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reading material

e K&V, chapter 3
e SS&BD, chapter 6



shattering a set of instances

let # be a class of functions from X to {0, 1}

let A= {xq.....xn} C X be a (finite) subset of X

a dichotomy of a set is a partition of the set into

two disjoint subsets

a dichotomy of A induced by h € ‘H

ha = {h(x1),..., h(Xm)} € {0,1}"



shattering a set of instances

e definition: a set A of instances is shattered by

iff for every dichotomy of A, there exists some
hypothesis in # consistent with this dichotomy

e let 4(A) be the set of all dichotomies on A induced by #H
(a.k.a., restriction of / to A)

Mu(A) = {(h(X1), ..., h(Xm)) : h € H}

e 7 shatters A iff
My (A) ={0,1}7



the VC dimension

e definition: the VC dimension, VCD(?H), of a hypothesis
class # is the cardinality of the largest finite subset
of X shattered by H.

VCD(H) = sup{|A| : H shatters A}

¢ If 7 can shatter arbitrarily large finite sets, then

VCD(H) = oo



the VC dimension

e to show that VCD(H) is d we need to show that:

— there exists a set of size d which is shattered by #

— no set of size d + 1 can be shattered by H



example — threshold functions

e X=R
e H =1{hs:ac R} where

ha(x) =1[x < a],Yhy e H

e claim: VCD(H) = 1



example - threshold functions

e first show that d is at least 1

i.e., find a set of size 1 that can be shattered
o let A= {x}

forany a > xq, we get ha(xq) = 1

forany a < xq, we get ha(x;) =0

e JA:My(A)={0,1} = d>1



example - threshold functions

e now show that d < 2
i.e., show that no set of size 2 can be shattered
e let A= {xq,x} such that x; < x

no h, € H can induce a labeling (0. 1)

L L L
X2 a X1

o VA My (A) #{0,1}2 — d<2



example — intervals

[ ) X:R
e H=1{hap:abecR a< b} where

ha,b(x) - H [X € (a7 b)] >Vha,b € /H

e claim: VCD(H) =2



example — intervals

o first show that d is at least 2

i.e., find a set of size 2 that can be shattered

o let A= {X1,X2}, X1 < Xo

J(a,b) € Rs.t. hyp(xy,x2) = (1,1)
J(a,b) € Rs.t. hgp(xy,x2) = (1,0)
J(a,b) € R s.t. hyp(x1,x2) =(0,1)
J(a, b) € Rs.t. hyp(xy,x2) = (0,0)

e JA: Ny (A)={0,1}2 = d>2



example — intervals

e now show that d < 3
i.e., show that no set of size 3 can be shattered
e let A= {xq1,x2, x3} such that x; < x» < x3
no h,p € H can induce a labeling (1,0, 1)
— whenever xq, x3 € (a,b), also x» € (a, b)

o VA My (A) £ {0,1)® — d<3



example — axis aligned rectangles

[ ] X e RZ
° H - {ha1,ag,b17b2 : a1 S 327b1 S b2}

e claim: VCD(H) =4



example — axis alighed rectangles

e first show that d is at least 4

i.e., find a set of size 4 that can be shattered

o let A= {Xq,X2,X3,X4}

[ (1,0,0,0)

X2 (1,1,0,1)
o X4@

(0,0,1,1)

X3 (0,0,1,1)

e JA:My(A)=1{0,1}* — d>4



example — axis alighed rectangles

e now show that d < 5
i.e., show that no set of size 5 can be shattered
o let A= {Xy,X2,X3,X4, X5}

No Nz, 4,6, b, € H caninduce a labeling (1,1,1,1,0)

o, 1
X2 Y
o ® X
X5
[ )
X3

o VA, My (A) £ {0,1})5 — d <5



example — hyperplane classifiers

e hyperplane: let x,w € R", b € R, the equation
W-X+b=0
specifies a hyperplane in R”
e a classifier is given by
how,p)(X) = sign(w - X + b)
(i.e., halfspaces define class membership)
e let 7 denote the set of hyperplanes defined on X = R”

H = {h(w,b) W e Rn,b S R}



example — hyperplane classifiers

e claim: for hyperplanes in R?, VCD(#) = 3
— ahyperplane in R? is a line

o let A= {xq,%2, X3} be a set of non-collinear points in R?

{{x1,x2, x3}} {{x1, x2},{xs}}

{xa}{x2, x3}}

{{x1, xah{x2}}

e JA Ny (A) ={0,1}® = d>3



example — hyperplane classifiers

e now show that no set of size 4 can be shattered

e let A= {xy,Xz, X3, X4} such that no 3 points of A are
collinear

e case 1: 3 of the 4 points define the convex hull of A

(convex hull of A: smallest convex set that contains A)

* No My p)(X) € H can induce the labelings (1,1,1, -1) and
(—1,—-1,-1,1)

( J
X1
Y [

X3



example — hyperplane classifiers
e case 2: all 4 points define the convex hull of A

¢ any halfplane that contains 2 diagonally opposite points
(e.g., x4 and x4) would also contain a third point from A
(e.g., X2 or x3)

* No Ny p)(X) € H can induce the labelings (1, -1, -1,1)
and (—1,1,1,-1)

o
X1
o °
X2 X3
o
X4

o VA My (A) #{0,1}* — d<4



example — hyperplane classifiers

o 1 ={sign(w-x+b):weR" becR}

e claim: for hyperplanes in R"”, VCD(H) = n+ 1



example — hyperplane classifiers

let A= {xg.Xy,...,%X,} where

Xo=0,andx;=e;,1<i<n

let yo.....yp e {—1,1}and b=y

let w be the vector with w; = y; — bfor1 </ <n

we have w - xg + b = yp, and

w-X;+ b= yfor1 < i< n, which means

sign(w - X; + b) = y;

Ais shattered by H, VCD(H) > n+ 1



example — hyperplane classifiers

e to prove that VCD(#) < n+ 2, we need the following result

e Radon’s lemma: let A ¢ R" be a set of size n + 2.
then there exist two disjoint subsets A; and A, of A such

that the convex hulls of Ay and A, intersect.

e given Radon’s lemma, we need to show that for every
A C R" of size n + 2, there is a labelling that cannot be

realized using hyperplanes



example — hyperplane classifiers

let A C R" be any set of n + 2 points

let Ay and A, be two disjoint subsets of A

consider a dichotomy of A in which points in A; are

labelled by 1 and those in A, are labelled by —1

fact: when two sets are separated by a hyperplane, their
convex hulls are also separated by the hyperplane



example — hyperplane classifiers

if a hyperplane assigns a particular label to a set of points,

then every point in their convex hulls is also assigned the
same label

assume there is a hyperplane consistent with such
dichotomy

from Radon’s lemma, convex hulls of A; and A, has
non-empty intersection, a contradiction

‘H cannot shatter A hence VCD(H) < n+ 2.



the VC dimension — interpretation

e the VC dimension is the maximal size of a subset A ¢ X

such that # gives no prior knowledge w.r.t. A
o it follows from the proof of no-free-lunch theorem that if
m < 2VCD(H)
then it might be hard to find a good h € H (verify!)

e in other words, a finite VC dimension tells us that we can
distinguish between different hypothesis relatively quickly

from a modest sample size



growth function

e forany m € N, growth function is defined as

My (m) = max{|My(A)]| : |Al = m}

the growth function further characterizes complexity of H:

the faster growth, the more dichotomies with increasing m

if 4 does not have finite VC dimension, then

My(m)=2"Ym

if VCD(#) = d, then

Myu(m) =2 vm < d

what about m > d? exponential growth?



a polynomial bound on I14(m)

e Sauer-Shelah-Perles lemma: let # be a hypothesis class
with VCD(H) < d < oo. then, for all m

d

Myu(m) < (T)

i=0
in particular, if m > d + 1 then

M (m) < (eg’)d — o(m%



