

$$
\begin{aligned}
& t \rightarrow-t \quad t_{+}=-t \\
& \bar{\jmath}_{T}=-\bar{\jmath} \\
& \bar{\jmath}=\rho \frac{d \bar{r}}{d t} \\
& \nabla \times \bar{H}=\bar{\jmath}+\frac{\partial \bar{D}}{\partial t} \\
& \bar{j}_{m}=\rho_{n} \frac{d r}{d t} \\
& \nabla \cdot \bar{D}=\rho \\
& \bar{\jmath} \rightarrow-\bar{\jmath}
\end{aligned}
$$

$$
\begin{aligned}
& \binom{(6)}{6} \quad Q_{n} \rightarrow\left[\begin{array}{l}
0 \\
6
\end{array}\right] \quad \bar{\rho}_{m} \rightarrow-\bar{\rho}_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\bar{Z}}_{s}=z_{1} \overline{\bar{I}}_{t}+z_{2} \bar{j}_{f} \\
& \bar{E}_{t}=\overline{\bar{Z}}_{s} \cdot \bar{n} \times \bar{H}_{t} \\
& \bar{S}_{11}=\frac{1}{2} \bar{E}_{t} \times \bar{H}_{t}{ }^{*}=\frac{1}{2}\left[\bar{z}_{s} \cdot \bar{n} \times \bar{H}_{t}\right] \times \bar{H}_{t}^{*} \\
& =\frac{1}{2}[Z_{1} \bar{n} \times \bar{H}_{t}+Z_{2} \underbrace{\bar{n} \times\left(\bar{n} \times \bar{H}_{t}\right)}] \times \bar{H}_{t}^{*} \\
& \bar{n} \underbrace{\bar{n} \cdot \bar{H}_{t}}-\underbrace{\bar{n} \cdot \bar{n}} F_{t} \\
& =\frac{1}{2} z_{1}\left(\bar{H}_{t} \bar{h} \cdot \bar{H}_{t}^{*}-\bar{n} \bar{H}_{t} \cdot \bar{H}_{t}^{*}\right)-\frac{1}{2} z_{2} \bar{H}_{t} \times \bar{H}_{t}^{*} \\
& =-\frac{1}{2} z_{1} \bar{n}\left|\bar{H}_{t}\right|^{2}-\frac{1}{2} z_{2} \bar{H}_{t} \times \bar{H}_{t}^{*}
\end{aligned}
$$

LOSSLESS BOUNDARY: $\operatorname{Re}\{\bar{n} \cdot \bar{S}\}=0$

$$
\begin{aligned}
\operatorname{Re}\left\{z_{1}\right\} & =0, \operatorname{Tm}\left\{z_{2}\right\}=0 \\
\left(\bar{H}_{t} \times \bar{H}_{t}^{*}\right)^{*}=\bar{H}_{t}^{*} \times \bar{H}_{t} & =-\underbrace{\bar{H}_{t} \times H_{t}^{*}}_{\text {PURE }}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{S}_{T}(t)=-\bar{S}(-t) \\
& \bar{S}=\frac{1}{2} \bar{E} \times \bar{H}^{*} \\
& \bar{S}_{T}=-\bar{S}=-\frac{1}{2} \bar{E} \times \bar{H}^{*} \\
& \bar{S}_{T}(\omega)=-\frac{1}{2} E(\omega) \times \bar{F}^{*}(\omega)=-\bar{S}(w) \\
& \bar{S}_{T}(w)=\frac{1}{2} \bar{E}_{T}(w) \times \bar{H}_{T}^{*}(w)=\frac{1}{2} E(-w) \times \bar{H}^{*}(-w) \\
& =\bar{S}(-\omega) \\
& \text { (4.7) } \bar{S}_{T}(\omega)=-\bar{S}^{*}(-\omega) \\
& f(t) \quad F(\omega)=\int_{-\infty}^{\infty} f(-t) e^{-j \omega t} d t \\
& F(\omega)=\int_{-\infty}^{\infty} f(t) e^{+j \omega t} d t \\
& t^{\prime}=-t \\
& d t^{\prime}=-d t \\
& =-\int_{+\infty}^{-\infty} f\left(-t^{\prime}\right) e^{-j \omega t^{\prime}} d t^{\prime} \\
& =\int_{-\infty}^{\infty} f\left(-t^{\prime}\right) e^{-j \omega t^{\prime}} d t^{\prime}=-F(\omega) \\
& \Rightarrow \quad f(t)=-f(-t)
\end{aligned}
$$

4.1

$$
\operatorname{det} T=?
$$

$$
\operatorname{det} T=\frac{1}{\sqrt{1}^{2}}(1-\underbrace{\left.\frac{\sin ^{2} 2 \alpha}{\frac{\sqrt{2}}{\eta_{0}} \sqrt{2} \eta \cdot \sin \alpha \cos \alpha}\right)}_{2 \sin \alpha \cos \alpha}=1
$$

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \\
& T^{-1}=\frac{1}{\sqrt{T}}\left(\begin{array}{cc}
1 & -\sqrt{2} \eta_{0} \sin \alpha \\
-\frac{\sqrt{2}}{\eta_{0}} \alpha & 1
\end{array}\right) \\
& \sin (\alpha+\pi)=\sin \alpha \cos \pi+\cos \alpha \sin \bar{\pi}=-\operatorname{si\alpha } \alpha \\
& \cos (\alpha+\pi)=\cos \alpha \cos \pi-\sin \alpha \sin =-\cos \alpha \\
& T^{-1}(\alpha)=T(\alpha+\pi) \\
& \bar{D}=\overline{\bar{E}} \cdot \bar{E}+\bar{\xi} \cdot \bar{H} \\
& \nabla \times \bar{E}=-j \omega \bar{B} \\
& \nabla \times \bar{E}_{d}=-j \omega \bar{B}_{d} \\
& \nabla \times \frac{1}{\sqrt{r}}\left(\bar{E}+\sqrt{2} \eta_{0} \sin \alpha \bar{H}\right)=-j \omega \bar{B}_{d} \\
& \frac{1}{\Gamma} \nabla \times \bar{E}+\frac{\sqrt{2} \eta_{0} \sin \alpha}{\sqrt{r}} \nabla \times \bar{H}=-j \omega \bar{B}_{d}
\end{aligned}
$$

$$
\begin{aligned}
& \binom{\vec{E}}{\vec{H}}_{d}=T(\alpha)\binom{\bar{E}}{\vec{H}} \\
& T(\alpha)=\frac{1}{\sqrt{1-\sin 2 \alpha}}\left(\begin{array}{ccc}
1 & \sqrt{2} & \sin \alpha \\
\frac{\sqrt{2}}{\eta_{0}} & \eta_{0} & 1
\end{array}\right) \\
& T^{-1}=?
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\sqrt{n}}(-j \omega \bar{B})+\frac{\sqrt{2} \eta_{0} \sin \alpha}{\sqrt{ }}(j \omega \bar{D})=-j \omega \bar{B}_{d} \\
& \bar{B}_{d}=\frac{1}{\sqrt{ }} \bar{B}-\frac{\sqrt{2} \eta_{c} \sin \alpha}{\sqrt{D}}
\end{aligned}
$$

et c...

