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reading material

• K&V, chapter 3
• SS&BD, chapter 6



shattering a set of instances

• let H be a class of functions from X to {0,1}

• let A = {x1, . . . ,xm} ⊂ X be a (finite) subset of X

• a dichotomy of a set is a partition of the set into

two disjoint subsets

• a dichotomy of A induced by h ∈ H

hA = {h(x1), . . . ,h(xm)} ∈ {0,1}m



shattering a set of instances

• definition: a set A of instances is shattered by H

iff for every dichotomy of A, there exists some
hypothesis in H consistent with this dichotomy

• let ΠH(A) be the set of all dichotomies on A induced by H

(a.k.a., restriction of H to A)

ΠH(A) = {(h(x1), . . . ,h(xm)) : h ∈ H}

• H shatters A iff
ΠH(A) = {0,1}m



the VC dimension

• definition: the VC dimension, VCD(H), of a hypothesis

class H is the cardinality of the largest finite subset

of X shattered by H.

VCD(H) = sup{|A| : H shatters A}

• If H can shatter arbitrarily large finite sets, then

VCD(H) =∞



the VC dimension

• to show that VCD(H) is d we need to show that:

– there exists a set of size d which is shattered by H

– no set of size d + 1 can be shattered by H



example – threshold functions

• X = R

• H = {ha : a ∈ R} where

ha(x) = I [x ≤ a] , ∀ha ∈ H

• claim: VCD(H) = 1



example – threshold functions

• first show that d is at least 1

i.e., find a set of size 1 that can be shattered

• let A = {x1}

for any a ≥ x1, we get ha(x1) = 1

for any a < x1, we get ha(x1) = 0

• ∃A : ΠH(A) = {0,1} =⇒ d ≥ 1



example – threshold functions

• now show that d < 2

i.e., show that no set of size 2 can be shattered

• let A = {x1, x2} such that x1 ≤ x2

no ha ∈ H can induce a labeling (0,1)

• ∀A,ΠH(A) 6= {0,1}2 =⇒ d < 2



example – intervals

• X = R

• H = {ha,b : a,b ∈ R,a < b} where

ha,b(x) = I [x ∈ (a,b)] , ∀ha,b ∈ H

• claim: VCD(H) = 2



example – intervals

• first show that d is at least 2

i.e., find a set of size 2 that can be shattered

• let A = {x1, x2}, x1 < x2

∃(a,b) ∈ R s.t. ha,b(x1, x2) = (1,1)

∃(a,b) ∈ R s.t. ha,b(x1, x2) = (1,0)

∃(a,b) ∈ R s.t. ha,b(x1, x2) = (0,1)

∃(a,b) ∈ R s.t. ha,b(x1, x2) = (0,0)

• ∃A : ΠH(A) = {0,1}2 =⇒ d ≥ 2



example – intervals

• now show that d < 3

i.e., show that no set of size 3 can be shattered

• let A = {x1, x2, x3} such that x1 ≤ x2 ≤ x3

no ha,b ∈ H can induce a labeling (1,0,1)

– whenever x1, x3 ∈ (a,b), also x2 ∈ (a,b)

• ∀A,ΠH(A) 6= {0,1}3 =⇒ d < 3



example – axis aligned rectangles

• X = R2

• H = {ha1,a2,b1,b2 : a1 ≤ a2,b1 ≤ b2}

• claim: VCD(H) = 4



example – axis aligned rectangles

• first show that d is at least 4

i.e., find a set of size 4 that can be shattered

• let A = {x1,x2,x3,x4}

• ∃A : ΠH(A) = {0,1}4 =⇒ d ≥ 4



example – axis aligned rectangles

• now show that d < 5

i.e., show that no set of size 5 can be shattered

• let A = {x1,x2,x3,x4,x5}

no ha1,a2,b1,b2 ∈ H can induce a labeling (1,1,1,1,0)

• ∀A,ΠH(A) 6= {0,1}5 =⇒ d < 5



example – hyperplane classifiers

• hyperplane: let x,w ∈ Rn, b ∈ R, the equation

w · x + b = 0

specifies a hyperplane in Rn

• a classifier is given by

h(w,b)(x) = sign(w · x + b)

(i.e., halfspaces define class membership)

• let H denote the set of hyperplanes defined on X = Rn

H = {h(w,b) : w ∈ Rn,b ∈ R}



example – hyperplane classifiers

• claim: for hyperplanes in R2, VCD(H) = 3

– a hyperplane in R2 is a line

• let A = {x1,x2,x3} be a set of non-collinear points in R2

• ∃A,ΠH(A) = {0,1}3 =⇒ d ≥ 3



example – hyperplane classifiers

• now show that no set of size 4 can be shattered

• let A = {x1,x2,x3,x4} such that no 3 points of A are
collinear

• case 1: 3 of the 4 points define the convex hull of A

(convex hull of A: smallest convex set that contains A)

• no h(w,b)(x) ∈ H can induce the labelings (1,1,1,−1) and
(−1,−1,−1,1)



example – hyperplane classifiers
• case 2: all 4 points define the convex hull of A

• any halfplane that contains 2 diagonally opposite points

(e.g., x1 and x4) would also contain a third point from A

(e.g., x2 or x3)

• no h(w,b)(x) ∈ H can induce the labelings (1,−1,−1,1)
and (−1,1,1,−1)

• ∀A,ΠH(A) 6= {0,1}4 =⇒ d < 4



example – hyperplane classifiers

• H = {sign(w · x + b) : w ∈ Rn,b ∈ R}

• claim: for hyperplanes in Rn, VCD(H) = n + 1



example – hyperplane classifiers

• let A = {x0,x1, . . . ,xn} where

x0 = 0n and xi = ei ,1 ≤ i ≤ n

• let y0, . . . , yn ∈ {−1,1} and b = y0

• let w be the vector with wi = yi − b for 1 ≤ i ≤ n

• we have w · x0 + b = y0, and

w · xi + b = yi for 1 ≤ i ≤ n, which means

sign(w · xi + b) = yi

• A is shattered by H, VCD(H) ≥ n + 1



example – hyperplane classifiers

• to prove that VCD(H) < n + 2, we need the following result

• Radon’s lemma: let A ⊂ Rn be a set of size n + 2.

then there exist two disjoint subsets A1 and A2 of A such

that the convex hulls of A1 and A2 intersect.

• given Radon’s lemma, we need to show that for every

A ⊂ Rn of size n + 2, there is a labelling that cannot be

realized using hyperplanes



example – hyperplane classifiers

• let A ⊂ Rn be any set of n + 2 points

• let A1 and A2 be two disjoint subsets of A

• consider a dichotomy of A in which points in A1 are

labelled by 1 and those in A2 are labelled by −1

• fact: when two sets are separated by a hyperplane, their
convex hulls are also separated by the hyperplane



example – hyperplane classifiers

• if a hyperplane assigns a particular label to a set of points,

then every point in their convex hulls is also assigned the
same label

• assume there is a hyperplane consistent with such
dichotomy

• from Radon’s lemma, convex hulls of A1 and A2 has
non-empty intersection, a contradiction

• H cannot shatter A hence VCD(H) < n + 2.



the VC dimension – interpretation

• the VC dimension is the maximal size of a subset A ⊂ X

such that H gives no prior knowledge w.r.t. A

• it follows from the proof of no-free-lunch theorem that if

m ≤ 2VCD(H)

then it might be hard to find a good h ∈ H (verify!)

• in other words, a finite VC dimension tells us that we can

distinguish between different hypothesis relatively quickly

from a modest sample size



growth function

• for any m ∈ N, growth function is defined as

ΠH(m) = max{|ΠH(A)| : |A| = m}

• the growth function further characterizes complexity of H:

the faster growth, the more dichotomies with increasing m

• if H does not have finite VC dimension, then

ΠH(m) = 2m,∀m

• if VCD(H) = d , then

ΠH(m) = 2m, ∀m ≤ d

• what about m > d? exponential growth?



a polynomial bound on ΠH(m)

• Sauer-Shelah-Perles lemma: let H be a hypothesis class
with VCD(H) ≤ d <∞. then, for all m

ΠH(m) ≤
d∑

i=0

(
m
i

)
in particular, if m > d + 1 then

ΠH(m) ≤
(em

d

)d
= O(md )


