

Aalto University School of Science

Combinatorics of Efficient Computations

Approximation Algorithms

Lecture 9: An Approximation Scheme for Euclidean TSP

Joachim Spoerhase

Euclidean TSP

Given: A set of n points in \mathbb{R}^2 .

The distance between two points is the euclidean distance.

Find: A Hamiltonian cycle (tour) of minimum length.

Goal: $(1 + \epsilon)$ -Approximation!

Simplifying Assumptions

- ullet points belong to an L imes L-square
- $L := 4n^2 = 2^k$; $k = 2 + 2\log_2 n$
- integer coordinates

"justification" → exercise

Basic Dissection

$$L = 2^k$$

Portals

•
$$k = O(\log n)$$

- m is a power of two in the interval $[k/\epsilon, 2k/\epsilon]$
- $m = \Theta(\log n/\epsilon)$
- **Portals** on a level-*i*-line have distance $L/(2^i m)$
- ullet each level-i-square has at most 4m boundary portals

$$L := 4n^2 = 2^k$$
.

Well Behaved Tours

A tour is well behaved, when

- it involves all points and a subset of the portals,
- no edge of the tour crosses
 a line of the basic dissection
- it is crossing-free.

Without loss of generality (exercise): no portal is visited more than twice.

Computing a well behaved tour

Lem.

An optimal well behaved tour can be computed in $2^{O(m)} = n^{O(1/\epsilon)}$ time.

Proof.

- Dynamic Program.
- Compute sub-structure of an optimal tour for each square in the dissection tree.
- These solutions can be efficiently propagated bottom-up through the dissection tree.

Dynamic Program (I)

Dynamic Program (II)

For each square Q, and each crossing-free pairing P in Q, compute an optimal path

Dynamic Program (III)

For a given square Q and pairing P:

- iterate over all $(n^{O(1/\epsilon)})^4 = n^{O(1/\epsilon)}$ crossing-free pairings of the child-squares
- choose a combination of such pairings which minimizes the cost and respects P.
- correctness by induction

Shifted Dissections

- the best well behaved tour can be a poor approximation :-(
- Define an (a, b)-shifted dissection

$$x \mapsto (x+a) \mod L$$

 $y \mapsto (y+b) \mod L$

- Squares in the dissection tree are "wrapped around"
- dynamic program must be modified accordingly.

Shifted Dissections (II)

Lem.

Let π be an optimal tour and $N(\pi)$ be the number of crossings with the lines of the $L \times L$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \mathsf{OPT}$

Proof.

- Consider a tour as an ordered cyclic sequence.
- Each edge generates $\leq \Delta x + \Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge
- $(\Delta x + \Delta y)^2 \le 2(\Delta x^2 + \Delta y^2)$ completes the proof.

Shifted Dissections (III)

Thm.

Let $a,b \in [0,L-1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a,b)-shifted dissection is at most $(1+\sqrt{2}\epsilon)$ OPT.

Proof.

Consider an optimal tour π . Make π well behaved by moving each intersection point (with the $L \times L$ -grid) to the nearest portal.

detour per intersection \leq inter-portal distance.

Shifted Dissection (III)

- \bullet Consider an intersection point between π and a line l of the $L\times L\text{-grid}.$
- With probability at most $2^i/L$, l is a level-i-line \rightsquigarrow an increase in tour length by a maximum of $L/(2^im)$ (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:

$$\sum_{i=0}^{k} \frac{L}{2^{i}m} \frac{2^{i}}{L} \le \frac{k}{m} \le \epsilon$$

• Summing over all $N(\pi) \leq \sqrt{2} \text{OPT}$ intersection points, and applying linearity of expectation, provides the claim.

Approximation Scheme.

Thm.

There is a PTAS for euclidean TSP, i.e., for each $\epsilon > 0$ one can find a $(1+\epsilon)$ -approximation in $n^{O(1/\epsilon)}$ time.

Proof.

Try all L^2 different (a,b)-shifted dissections. By the previous thm., one of these is good enough.