Aalto University

Approximation Algorithms

Lecture 9: An Approximation Scheme for Euclidean TSP

Joachim Spoerhase

Euclidean TSP

Given: A set of n points in \mathbb{R}^{2}.
The distance between two points is the euclidean distance.
Find: A Hamiltonian cycle (tour) of minimum length.

Euclidean TSP

Given: A set of n points in \mathbb{R}^{2}.
The distance between two points is the euclidean distance.
Find: A Hamiltonian cycle (tour) of minimum length.

Euclidean TSP

Given: A set of n points in \mathbb{R}^{2}.
The distance between two points is the euclidean distance.
Find: A Hamiltonian cycle (tour) of minimum length.

Goal: $(1+\epsilon)$-Approximation!

Euclidean TSP

Given: A set of n points in \mathbb{R}^{2}.
The distance between two points is the euclidean distance.
Find: A Hamiltonian cycle (tour) of minimum length.

Goal: $(1+\epsilon)$-Approximation!
Simplifying Assumptions

- points belong to an $L \times L$-square
- $L:=4 n^{2}=2^{k}$;
$k=2+2 \log _{2} n$
- integer coordinates

Euclidean TSP

Given: A set of n points in \mathbb{R}^{2}.
The distance between two points is the euclidean distance.
Find: A Hamiltonian cycle (tour) of minimum length.

Goal: $(1+\epsilon)$-Approximation!
Simplifying Assumptions

- points belong to an $L \times L$-square
- $L:=4 n^{2}=2^{k}$;
$k=2+2 \log _{2} n$
- integer coordinates
"justification" \rightsquigarrow exercise

Basic Dissection

$$
L=2^{k}
$$

Basic Dissection

Level 0

$$
L=2^{k}
$$

Basic Dissection

Basic Dissection

$$
L=2^{k}
$$

Basic Dissection

$$
\begin{gathered}
\text { Level } 0 \\
\\
\\
\\
\\
\\
\text { Level } k \text { Level } 1
\end{gathered}
$$

$$
L=2^{k}
$$

Portals

- $k=O(\log n)$
- m is a power of two in the interval $[k / \epsilon, 2 k / \epsilon]$
- $m=\Theta(\log n / \epsilon)$

$$
L:=4 n^{2}=2^{k} .
$$

Portals

$$
L:=4 n^{2}=2^{k} .
$$

- $k=O(\log n)$
- m is a power of two in the interval $[k / \epsilon, 2 k / \epsilon]$
- $m=\Theta(\log n / \epsilon)$
- Portals on a level-i-line have distance $L /\left(2^{i} m\right)$

Portals

$$
L:=4 n^{2}=2^{k} .
$$

- $k=O(\log n)$
- m is a power of two in the interval $[k / \epsilon, 2 k / \epsilon]$
- $m=\Theta(\log n / \epsilon)$
- Portals on a level-i-line have distance $L /\left(2^{i} m\right)$
- each level- i-square has at most $4 m$ boundary portals

Well Behaved Tours

A tour is well behaved, when

- it involves all points and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection
- it is crossing-free.

Well Behaved Tours

A tour is well behaved, when

- it involves all points and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection
- it is crossing-free.

Without loss of generality (exercise): no portal is visited more than twice.

Computing a well behaved tour

Lem.
An optimal well behaved tour can be computed in $2^{O(m)}=n^{O(1 / \epsilon)}$ time.

Computing a well behaved tour

Lem. An optimal well behaved tour can be computed in $2^{O(m)}=n^{O(1 / \epsilon)}$ time.

Proof.

- Dynamic Program.
- Compute sub-structure of an optimal tour for each square in the dissection tree.
- These solutions can be efficiently propagated bottom-up through the dissection tree.

Dynamic Program (I)

Each global well behaved tour induces the following in each square Q of the dissection:

Dynamic Program (I)

Each global well behaved tour induces the following in each square Q of the dissection:

- a path cover on the vertices in Q

Dynamic Program (I)

Each global well behaved tour induces the following in each square Q of the dissection:

- a path cover on the vertices in Q
- each portal of Q is visted 0,1 or 2 times by this path cover.
max. $3^{4 m}=3^{O(\log n / \epsilon)}=n^{O(1 / \epsilon)}$ possibilities
$\rfloor_{m \in[k / \epsilon, 2 k / \epsilon]}$

Dynamic Program (I)

Each global well behaved tour induces the following in each square Q of the dissection:

- a path cover on the vertices in Q
- each portal of Q is visted 0,1 or 2 times by this path cover.
- a crossing-free pairing of the visited portals.

max. $\underbrace{n^{O(1 / \epsilon)}} \times \underbrace{2^{O(m)}}=n^{O(1 / \epsilon)}$ total pairings
\#visit vectors \#real. pairings

Dynamic Program (II)

For each square Q, and each crossing-free pairing P in Q, compute an optimal path cover respecting P.

Dynamic Program (III)

For a given square Q and pairing P :

Dynamic Program (III)

For a given square Q and pairing P :

- iterate over all $\left(n^{O(1 / \epsilon)}\right)^{4}=n^{O(1 / \epsilon)}$ crossing-free pairings of the child-squares

Dynamic Program (III)

For a given square Q and pairing P :

- iterate over all
$\left(n^{O(1 / \epsilon)}\right)^{4}=n^{O(1 / \epsilon)}$ crossing-free pairings of the child-squares
- choose a combination of such pairings which minimizes the cost and respects P.

Dynamic Program (III)

For a given square Q and pairing P :

- iterate over all
$\left(n^{O(1 / \epsilon)}\right)^{4}=n^{O(1 / \epsilon)}$ crossing-free pairings of the child-squares
- choose a combination of such pairings which minimizes the cost and respects P.

Dynamic Program (III)

For a given square Q and pairing P :

- iterate over all

$$
\left(n^{O(1 / \epsilon)}\right)^{4}=n^{O(1 / \epsilon)}
$$ crossing-free pairings of the child-squares

- choose a combination of such pairings which minimizes the cost and respects P.

Dynamic Program (III)

For a given square Q and pairing P :

- iterate over all
$\left(n^{O(1 / \epsilon)}\right)^{4}=n^{O(1 / \epsilon)}$
crossing-free pairings of the child-squares
- choose a combination of such pairings which minimizes the cost and respects P.
- correctness by induction

Dynamic Program (III)

For a given square Q and pairing P :

- iterate over all
$\left(n^{O(1 / \epsilon)}\right)^{4}=n^{O(1 / \epsilon)}$
crossing-free pairings of the child-squares
- choose a combination of such pairings which minimizes the cost and respects P.
- correctness by induction

Shifted Dissections

- the best well behaved tour can be a poor approximation
:-(

Shifted Dissections

- the best well behaved tour can be a poor approximation
:-(

Shifted Dissections

- the best well behaved tour can be a poor approximation :-(
- Define an (a, b)-shifted dissection

$$
\begin{aligned}
& x \mapsto(x+a) \bmod L \\
& y \mapsto(y+b) \bmod L
\end{aligned}
$$

Shifted Dissections

- the best well behaved tour can be a poor approximation :-(
- Define an (a, b)-shifted dissection

$$
\begin{aligned}
& x \mapsto(x+a) \bmod L \\
& y \mapsto(y+b) \bmod L
\end{aligned}
$$

- Squares in the dissection tree are "wrapped around"
- dynamic program must be modified accordingly.

Shifted Dissections (II)

Lem. Let π be an optimal tour and $N(\pi)$ be the number of crossings with the lines of the $L \times L$-grid. Then we have $N(\pi) \leq \sqrt{2}$. OPT

Shifted Dissections (II)

Lem. Let π be an optimal tour and $N(\pi)$ be the number of crossings with the lines of the $L \times L$-grid. Then we have $N(\pi) \leq \sqrt{2}$. OPT

Proof.

- Consider a tour as an ordered cyclic sequence.

Shifted Dissections (II)

Lem. Let π be an optimal tour and $N(\pi)$ be the number of crossings with the lines of the $L \times L$-grid. Then we have $N(\pi) \leq \sqrt{2}$. OPT

Proof.

- Consider a tour as an ordered cyclic sequence.
- Each edge generates
$\leq \Delta x+\Delta y$ crossings.

Shifted Dissections (II)

Lem. Let π be an optimal tour and $N(\pi)$ be the number of crossings with the lines of the $L \times L$-grid. Then we have $N(\pi) \leq \sqrt{2} \cdot$ OPT

Proof.

- Consider a tour as an ordered cyclic sequence.
- Each edge generates $\leq \Delta x+\Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge

Shifted Dissections (II)

Lem. Let π be an optimal tour and $N(\pi)$ be the number of crossings with the lines of the $L \times L$-grid. Then we have $N(\pi) \leq \sqrt{2} \cdot$ OPT

Proof.

- Consider a tour as an ordered cyclic sequence.
- Each edge generates $\leq \Delta x+\Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge
- $(\Delta x+\Delta y)^{2} \leq 2\left(\Delta x^{2}+\Delta y^{2}\right)$
 completes the proof.

Shifted Dissections (II)

Lem. Let π be an optimal tour and $N(\pi)$ be the number of crossings with the lines of the $L \times L$-grid. Then we have $N(\pi) \leq \sqrt{2} \cdot$ OPT

Proof.

- Consider a tour as an ordered cyclic sequence.
- Each edge generates $\leq \Delta x+\Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge
- $(\Delta x+\Delta y)^{2} \leq 2\left(\Delta x^{2}+\Delta y^{2}\right)$
 completes the proof.

Shifted Dissections (III)

Thm. Let $a, b \in[0, L-1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a, b)-shifted dissection is at most $(1+\sqrt{2} \epsilon)$ OPT.

Shifted Dissections (III)

Thm. Let $a, b \in[0, L-1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a, b)-shifted dissection is at most $(1+\sqrt{2} \epsilon)$ OPT.

Proof. Consider an optimal tour π. Make π well behaved by moving each intersection point (with the $L \times L$-grid) to the nearest portal.

Shifted Dissections (III)

Thm. Let $a, b \in[0, L-1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a, b)-shifted dissection is at most $(1+\sqrt{2} \epsilon)$ OPT.

Proof. Consider an optimal tour π. Make π well behaved by moving each intersection point (with the $L \times L$-grid) to the nearest portal.

detour per intersection \leq inter-portal distance.

Shifted Dissection (III)

- Consider an intersection point between π and a line l of the $L \times L$-grid.

Shifted Dissection (III)

- Consider an intersection point between π and a line l of the $L \times L$-grid.
- With probability at most $2^{i} / L, l$ is a level- i-line \rightsquigarrow an increase in tour length by a maximum of $L /\left(2^{i} m\right)$ (inter-portal distance).

Shifted Dissection (III)

- Consider an intersection point between π and a line l of the $L \times L$-grid.
- With probability at most $2^{i} / L, l$ is a level $-i$-line \rightsquigarrow an increase in tour length by a maximum of $L /\left(2^{i} m\right)$ (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:

$$
\sum_{i=0}^{k} \frac{L}{2^{i} m} \frac{2^{i}}{L} \leq \frac{k}{m} \leq \epsilon
$$

Shifted Dissection (III)

- Consider an intersection point between π and a line l of the $L \times L$-grid.
- With probability at most $2^{i} / L, l$ is a level $-i$-line \rightsquigarrow an increase in tour length by a maximum of $L /\left(2^{i} m\right)$ (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:

$$
\sum_{i=0}^{k} \frac{L}{2^{i} m} \frac{2^{i}}{L} \leq \frac{k}{m} \leq \epsilon
$$

- Summing over all $N(\pi) \leq \sqrt{2}$ OPT intersection points, and applying linearity of expectation, provides the claim.

Shifted Dissection (III)

- Consider an intersection point between π and a line l of the $L \times L$-grid.
- With probability at most $2^{i} / L, l$ is a level $-i$-line \rightsquigarrow an increase in tour length by a maximum of $L /\left(2^{i} m\right)$ (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:

$$
\sum_{i=0}^{k} \frac{L}{2^{i} m} \frac{2^{i}}{L} \leq \frac{k}{m} \leq \epsilon
$$

- Summing over all $N(\pi) \leq \sqrt{2}$ OPT intersection points, and applying linearity of expectation, provides the claim.

Approximation Scheme.

Thm. There is a PTAS for euclidean TSP, i.e., for each $\epsilon>0$ one can find a $(1+\epsilon)$-approximation in $n^{O(1 / \epsilon)}$ time.

Proof.

Approximation Scheme.

Thm. There is a PTAS for euclidean TSP, i.e., for each $\epsilon>0$ one can find a $(1+\epsilon)$-approximation in $n^{O(1 / \epsilon)}$ time.

Proof. Try all L^{2} different (a, b)-shifted dissections. By the previous thm., one of these is good enough.

