of square root of fuel temperature.
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Parametrization of group constants
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Figure 5: Dependence of homogenized group constants on state variables in a PWR assembly
calculation. Left: Fast-group absorption cross section (Σa,1) as function of fuel temperature.
Second-order polynomial fit and discrete values from assembly calculation. Right: Dependence of
thermal-group absorption cross section (Σa,2) on moderator temperature and boron concentration.
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History variations
The main reason why cross sections depend on operating history is that the flux spectrum has a
significant impact on plutonium build-up. In BWR’s, for example, more plutonium is produced in
the upper part of the assembly where void fraction is high and the spectrum is harder.

The effect is less pronounced in PWR’s, in which the variation in coolant density is smaller.
Coolant boron concentration also affects the spectrum and plutonium build-up.

Burnup calculations are run at the fuel assembly level from fresh fuel to discharge burnup. Max-
imum assembly-averaged burnup is typically 40-60 MWd/kgU, but the local maximum can be
somewhat higher because of non-uniform axial flux shape.

The total number of transport solutions involved in group constant generation depends on the
number of assembly types, history calculations, burnup points and combinations of branches.
Covering all operating conditions typically requires thousands of runs.

A practical example is provided at the end of the lecture.
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History variations
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Figure 6: Effect of coolant void fraction on plutonium build-up. Left: Mass fraction of 239Pu as function of
burnup in a BWR fuel assembly with burnable absorber and 25%, 50% and 75% void fraction. Harder
spectrum leads to higher plutonium build-up. Right: Homogenized thermal fission cross section (Σf,2) as
function of fuel burnup. Differences in plutonium build-up rate are taken into account in group constant
generation by separate void history variations.
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Fission product poisons
Since the concentrations of 135Xe and 149Sm depend on local fission power and immediate
operating history, their contribution to total absorption cannot be fully accounted for in spatial
homogenization. The solution is to track poison concentrations explicitly, which allows simulating
fission product poisoning and xenon oscillations at core level.

This requires the calculation of additional homogenized few-group constants needed for forming
the associated concentration equations:

I Fission yields of 135I and 135Xe: γI, γX. The yield of 135I is cumulative, i.e. it includes
the production of all short-lived precursors in the 135 mass chain.

I Microscopic capture cross sections of 135Xe: σX,g . The capture in 135I is usually omitted.

I Macroscopic fission cross sections: Σf,g , although this can also be combined with the
isotope yields.13

In addition, the contribution of 135Xe in macroscopic total absorption in the homogenized assem-
bly is represented by a separate xenon absorption cross section ΣX.

Similar parameters can be provided for 149Sm and its precursor 149Pm.

13The formulation of group diffusion equations involve fission neutron production cross section νΣf,g and

thermal hydraulics coupling requires fission energy production cross section κΣf,g . The production terms for 135I

and 135Xe can be similarly expressed with single constants: γIΣf,g and γXΣf,g .
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Fission product poisons
The Bateman equations for iodine (I) and xenon (X) concentration are written as:

dI

dt
= γI (Φ1Σf,1 + Φ2Σf,2)− λII

dX

dt
= γX (Φ1Σf,1 + Φ2Σf,2) + λII − λXX − (Φ1σX,1 + Φ2σX,2)X

(37)

where λI and λX are the decay constants of 135I and 135Xe, respectively.

The solution provides the node-wise concentration of 135Xe, which can be used to calculate its
contribution to total absorption:

Σ
′
a,1 = Σa,1 − ΣX,1 + σX,1X

Σ
′
a,2 = Σa,2 − ΣX,2 + σX,2X

(38)

where ΣX is the contribution of 135Xe to macroscopic absorption cross section in the homoge-
nized assembly.

The equilibrium concentration of 135Xe is given by (see Lecture 5):

lim
t→∞

X(t) =
(Φ1Σf,1 + Φ2Σf,2) (γI + γX)

λX + Φ1σX,1 + Φ2σX,2

(39)

which can be used to replace the instantaneous concentration when the reactor has been oper-
ating at constant power for several days.
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Accuracy of full-core simulations
The accuracy of the full-core simulation depends on the validity of methods and approximations
at various stages of the calculation chain, including:

I Accuracy of the fundamental interaction data in the evaluated nuclear data files

I Accuracy of spectral calculation and approximations, for example, taking into account the
spatial and resonance self-shielding effects

I Accuracy of the heterogeneous transport solution used for spatial homogenization, and
the related approximations (infinite lattices vs. colorset, etc.)

I Parametrization of group constants

I Solution of heat transfer and coolant flow

I Validity of diffusion theory in the full-scale calculation

I Accuracy of the nodal diffusion model or similar used for obtaining the full-scale flux
solution

Despite the various crude approximations, it is possible to reach a very good level of accuracy
for the neutronics solution (errors in nodal power ∼1%). The dominant error source in coupled
calculations is often thermal hydraulics, especially in transients.
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Example of spatial homogenization and core simulation

Example 1: MIT BEAVRS Benchmark with Serpent-ARES

The Serpent-ARES calculation sequence is applied in full-core simulations of a 1000 MWe
Westinghouse PWR reactor:

I Spatial homogenization performed using the Serpent Monte Carlo code developed at VTT

I Full-core calculation carried out using the ARES nodal diffusion code developed at the
Finnish Radiation and Nuclear Safety Authority (STUK)

The study is divided in three parts:

(i) Steady-state neutronics calculation for the hot zero-power (HZP) initial core, with
comparison of power distributions to reference Serpent 3D calculation

(ii) Calculation of control rod worths and critical boron concentrations for the HZP state, and
comparison of hot full-power (HFP) power distributions to Serpent 3D calculation

(iii) Simulation of first operating cycle and comparison of boron let-down curve to
experimental data provided with the benchmark

This study was carried out within the SAFIR 2014 and SAFIR 2018 research programmes, with
the purpose of validating the Serpent-ARES calculation sequence, and demonstrating that
continuous-energy Monte Carlo simulation is a viable option for spatial homogenization.
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Example of spatial homogenization and core simulation

Example 1: MIT BEAVRS Benchmark with Serpent-ARES

A few notes on the calculation tools...

Monte Carlo codes are not commonly used for spatial homogenization, but as long as the details
are not too much concerned, this example can be considered a good demonstration of the
calculation sequence and the related challenges.

The main advantages of using Monte Carlo codes for homogenization can be summarized as:

I No major approximations in geometry and physics, capable of handling complicated 3D
geometries.

I The best available knowledge on neutron interactions can be used almost as-is, without
spectral calculation and multi-group condensation with self-shielding effects

I The same code and cross section data can be used to provide a reference solution for
validation, without additional uncertainties

The major challenges are related to the computational cost and the fact that covering all state
points requires systematic management of a huge amount of data. Even though Serpent is
specifically intended for spatial homogenization, the methodology is still under development.

ARES is a somewhat traditional state-of-the-art core simulator code, based on the analytical
function expansion nodal (AFEN) method.
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Example of spatial homogenization and core simulation

Example 1: MIT BEAVRS Benchmark with Serpent-ARES

The test case is the MIT BEAVRS benchmark:

http://crpg.mit.edu/pub/beavrs

The benchmark was initiated mainly for the purpose of validating high-fidelity calculation tools,
but it also works for the traditional multi-stage sequence based on spatial homogenization.

The benchmark description can be summarized as follows:

I Very detailed geometry description of the initial core of a 1000 MWe Westinghouse PWR
(193 fuel assemblies with 17×17 pin configuration)

I Three fuel enrichments: 1.6, 2.4 and 3.1 wt-% 235Ua

I Boron silicate glass burnable absorbers in five configurations: 6, 12, 15, 16 and 20 pins
(9 different assembly types in total)

I Control rod bank worths and critical boron concentrations, as well as axial fission rate
distribution at selected assembly positions provided for the initial HZP core

I Measured boron let-down curves provided for the first two operating cycles

aNOTE: This is an initial core, so all fuel assemblies start as fresh. The level of enrichment is consequently lower
than for the typical equilibrium core (3-5 wt-% 235U).

http://crpg.mit.edu/pub/beavrs
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Example of spatial homogenization and core simulation

Example 1: MIT BEAVRS Benchmark with Serpent-ARES

Figure 7: Left: Layout of fuel assemblies showing fuel enrichment and positions of burnable absorbers
(from BEAVRS benchmark specification available at the website). Right: Serpent geometry plot of a core
quarter (reference 3D model).
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Example of spatial homogenization and core simulation

Example 1: MIT BEAVRS Benchmark with Serpent-ARES

Figure 8: Selected fuel assembly models used in spatial homogenization. Top row: 1.6 wt-% fuel, no BA,
2.4 wt-% fuel, 12 BA pins, 2.4 wt-% fuel, 16 BA pins. Bottom row: 3.1 wt-% fuel, 20 BA pins, 3.1 wt-% fuel,
15 BA pins, 3.1 wt-% fuel, 6 BA pins. Notice the asymmetric positioning of BA pins in the last two
assemblies.
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Example of spatial homogenization and core simulation

Example 1: MIT BEAVRS Benchmark with Serpent-ARES

The first part of the study involved HZP initial core calculation:

I All materials at uniform, pre-defined temperature

I Fixed boron concentration

I No reactivity feedbacks

Since there is no variation in the reactor operating conditions, group constant calculation had to
be performed for a single state only. This is ideal for validating the neutronics model:

I No uncertainties from thermal hydraulics

I No additional errors from state-point or history parametrization

I Reference solution easily calculated with full-scale Monte Carlo simulation

In other words, if the calculation sequence works as is intended, it should reproduce the
reference results. The remaining sources of error include:

I Approximations made in spatial homogenization (fuel assemblies separated from their
actual surroundings)

I Validity of diffusion theory and the accuracy of the nodal diffusion model in ARES
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Example of spatial homogenization and core simulation

Example 1: MIT BEAVRS Benchmark with Serpent-ARES

The approximations made in spatial homogenization turned out to be a major source of error in
this particular case:

I The infinite lattice approximation failed completely for fuel assemblies locate at the core-
reflector boundary, especially for the assembly type with asymmetrically positioned BA

I Modeling these assemblies with their immediate surroundings corrected the problem

I Getting the errors below 1% required homogenizing all assembly types in “colorset”
configuration, which is not a practical solution when burnup is involved

Spatial detail included in the 3D reference model but omitted in the ARES calculation turned out
to be surprisingly significant:

I Fuel spacers caused local dips in the axial power profile, which were not caught by the
homogeneous model

I Gas-filled instrumentation tubes located at selected assembly positions had significant
effect in the power level of surrounding fuel pins, and caused a noticeable global tilt in the
radial power distribution

Even so, the results were found to be in good agreement. At core mid-plane, the errors in
reconstructed pin-powers, for example, were below 1% in 82% of all fuel pins.
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Example of spatial homogenization and core simulation

Example 1: MIT BEAVRS Benchmark with Serpent-ARES

Figure 9: Examples of geometries used in spatial homogenization when the immediate surroundings of
the homogenized assembly were included. Left: 3.1 wt-% fuel assembly with 6 asymmetrically positioned
burnable absorber pins at the core-reflector boundary. Right: 1.6 wt-% fuel assembly in a “colorset”
configuration surrounded by 2.5 wt-% fuel.
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Example of spatial homogenization and core simulation

Example 1: MIT BEAVRS Benchmark with Serpent-ARES
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Figure 10: Node-wise power distribution for the HZP core at core mid-plane. Left: results of
Serpent-ARES and Serpent 3D reference calculation. Right: relative errors in percent. The 3D reference
solution has a slight tilt in the South-West - North-East direction, caused by the asymmetric positioning of
gas-filled instrumentation tubes. This effect is not caught by the homogeneous ARES model.
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Example of spatial homogenization and core simulation

Example 1: MIT BEAVRS Benchmark with Serpent-ARES
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Figure 11: Pin-wise power distribution for the HZP core at core mid-plane. Left: results of Serpent 3D
reference calculation. Right: relative errors between the pin-power reconstruction and the reference 3D
solution. The local effects of the gas-filled instrumentation tubes are clearly visible as red circles
surrounding the central tube.
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Example of spatial homogenization and core simulation

Example 1: MIT BEAVRS Benchmark with Serpent-ARES

The complete results of the first stage are published in Ann. Nucl. Energy.a The second stage
involved calculation of control rod worths and critical boron concentrations for the HZP state and
power distribution for the HFP state:

I Instead of a single pre-defined state point, the group constant data had to cover the range
of temperatures and densities within the reactor core and variation in boron concentration

I Parametrization of group constants adds a new source of error and uncertainty

I The thermal hydraulics solution from ARES was used as part of the input in the Serpent
3D reference calculation

I No need for history variations because burnup calculation was not performed

Based on previous experience the core model was slightly simplified:

I The gas-filled instrumentation tubes were removed, which made the reference solution
symmetrical and more consistent with the ARES model

I The geometry models used in spatial homogenization were simplified: only the outermost
ring of assemblies were homogenized with their immediate surroundings

aJ. Leppänen, R. Mattila and M. Pusa. “Validation of the Serpent-ARES code sequence using the MIT BEAVRS
benchmark – Initial core at HZP conditions.” Ann. Nucl. Energy, 69 (2014) 212-225.
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Example of spatial homogenization and core simulation

Example 1: MIT BEAVRS Benchmark with Serpent-ARES

Table 1: Critical boron concentrations for the HZP core (ppm).

Configuration ARES Ref. Diff.
ARO 972 975 -3
D 910 902 8
C,D 812 810 2
A,B,C,D 677 686 -9
A,B,C,D,SE,SD,SC 488 508 -20

Table 2: Control rod bank worths for the HZP core (pcm).

Rod bank ARES Ref. Diff.
D 794 788 6
C 1232 1203 29
B 1206 1171 35
A 563 548 15
SE 473 461 12
SD 786 772 14
SC 1109 1099 10
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Example of spatial homogenization and core simulation

Example 1: MIT BEAVRS Benchmark with Serpent-ARES
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Figure 12: Assembly powers for the HFP initial core. Left: results of Serpent-ARES and Serpent 3D
reference calculation. Right: relative errors in percent. Fuel and coolant temperature and density
distributions for the 3D Serpent reference solution were obtained from the ARES calculation.
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Example of spatial homogenization and core simulation

Example 1: MIT BEAVRS Benchmark with Serpent-ARES

The final stage involved burnup simulation over the first reactor operating cycle. This required
including history variations in group constant generation, which considerably increased the
extent of the calculation task:

I A total of 81 burnup history calculations (9 assembly types, 3 coolant temperature
histories: 566.5, 583.0 and 600.0K, 3 boron histories: 0, 350 and 700 ppm)

I Maximum of 42 state-point combinations in branch variations (fuel temperature: 600, 900
and 1200K, moderator temperature: 550, 575 and 600K, coolant void:a 0, 10 and 15%,
control rods: withdrawn, inserted)

I Restarts at 15 burnup points between 0 and 50 MWd/kgU

The procedure involved repeating the Monte Carlo transport simulation more than 16000 times
(including the burnup calculation with predictor-corrector steps and restarts performed for group
constant generation)

The calculations were run VTT’s computer cluster with 10 million neutron histories per transport
simulation. The overall wall-clock running time was 46 hours, when multiple history cases were
run simultaneously. The study is published in Ann. Nucl. Energy.b

aAccounts for sub-cooled boiling, variation in density is included in the temperature branches.
bLeppänen, J. and Mattila, R. ‘ ‘Validation of the Serpent-ARES code sequence using the MIT BEAVRS

benchmark – HFP conditions and fuel cycle 1 simulations.” Ann. Nucl. Energy, 96 (2016) 324-331.
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Example of spatial homogenization and core simulation

Example 1: MIT BEAVRS Benchmark with Serpent-ARES
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Figure 13: Boron let-down curve calculated by Serpent-ARES compared to measured results provided in
the benchmark specification.
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Summary of main topics
This and the previous lecture covered the multi-stage calculation scheme applied in the modeling
of operating nuclear reactors, for example, for the purpose of fuel cycle simulations and transient
analysis. The computational task is divided in parts, and the complexity is gradually reduced while
simultaneously moving towards larger spatial scale.

Full-core calculations are based on the solution of homogenized transport problem, which allows
obtaining the solution at an acceptable computational cost for iterative thermal hydraulics coupling
and simulation of core burnup. The validity of the scheme relies on the condensation of the
complex interaction physics into a handful of homogenized few-group constants.

In state-of-the-art core simulators the global homogeneous flux solution is typically obtained using
nodal diffusion methods, in which individual intra-nodal flux solutions are coupled together with
continuity conditions and discontinuity factors. The heterogeneous flux solution can be recovered
by pin-power reconstruction.

Since the dependence of interaction parameters on thermal hydraulic state and burnup is lost in
the process of homogenization, the procedure is repeated in such way that all reactor operating
conditions are covered. The few-group constants are parametrized, and the local values are
obtained by interpolation.

The accuracy of nodal diffusion codes is considered sufficient for LWR design and safety studies,
but the methodology has its limitations, which have to be taken into account. This requires some
expertise from the code user.


