Slow trading and stock return predictability

Allaudeen Hameed National University of Singapore

Matthijs Lof Aalto University

Matti Suominen Aalto University

SEPTEMBER 25th 2018 - INSEAD

Black Monday: Returns on size deciles

- Large-cap reversal
- Small-cap continuation

Size Premium following good/bad market days

- Size premium (R_{SML,t} = R_{S,t} R_{L,t}): Smallest decile-Largest decile (End-of-June Market Cap, NYSE breakpoints, active stocks >200 trading days/year; >20% institutional ownership)
- Daily size premium conditional on positive/negative lagged market returns $(R_{VW,t-1})$

Weekly/Monthly rebalancing

Slow trading and stock return predictability

Size-based returns predictable by lagged common information

- Lead-lag in large/small stock returns: Lo and MacKinlay (1990), Chordia and Swaminathan (2000)
- Prior literature: Slow adjustment of small stocks due to gradual diffusion of information - Badrinath, Kale and Noe (1995), Hou and Moskowitz (2005), Hou (2007

This paper: Predictability is <u>due to investors trading large</u> <u>stocks swiftly</u> and <u>small stocks slowly</u>

- Vayanos (1999, 2001), Garleanu and Pedersen (2013), Rostek and Weretka (2015): Slow trading to reduce trading costs. Sannikov and Skrzypacz (2016) predict slow trading due to monopoly power.
- ANcerno transaction data and mutual fund holding data: Lead-lag relation between trading volume of large and small stocks; splitting of small stock trades across multiple days
- Size-based returns predictable by *mutual fund flows* and by returns on stocks with high *commonality in ownership*.

Overview

- Evidence of slow trading
- Mutual fund flows and return predictability
- Connected stocks and return predictability
- Size premium predictability

Overview

Evidence of slow trading

- Mutual fund flows and return predictability
- Connected stocks and return predictability
- Size premium predictability

Splitting trades

 Suppose that investor *f* trades stock *i* in periods *t* and t+1 (both k day periods), and its net trades on both periods *are on the same side*. Then:

$$split_{f,i,t,k} = 1$$

• Sample averages of *split* for small and large stocks (Ancerno data: 2000-2010)

A: Probability of splitting trades

k	1	2	3	4	5	10	20
Small stocks (Dec 1-5)	86 %	81 %	79 %	77 %	76 %	72 %	68 %
Large stocks	72 %	70 %	69 %	69 %	68 %	66 %	64 %
Small-Large	14 % ***	11 % ***	10 % ***	9 % ***	8 % ***	5 % ***	4 % ***
	(10.38)	(7.37)	(6.57)	(6.23)	(5.76)	(5.30)	(4.80)

B: Determinants of s	plitting trades	A	ll (k=1)	Buy ((k =1)	Sell (k=1)	All (k=5)	Buy (k=5)	Sell (k=5)	
		sp	split _{f,i,t+1} split _{f,i,t+1}		split _{f,i,t+1}	split _{f,i,t+5}	split _{f,i,t+5}	split _{f,i,t+5}		
Size _{i,t}			-0.020 **	* -(0.021 ***	-0.016	*** -0.021	*** -0.023	*** -0.015 ***	
			(-7.47)	(-1	0.53)	(-4.94)	(-8.77)	(-9.99)	(-6.18)	
R _{i,t}			0.008	(0.045 *	-0.034	** 0.004	0.015	-0.009	
			(0.90)	(1.95)	(-2.15)	(0.92)	(1.17)	(-0.92)	
Order size _{f,i,t}			0.186 **	* (0.198 ***	0.236	*** 0.111	*** 0.129	*** 0.135 ***	
			(10.02)	(1	0.24)	(9.88)	(9.9)	(11.22)	(13.34)	_
Observations		6	5987102	360	5829	3605829	4640298	2438467	2438467	
Adj. R^2			0.14		0.14	0.14	0.14	0.14	0.14	
Institution fixed effect	S		yes		yes	yes	yes	yes	yes	
Date fixed effects			yes		yes	yes	yes	yes	yes	
C: Time series patter	rns									
	Small stocks	s (k=1)	Larg	Large stocks (k=1)		Sma	Small stocks (k=5)		Large stocks (k=5)	
	Buy	Sell	Buy		Sell	Buy	Sell	Buy	Sell	
	%split _{t+1}	%split _{t+1}	‰sp	lit_{t+1}	%split _t	+1 %sp	lit _{t+5} %sp	lit _{t+5} %spl	iit_{t+5} % split_{t+5}	
Intercept	0.566 ***	0.583 ***	· 0.4	17 ***	0.643	*** 0.5	516 *** 0.62	25 *** 0.50	69 *** 0.365 ***	•
	(13.96)	(18.44)	(14.4	19)	(28.12)	(10.	05) (17.0)	7) (12.8	7) (10.16)	
AR(1)	0.359 ***	0.337 ***	0.4	29 ***	0.116	*** 0.3	323 *** 0.28	32 ** 0.20	67 *** 0.460 ***	•
	(7.78)	(9.34)	(10.9	93)	(3.67)	(4.	61) (2.2	1) (4.5	4) (9.07)	
R _{VW,t}	0.303 ***	-0.255 ***	· 0.0	39	-0.191	0.3	389 * -0.28	38 *** -0.1	10 -0.014	
	(2.58)	(-2.66)	(0.3	32)	(-1.56)	(1	.9) (-3.0	9) (-0.6	1) (-0.16)	\mathcal{I}
Observations	2763	2763	27	63	2763	5	552 55	52 55	52 552	
Adj. R^2	0.128	0.113	0.1	84	0.013	0.1	0.20	0.00	68 0.020	

Hameed, Lof, Suominen - Slow Trading

Trading delay within institutions

- ANcerno database: Transactions by a large sample of US institutional investors (2001-2010).
 - Pucket and Yan (2011): ~8% of CRSP volume
- Define the following variables (institution-date observations)
- *TURN_{f,t}*: Transaction volume by institution *f* as % of market capitalization in week t
- %Decilex_{f,t}: Fraction of Decile x stocks (x=6,...,10=large) in total transaction volume by institution f.
- $%Small_{f,t}$: Fraction of small stocks (Deciles 1-5) in total transaction volume by institution *f*.
 - ~8% (34%) of USD volume (#transactions)
- Regress fractions(%*small_{f,t}*, %*Decilex_{f,t}*) on lagged aggregate turnover (*TURN_{f,t}*)

Trading delay within institutions

	%Small _{f,t}	%Decile6 _{f,t}	%Decile7 _{f,t}	%Decile8 _{f,t}	%Decile9 _{f,t}	%Large _{f,t}
TURN _{f,t-1}	0.16 ***	0.02	0.00	-0.02 *	-0.04 ***	-0.11 ***
	(4.40)	(1.26)	(-0.08)	(-1.71)	(-2.70)	(-3.44)
TURN _{f,t-2}	0.08 **	0.01	-0.01	-0.01	-0.02	-0.05 *
	(2.07)	(0.73)	(-1.28)	(-0.41)	(-1.18)	(-1.83)
TURN _{f,t-3}	0.06 *	0.00	0.00	-0.01	-0.02 *	-0.03
	(1.94)	(0.18)	(0.13)	(-0.72)	(-1.65)	(-1.10)
TURN _{f,t-4}	0.08	0.01	0.00	-0.02	-0.02	-0.05
	(1.46)	(0.27)	(0.27)	(-1.02)	(-0.93)	(-1.41)
Observations	83246	83246	83246	83246	83246	83246
Adj. R ²	0.59	0.22	0.20	0.20	0.26	0.56
Institution fixed effects	yes	yes	yes	yes	yes	yes
Date fixed effects	yes	yes	yes	yes	yes	yes

- High trading activity *within institutions* predicts relatively high activity in small stocks
- 1 s.d. \uparrow in *TURN_{f,t}* predicts ~1.7% \uparrow in %*Small_{f,t}*
- Robustness: Side-specific volume, #transactions, weekly data

Table 3: ANcerno volume and return predictability

This table reports the result of regressing the returns of baskets of stocks traded by an institution, on the lags of previously traded stocks by the same institution. $R_{f,t}^{SmallBuy}$ ($R_{f,t}^{SmallSell}$) is the return on the portfolio of small stocks purchased (sold) by institution *f* during period *t*, weighted by transaction size. $R_{f,t}^{LargeBuy}$ and $R_{f,t}^{LargeSell}$ are defined in the same way for large stocks. The regression include date and institution fixed effects. Then regressions in Panel A (B) are estimated with daily (weekly) data. Data is from ANcerno and CRSP and covers the years 2000-2010.

Mutual Fund Scandal: A natural experiment

- 25 fund families accused of illegal trading activities: Experience outflows from September 2003 (Kisin, 2011; Anton and Polk, 2014)
- Diff-in-Diff: Holdings (in log(shares)) by scandal and non-scandal funds before and after September 2003

A: One quarter Din-In-Di	II (2003Q2-200	3Q3)
	Large stocks	Small stocks
After (2003Q3)	0.03 *	0.07 **
	(1.73)	(2.16)
Scandal × After	-0.09 **	0.02
	(-2.04)	(0.33)
Observations	342	342
Fund fixed effects	yes	yes
Observations Fund fixed effects	(-2.04) 342 yes	(0.33) 342 yes

 $D_{max} = m_{max} + m_{m$

B: Four quarter Diff-in-Diff (2003Q2-2004Q3)

	Large stocks	Small stocks
After (2004Q2)	0.12 *	0.29 ***
	(1.76)	(3.82)
Scandal × After	-0.28 ***	* -0.19 **
	(-3.31)	(-2.10)
Observations	326	326
Fund fixed effects	yes	yes

Scandal funds reduced large-cap holdings in first quarter of scandal

Small-cap holdings reduced later

Overview

- Evidence of slow trading
- Mutual fund flows and return predictability
- Connected stocks and return predictability
- Size premium predictability

Mutual fund flows and return predictability

 Similar to Lou (2012), construct stock-level measure of mutual fund flow pressure:

$$FlowPressure_{i,t} = \frac{\sum_{f=1}^{F} S_{f,i,t-1} \times Flow_{f,t}}{S_{i,t-1}}$$

Small-cap and large-cap portfolios of *inflow* stocks and *outflow* stocks

A: Contemporaneous flows	Sn	nall stocks		Large stocks				
	High	Low	High-Low	High	Low	High-Low		
Monthly Return	1.1 %	0.1 %	0.9 %	1.1 %	-0.1 %	1.2 %		
a 4-Factor	0.3 % ***	-0.3 % ***	0.7 % ***	0.6 % ***	-0.5 % ***	1.1 % ***		
	(3.28)	(-3.14)	(5.92)	(4.34)	(-4.13)	(4.92)		
B: Lagged flows	Sn	nall stocks		Large stocks				
	High	Low	High-Low	High	Low	High-Low		
Monthly Return	0.7 %	0.3 %	0.4 %	0.2 %	0.5 %	-0.3 %		
α 4-Factor	0.3 % **	-0.2 % **	0.4 % ***	-0.1 %	0.1 %	-0.2 %		
	(2,25)	(0 , 0 , 1)	(2.95)	(1.22)	(0, 0, 2)	(120)		

Lagged flows predict returns on small stocks

Mutual fund flows and volume

 Small-cap and large-cap portfolios of *high absolute flow* stocks and *low absolute flow* stocks

A: Contemporaneous flows	Small stocks			Large stocks				
	High	Low	H-L	High	Low	H-L		
Abnormal turnover	1.3 % ***	-1.4 % *	2.7 % ***	0.5 % **	-1.3 % ***	1.8 % **		
	(2.77)	(-1.67)	(5.24)	(2.48)	(-6.20)	(2.56)		
B: Lagged flows	St	nall stocks		Large stocks				
	High	Low	H-L	High	Low	H-L		
Abnormal turnover	0.9 % *	-0.7 %	1.6 % **	0.2 %	0.1 %	0.04 %		
	(1.89)	(-0.80)	(2.06)	(0.35)	(0.11)	(0.07)		

Lagged flows predict volume of small stocks

Overview

- Evidence of slow trading
- Mutual fund flows and return predictability
- Connected stocks and return predictability
- Size premium predictability

Connected stocks and return predictability

 For each stock, construct risk-adjusted returns on a portfolio of *connected* stocks weighted by *commonality in ownership* (*FCAP* – Anton and Polk, 2014)

 Time-series regression of stock returns on lagged and contemporaneous FCAP returns, while controlling for market.

 $R_{i,t} = \alpha_i + \vartheta_{i0}R_{FCAP,i,t} + \vartheta_{i1}R_{FCAP,i,t-1} + \beta_{i0}R_{VW,t} + \beta_{i1}R_{VW,t-1} + \varepsilon_{i,t}$

 Report average regression coefficients, grouped by *small* (Decile 1-5) and *large* (Decile 10) stocks

Connected stocks and return predictability

	Daily				Weekly				Monthly		
	Small	Large	S-L	Sma	ı11	Large	S-L	St	nall	Large	S-L
$R_{FCAP,i,t}$	1.011	0.748	0.262	1.13	30	0.644	0.486	1.	238	0.755	0.482
	(30.52)	(18.51)	(5.66)	(33.6)	l)	(17.34)	(7.82)	(15.	88)	(15.8)	(6.46)
R _{FCAP,i,t-1}	0.152	-0.049	0.201	0.21	7	-0.093	0.310	0.	250	-0.072	0.322
	(9.17)	(-2.55)	(8.72)	(6.02	2)	(-4.42)	(6.41)	(6.	08)	(-1.84)	(4.63)
$R_{VW,t}$	0.645	0.896	-0.251	0.80)7	1.050	-0.243	0.	995	1.185	-0.191
	(25.22)	(44.36)	(-15.25)	(26.8	5)	(47.03)	(-9.17)	(25.	29)	(38.1)	(-2.71)
R _{VW,t-1}	0.039	-0.011	0.050	0.08	86	-0.003	0.082	0.	101	-0.017	0.118
	(3.71)	(-0.75)	(2.86)	(5.2)	3)	(-2.16)	(5.3)	(1.	90)	(-0.32)	(1.09)
R^2	0.094	0.199		0.18	80	0.375		0.	482	0.505	

- Small (large) stocks respond positively (negatively) to the lagged return on connected stocks
- Robust to controlling for industry returns, idiosyncratic reversals
- FCAP weighted turnover predicts small stocks turnover

FCAP trading strategy

 $FCAP \ strategy = \begin{cases} Long: small \ stocks \ with \ R_{FCAP,i,t-1} > 0 \\ and \ large \ stocks \ with \ R_{FCAP,i,t-1} < 0 \\ Short: small \ stocks \ with \ R_{FCAP,i,t-1} < 0 \\ and \ large \ stocks \ with \ R_{FCAP,i,t-1} > 0. \end{cases}$

	Daily	Weekly	Monthly
Monthly Return	2.0 %	0.9 %	0.6 %
Sharpe Ratio	0.53	0.32	0.20
α	2.2 % ***	1.1 % ***	0.8 % ***
	(6.19)	(5.13)	(4.66)
Mkt	-0.11	-0.06	-0.14 ***
	(-1.43)	(-1.37)	(-3.07)
SMB	0.11	0.06	0.13
	(1.42)	(0.90)	(1.34)
HML	0.05	0.04	0.01
	(0.53)	(0.60)	(0.15)
UMD	-0.01	-0.13 ***	-0.08 *
	(-0.16)	(-3.53)	(-1.68)

FCAP trading strategy

FCAP trading strategy

 Returns most predictable when market volume is high, and market/funding liquidity is low.

	FCAP strategy					
Intercept	-0.001	0.050 ***	0.002	0.011 ***	0.016 ***	0.006
	(-0.64)	(3.16)	(1.46)	(6.19)	(5.25)	(1.52)
<i>Turnover</i> t-1	0.026 *					0.024 **
	(1.73)					(2.08)
VIX _{t-1}		0.016 ***				0.012 ***
		(2.63)				(2.69)
TED spread t-1			0.013 **			0.012 *
			(2.40)			(1.93)
PS-liquidity t-1				-0.046 *		-0.037
				(-1.76)		(-1.29)
$R_{t-1:t-3}$ (3 months)					-0.024 *	-0.012
					(-1.93)	(-0.47)
Adjusted R ²	0.019	0.070	0.026	0.011	0.012	0.066
Period	1981-2014	1990-2014	1986-2014	1981-2014	1981-2014	1990-2014

Overview

- Evidence of slow trading
- Mutual fund flows and return predictability
- Connected stocks and return predictability
- Size premium predictability

Size premium predictability

- Size premium predictable by lagged market
- Small-cap continuation. Large-cap reversal
- Predictability stronger following periods of relatively high market turnover (>52 week moving average)

Weekly	Size t	Size $_t$	Small _t	Small _t	<i>Large</i> t	Large t
Intercept	0.0002	0.0008	0.003 ***	0.004 ***	0.003 ***	0.003 ***
	(0.37)	(1.17)	(3.95)	(4.01)	(4.76)	(3.31)
R _{VW,t-1}	0.313 ***	0.247 ***	0.208 ***	0.177 ***	-0.105 ***	-0.070
	(8.75)	(8.47)	(5.92)	(4.69)	(-3.23)	(-1.23)
HighTurnover _{t-1}		-0.0010		-0.0012		-0.0002
		(-1.16)		(-0.94)		(-0.16)
$R_{VW,t-1} \times HighTurnover_{t-1}$		0.092 ***		0.047 *		-0.046 *
		(2.67)		(1.80)		(-1.82)
Adjusted R ²	0.144	0.154	0.037	0.038	0.009	0.008

Size premium predictability

• Size premium conditional on lagged market return state and lagged market turnover state

Conclusion

- Slow trading: On high-volume days, institutional investors focus on large stocks and delay trading of small stocks
- Return predictability: differential predictability of large and small returns by mutual fund flows and connected stocks. Large stock reversal and small stock continuation.
 - Implications for the size premium
- Slow adjustment (delay) of small stock returns due to institutional frictions rather than slow diffusion of information