

Joachim Spoerhase

Given: A set of n points in \mathbb{R}^2 .

The distance between two points is the euclidean distance.

Find: A Hamiltonian cycle (tour) of minimum length.

Given: A set of n points in \mathbb{R}^2 .

The distance between two points is the euclidean distance.

Find: A Hamiltonian cycle (tour) of minimum length.

Given: A set of n points in \mathbb{R}^2 .

The distance between two points is the euclidean distance.

Find: A Hamiltonian cycle (tour) of minimum length.

Goal: $(1 + \epsilon)$ -Approximation!

Given: A set of n points in \mathbb{R}^2 .

The distance between two points is the euclidean distance.

Find: A Hamiltonian cycle (tour) of minimum length.

Goal: $(1 + \epsilon)$ -Approximation!

Simplifying Assumptions

• points belong to an $L \times L$ -square

•
$$L := 4n^2 = 2^k;$$

 $k = 2 + 2\log_2 n$

• integer coordinates

Given: A set of n points in \mathbb{R}^2 .

The distance between two points is the euclidean distance.

Find: A Hamiltonian cycle (tour) of minimum length.

Goal: $(1 + \epsilon)$ -Approximation!

Simplifying Assumptions

• points belong to an $L \times L$ -square

•
$$L := 4n^2 = 2^k;$$

 $k = 2 + 2\log_2 n$

• integer coordinates

"justification" ~> exercise

$$L = 2^{k}$$

Level 0

$$L = 2^{k}$$

$$L = 2^{k}$$

$$L = 2^{k}$$

Portals

- $k = O(\log n)$
- m is a power of two in the interval $[k/\epsilon, 2k/\epsilon]$

•
$$m = \Theta(\log n/\epsilon)$$

 $L := 4n^2 = 2^k$.

Portals

- $k = O(\log n)$
- m is a power of two in the interval $[k/\epsilon, 2k/\epsilon]$
- $m = \Theta(\log n/\epsilon)$
- **Portals** on a level-*i*-line have distance $L/(2^i m)$

 $L := 4n^2 = 2^k$

Portals

- $k = O(\log n)$
- m is a power of two in the interval $[k/\epsilon, 2k/\epsilon]$
- $m = \Theta(\log n/\epsilon)$
- **Portals** on a level-*i*-line have distance $L/(2^i m)$
- each level-*i*-square has at most 4*m* boundary portals

Well Behaved Tours

A tour is **well behaved**, when

- it involves all points and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection

non-crossing

• it is crossing-free.

crossings

Well Behaved Tours

A tour is **well behaved**, when

- it involves all points and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection
- it is crossing-free.

Without loss of generality (exercise): no portal is visited more than twice.

crossings

Computing a well behaved tour

Lem. An optimal well behaved tour can be computed in $2^{O(m)} = n^{O(1/\epsilon)}$ time.

Computing a well behaved tour

Lem. An optimal well behaved tour can be computed in $2^{O(m)} = n^{O(1/\epsilon)}$ time.

- **Proof.**
- Dynamic Program.
- Compute sub-structure of an optimal tour for each square in the dissection tree.
- These solutions can be efficiently propagated bottom-up through the dissection tree.

For a given square Q and pairing P:

iterate over all $(n^{O(1/\epsilon)})^4 = n^{O(1/\epsilon)}$ crossing-free pairings of the child-squares

- iterate over all $(n^{O(1/\epsilon)})^4 = n^{O(1/\epsilon)}$ crossing-free pairings of the child-squares
- choose a combination of such pairings which minimizes the cost and respects P.

- iterate over all $(n^{O(1/\epsilon)})^4 = n^{O(1/\epsilon)}$ crossing-free pairings of the child-squares
- choose a combination of such pairings which minimizes the cost and respects P.

- iterate over all $(n^{O(1/\epsilon)})^4 = n^{O(1/\epsilon)}$ crossing-free pairings of the child-squares
- choose a combination of such pairings which minimizes the cost and respects P.

- iterate over all $(n^{O(1/\epsilon)})^4 = n^{O(1/\epsilon)}$ crossing-free pairings of the child-squares
- choose a combination of such pairings which minimizes the cost and respects *P*.
- correctness by induction

- iterate over all $(n^{O(1/\epsilon)})^4 = n^{O(1/\epsilon)}$ crossing-free pairings of the child-squares
- choose a combination of such pairings which minimizes the cost and respects *P*.
- correctness by induction

 the best well behaved tour can be a poor approximation :-(

 the best well behaved tour can be a poor approximation :-(

- the best well behaved tour can be a poor approximation :-(
- Define an (a, b)-shifted dissection
 - $x \mapsto (x+a) \mod L$ $y \mapsto (y+b) \mod L$

- the best well behaved tour can be a poor approximation :-(
- Define an (a, b)-shifted dissection
 - $x \mapsto (x+a) \mod L$ $y \mapsto (y+b) \mod L$
- Squares in the dissection tree are "wrapped around"
- dynamic program must be modified accordingly.

Shifted Dissections (II)

Lem. Let π be an optimal tour and $N(\pi)$ be the number of crossings with the lines of the $L \times L$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$

Shifted Dissections (II)

Lem. Let π be an optimal tour and $N(\pi)$ be the number of crossings with the lines of the $L \times L$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$

Proof.Consider a tour as an ordered cyclic sequence.

 π

- Lem. Let π be an optimal tour and $N(\pi)$ be the number of crossings with the lines of the $L \times L$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$
- Proof.
- Consider a tour as an ordered cyclic sequence.
 - Each edge generates $\leq \Delta x + \Delta y$ crossings.

Proof.

- Lem. Let π be an optimal tour and $N(\pi)$ be the number of crossings with the lines of the $L \times L$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$
 - Consider a tour as an ordered cyclic sequence.
 - Each edge generates $\leq \Delta x + \Delta y$ crossings.
 - Crossings at the endpoint of an edge are counted for the next edge

 π

Proof.

- Lem. Let π be an optimal tour and $N(\pi)$ be the number of crossings with the lines of the $L \times L$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$
 - Consider a tour as an ordered cyclic sequence.
 - Each edge generates $\leq \Delta x + \Delta y$ crossings.
 - Crossings at the endpoint of an edge are counted for the next edge

 π

- Let π be an optimal tour and $N(\pi)$ be the number of crossings with the lines of the $L \times L$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$
- **Proof.** Consider a tour as an ordered cyclic sequence.
 - Each edge generates $\leq \Delta x + \Delta y$ crossings.
 - Crossings at the endpoint of an edge are counted for the next edge
 - $(\Delta x + \Delta y)^2 \le 2(\Delta x^2 + \Delta y^2)$ completes the proof.

 π

Thm.

Let $a, b \in [0, L - 1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a, b)-shifted dissection is at most $(1 + \sqrt{2}\epsilon)$ OPT.

Thm. Let $a, b \in [0, L - 1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a, b)-shifted dissection is at most $(1 + \sqrt{2}\epsilon)$ OPT.

Proof. Consider an optimal tour π . Make π well behaved by moving each intersection point (with the $L \times L$ -grid) to the nearest portal.

Thm. Let $a, b \in [0, L - 1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a, b)-shifted dissection is at most $(1 + \sqrt{2}\epsilon)$ OPT.

Proof. Consider an optimal tour π . Make π well behaved by moving each intersection point (with the $L \times L$ -grid) to the nearest portal.

detour per intersection \leq inter-portal distance.

• Consider an intersection point between π and a line l of the $L \times L$ -grid.

- Consider an intersection point between π and a line l of the $L \times L$ -grid.
- With probability at most 2ⁱ/L, l is a level-i-line
 → an increase in tour length by a maximum of L/(2ⁱm) (inter-portal distance).

- Consider an intersection point between π and a line l of the $L \times L$ -grid.
- With probability at most 2ⁱ/L, l is a level-i-line
 → an increase in tour length by a maximum of L/(2ⁱm) (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:

$$\sum_{i=0}^{k} \frac{L}{2^{i}m} \frac{2^{i}}{L} \le \frac{k}{m} \le \epsilon$$

- Consider an intersection point between π and a line l of the $L \times L$ -grid.
- With probability at most 2ⁱ/L, l is a level-i-line
 → an increase in tour length by a maximum of L/(2ⁱm) (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:

$$\sum_{i=0}^{k} \frac{L}{2^{i}m} \frac{2^{i}}{L} \le \frac{k}{m} \le \epsilon$$

• Summing over all $N(\pi) \le \sqrt{2}$ OPT intersection points, and applying linearity of expectation, provides the claim.

- Consider an intersection point between π and a line l of the $L \times L$ -grid.
- With probability at most 2ⁱ/L, l is a level-i-line
 → an increase in tour length by a maximum of L/(2ⁱm) (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:

$$\sum_{i=0}^{k} \frac{L}{2^{i}m} \frac{2^{i}}{L} \le \frac{k}{m} \le \epsilon$$

• Summing over all $N(\pi) \le \sqrt{2}$ OPT intersection points, and applying linearity of expectation, provides the claim.

Approximation Scheme.

Thm. There is a PTAS for euclidean TSP, i.e., for each $\epsilon > 0$ one can find a $(1 + \epsilon)$ -approximation in $n^{O(1/\epsilon)}$ time.

Proof.

Approximation Scheme.

Thm. There is a PTAS for euclidean TSP, i.e., for each $\epsilon > 0$ one can find a $(1 + \epsilon)$ -approximation in $n^{O(1/\epsilon)}$ time.

Proof. Try all L^2 different (a, b)-shifted dissections. By the previous thm., one of these is good enough.