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Given: A set of n points in R2.

The distance between two points is the euclidean distance.

Find: A Hamiltonian cycle (tour) of minimum length.

Simplifying Assumptions

• points belong to an
L× L-square

• L := 4n2 = 2k;
k = 2 + 2 log2 n

• integer coordinates

“justification”  exercise

Goal:(1 + ε)-Approximation!
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Portals

• m is a power of two in the
interval [k/ε, 2k/ε]

• Portals on a level-i-line
have distance L/(2im)

m portals

m portals

• each level-i-square has at
most 4m boundary portals

• m = Θ(logn/ε)

• k = O(logn)

L := 4n2 = 2k.
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Well Behaved Tours

A tour is well behaved, when

• it involves all points and a
subset of the portals,

• no edge of the tour crosses
a line of the basic dissection

• it is crossing-free.

Without loss of generality
(exercise): no portal is visited
more than twice.

crossings non-crossing
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Computing a well behaved tour

Lem. An optimal well behaved tour can be computed in
2O(m) = nO(1/ε) time.

Proof. • Dynamic Program.
• Compute sub-structure of an optimal tour for

each square in the dissection tree.
• These solutions can be efficiently propagated

bottom-up through the dissection tree.
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Each global well behaved
tour induces the following in
each square Q of the
dissection:

• a path cover on the
vertices in Q

• each portal of Q is
visted 0,1 or 2 times by
this path cover.

max. 34m = 3O(logn/ε) = nO(1/ε) possibilities
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Dynamic Program (I)

Each global well behaved
tour induces the following in
each square Q of the
dissection:

• a path cover on the
vertices in Q

• each portal of Q is
visted 0,1 or 2 times by
this path cover.

• a crossing-free pairing
of the visited portals.

max. nO(1/ε)︸ ︷︷ ︸
#visit vectors

× 2O(m)︸ ︷︷ ︸
#real. pairings

= nO(1/ε) total pairings



Dynamic Program (II)

For each square Q, and each
crossing-free pairing P in Q,
compute an optimal path
cover respecting P .
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Shifted Dissections

• the best well behaved tour
can be a poor approximation
:-(

• Define an (a, b)-shifted
dissection

x 7→ (x+ a) mod L
y 7→ (y + b) mod L

• Squares in the dissection tree
are “wrapped around”

• dynamic program must be
modified accordingly.
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Shifted Dissections (III)

Thm. Let a, b ∈ [0, L− 1] be chosen independently and
uniformaly at random. Then the expected cost of an
optimal well behaved tour with respect to the
(a, b)-shifted dissection is at most (1 +

√
2ε)OPT.

Proof. Consider an optimal tour π. Make π well behaved
by moving each intersection point (with the
L× L-grid) to the nearest portal.

detour per intersection ≤ inter-portal distance.
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Approximation Scheme.

Thm. There is a PTAS for euclidean TSP, i.e., for each
ε > 0 one can find a (1 + ε)-approximation in
nO(1/ε) time.

Proof. Try all L2 different (a, b)-shifted dissections.
By the previous thm., one of these is good enough.
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