

CS-E4070 — Computational learning theory Slide set 05 : weak and strong learning

Cigdem Aslay and Aris Gionis Aalto University

spring 2019

reading material

• K&V, chapter 4

what we have seen so far

 strong learning: an algorithm A is a strong learner of a concept class C, if for every concept c ∈ C, every distribution D, and every ε > 0 and δ ∈ (0, 1), the algorithm A outputs a hypothesis h ∈ C that satisfies

 $error_{\mathcal{D}}(h) \leq \epsilon$

with probability at least $1 - \delta$.

interesting to consider

weak learning: an algorithm A is a weak learner of a concept class C, if there exists a fixed ε₀ and δ₀, such that for every concept c ∈ C and every distribution D, the algorithm A outputs a hypothesis h ∈ C that satisfies

 $error_{\mathcal{D}}(h) \leq \epsilon_0$

with probability at least $1 - \delta_0$.

• in other words, ϵ_0 and δ_0 are fixed, and not arbitrarily small

weak learning

- learner can be just marginally better than random
- weak learning: an algorithm A is a weak learner of a concept class C, if there exists γ and τ, both greater than 1/poly(n), such that for every concept c ∈ C and every distribution D, the algorithm A outputs a hypothesis h ∈ C that satisfies

$$error_{\mathcal{D}}(h) \leq \frac{1}{2} - \gamma$$

with probability at least τ .

• in other words, *A* has a non-negligible chance of doing non-negligably better than random guessing

weak learning

- the requirement for weak learning is indeed very weak
- for instance, it is typically trivial to learn a concept class $\ensuremath{\mathcal{C}}$ with accuracy

$$error_{\mathcal{D}}(h) \leq \frac{1}{2} - \frac{1}{e(n)}$$

where e(n) is an exponentially-increasing function

• how?

return the correct answer for instances in the training set (which has exponentially small size) and a random answer for all other instances

a surprising result

 theorem : if a concept class C is efficiently weak PAC learnable, then C is efficiently strong PAC learnable

turning weak learning to strong learning

proof idea

- transform a weak learner A_w to a strong learner A_s
- assume fixed parameters ϵ_0 and δ_0
- for desired accuracy and confidence parameters ϵ and δ show how to construct A_s from A_w
- construction should be polynomial in 1/ ϵ and 1/ δ

two parts; we will show separately

- how to boost confidence δ_0 to δ (easy)
- how to boost accuracy ϵ_0 to ϵ (difficult)

warm up exercise on boosting

- consider a randomized algorithm A for a problem P
- assume that the answer to P is binary
- assume that for a given problem instance /, the algorithm A returns the correct answer for / with probabity greater than $\frac{1}{2} + \epsilon$, for some ϵ

- i.e., A does only slightly better than random guessing

task : design an algorithm A' s.t., for any instance *I*, A' returns the correct answer with probability at least $1 - \delta$, for any δ

warm up exercise on boosting

answer

- repeat A on I for a total of m times
- return the majority answer

analysis

- how large should *m* be?
- how to analyze?

hint : apply the Chernoff bound

- extremely useful tool for tail inequalities
- many applications in analysis of randomized algorithms, machine learning, etc.
- there are many variants; useful in different scenarios

Chernoff bound (additive form known as Hoeffding bound)

let X₁,..., X_m by *m* independent Bernoulli trials, with probability of success E[X_i] = p let S = X₁ + ... + X_m, then E[S] = pm then, for any 0 ≤ γ ≤ 1 we have

$$\mathsf{Pr}[\mathcal{S} > (\mathcal{p} + \gamma) m] \leq e^{-2m\gamma^2}$$

and

$$\Pr[S < (p - \gamma)m] \le e^{-2m\gamma^2}$$

part 1 : boosting the confidence

- suppose that a learner A_w outputs a hypothesis h, such that error_D(h) ≤ ε with probability at least δ₀, for any ε and δ₀ ≥ 1/poly(n)
- we want to achieve confidence 1δ , for any $\delta > 0$

constructing a strong learner

- simulate A_w a total of k times (k to be determined)
 each time by drawing new samples from EX(c, D)
- find *k* hypotheses h_1, \ldots, h_k
- probability all k hypotheses have error $> \epsilon$ is $\leq (1 \delta_0)^k$
- set $(1 \delta_0)^k \le \delta/2$, or equivalently $k \ge (1/\delta_0) \ln(2/\delta)$
- for such k at least one hypothesis has error less than ϵ

boosting the confidence (cont'd)

- one hypothesis of *h*₁,..., *h_k* has error less than *ϵ* with probability at least 1 − δ/2
 - we want to find which one
- draw a "large enough" sample S using EX(c, D)
- output the hypothesis h_i that makes less mistakes on S
- let *m* = |*S*|
 - how large should m be?
- consider any h_i with error error(h_i)
- we want to bound by δ/2k the probability that h_j's error on S is greater than error(h_i) + γ
- by Chernoff bound it suffices to take $m \ge (c_0/\gamma^2) \ln(2k/\delta)$

boosting the confidence (cont'd)

- for each *h_j*, the probability that *h_j*'s error on *S* is greater than *error*(*h_j*) + γ is bounded by δ/2k
- (A) by the union bound, the probability that any of the k hypotheses deviates its error by more than γ is bounded by $k(\delta/2k) = \delta/2$
- (B) recall that with probability at least 1 $\delta/2$ there is a hypothesis having error less than ϵ
 - putting (A) and (B) together, we can find a hypothesis h_i having error at most ε + γ
 - and the failure probability (applying union bound again) is bounded by $\delta/2+\delta/2=\delta$
 - to achieve error $\epsilon',$ set $\epsilon=\epsilon'/2$ and $\gamma=\epsilon'/2$

boosting the confidence (algorithm recap)

constructing a strong learner A_s from a weak learner A_w

1. simulate A_w a total of $k \ge (1/\delta_0) \ln(2/\delta)$ times

- find *k* hypotheses h_1, \ldots, h_k

- 2. draw a sample S of size $|S| = m \ge (c_0/\epsilon^2) \ln(2k/\delta)$
- 3. output the hypothesis h_i that makes less mistakes on S

 note that the strong learner A_s makes a polynomial (in 1/ε and 1/δ) number of calls to the weak learner A_w (which is assumed polynomial)

part 2 : boosting the accuracy

- suppose that a learner A_w outputs a hypothesis h, such that error_D(h) ≤ β with probability at least 1 − δ, for a fixed β < 1/2 and any δ > 0
- we want to achieve accuracy ϵ , for any $\epsilon > 0$

- it seems to be an almost impossible task
- learner may always return a hypothesis with large error
- not clear how repeated runs can help to boost accuracy

boosting the accuracy

high-level idea

- take advantage of the fact that the learner A_w can find a hypothesis with large error β , but can do so for any input distribution
- run A_w not only on the target distribution D, but also on *"regions"* of D in which the previously-learned hypothesis performs poorly

for instance

- first run A_w on \mathcal{D} and obtain h having error β
- then run A_w on inputs from \mathcal{D} in which h errs
- we hope to learn "something new"

boosting the accuracy — a two-step process

step 1

- assume weak learner A_w with guaranteed error β
- build a new learner A that uses A_w as a subroutine and has error g(β)
- A invokes A_w on three different distributions and learns three hypotheses h₁, h₂, h₃
- learner A forms $h = majority\{h_1, h_2, h_3\}$
- hypothesis *h* is guaranteed to have error $g(\beta)$

step 2

- step 1 is repeated in a recursive manner
- overall accuracy is boosted to a desirable level

boosting the accuracy — step 1

- as usual, c is target concept, and \mathcal{D} target distribution
- weak learner A_w achieves error β on any distribution
- 1. we invoke learner A_w on instances sampled from EX(c, D)and find hypothesis h_1
- we know that $error_{\mathcal{D}}(h_1) \leq \beta$
- 2. we create a new distribution D_2 by filtering D using h_1
- w.p. 1/2 we draw $(\mathbf{x}, c(\mathbf{x}))$ from \mathcal{D} such that $c(\mathbf{x}) = h_1(\mathbf{x})$
- w.p. 1/2 we draw $(\mathbf{x}, c(\mathbf{x}))$ from \mathcal{D} such that $c(\mathbf{x}) \neq h_1(\mathbf{x})$
- notice $error_{D_2}(h_1) = 1/2$, i.e., h_1 on D_2 is random guessing
- invoking A_w on D_2 we get h_2 with error $\beta < 1/2$ (on D_2) i.e., $h_2 \neq h_1$, i.e., h_2 learns "something new"

boosting the accuracy — step 1 (cont'd)

- we create a third distribution D₃ by filtering D using both h₁ and h₂
- we sample from EX(c, D) until we find instance $(\mathbf{x}, c(\mathbf{x}))$ for which $h_1(\mathbf{x}) \neq h_1(\mathbf{x})$
- i.e., \mathcal{D}_3 focuses on the region of \mathcal{D} that h_1 and h_2 disagree
- invoking A_w on \mathcal{D}_3 returns h_3
- h_3 learns "something new" for the input instances in which h_1 and h_2 disagree
- 4. the learning algorithm returns $h = \text{majority}\{h_1, h_2, h_3\}$

boosting the accuracy — step 1 (analysis, sketch)

define

 $error_{\mathcal{D}_1}(h_1) = \beta_1$, $error_{\mathcal{D}_2}(h_2) = \beta_2$, $error_{\mathcal{D}_3}(h_3) = \beta_3$

- we want to show that although β₁, β₂, β₃ can be as large as β, the *error*_D(h) will be significantly smaller than β
- it can be shown that *error*_D(h) is maximized if β_i = β (for details see K&V)
- hypothesis h makes two types of errors
- 1st type error : both h_1 and h_2 make an error
- 2nd type error : h_1 and h_2 disagree and h_3 makes error

boosting the accuracy — step 1 (analysis, sketch)

• thus,

$$error_{\mathcal{D}}(h) = \Pr_{\mathbf{x}\in\mathcal{D}}[h_{1}(\mathbf{x}) \neq c(\mathbf{x}) \land h_{2}(\mathbf{x}) \neq c(\mathbf{x})] \\ + \Pr_{\mathbf{x}\in\mathcal{D}}[h_{3}(\mathbf{x}) \neq c(\mathbf{x}) \mid h_{1}(\mathbf{x}) \neq h_{2}(\mathbf{x})] \\ \Pr_{\mathbf{x}\in\mathcal{D}}[h_{1}(\mathbf{x}) \neq h_{2}(\mathbf{x})] \\ = \Pr_{\mathbf{x}\in\mathcal{D}}[h_{1}(\mathbf{x}) \neq c(\mathbf{x}) \land h_{2}(\mathbf{x}) \neq c(\mathbf{x})] \\ + \beta_{3} \Pr_{\mathbf{x}\in\mathcal{D}}[h_{1}(\mathbf{x}) \neq h_{2}(\mathbf{x})]$$

l.h.s. is maximized when $\beta_{\rm 3}=\beta$

with further algebraic derivations (see K&V) we can show

 $\textit{error}_{\mathcal{D}}(\textit{h}) \leq 3\beta^2 - 2\beta^3$

and thus, $g(\beta) = 3\beta^2 - 2\beta^3$, as desired

summary

- a weak learner can be transformed to a strong learner
- confidence can be boosted by iterative runs of the weak learner
- accuracy can be boosted by focusing on regions of the target distribution that are more difficult to learn
 - two step process:
 - 1. reduce error quadratically
 - 2. recursive application of 1. to reduce error to ϵ
- analysis is quite involved (in particular the recursive part)
- algorithm is not practical
- can we design a practical boosting algorithm? yes! AdaBoost