
CS-E4070 — Computational learning theory

Slide set 05 : weak and strong learning

Cigdem Aslay and Aris Gionis

Aalto University

spring 2019

reading material

• K&V, chapter 4

what we have seen so far

• strong learning: an algorithm A is a strong learner of
a concept class C, if for every concept c ∈ C, every
distribution D, and every ε > 0 and δ ∈ (0,1), the
algorithm A outputs a hypothesis h ∈ C that satisfies

errorD(h) ≤ ε

with probability at least 1− δ.

interesting to consider

• weak learning: an algorithm A is a weak learner of a
concept class C, if there exists a fixed ε0 and δ0, such
that for every concept c ∈ C and every distribution D,
the algorithm A outputs a hypothesis h ∈ C that satisfies

errorD(h) ≤ ε0

with probability at least 1− δ0.

• in other words, ε0 and δ0 are fixed, and not arbitrarily small

weak learning

• learner can be just marginally better than random

• weak learning: an algorithm A is a weak learner of a
concept class C, if there exists γ and τ , both greater than
1/poly(n), such that for every concept c ∈ C and every
distribution D, the algorithm A outputs a hypothesis h ∈ C
that satisfies

errorD(h) ≤
1
2
− γ

with probability at least τ .

• in other words, A has a non-negligible chance of doing
non-negligably better than random guessing

weak learning

• the requirement for weak learning is indeed very weak

• for instance, it is typically trivial to learn a concept class C
with accuracy

errorD(h) ≤
1
2
− 1

e(n)

where e(n) is an exponentially-increasing function

• how?

return the correct answer for instances in the training set
(which has exponentially small size) and a random answer
for all other instances

a surprising result

• theorem : if a concept class C is efficiently weak PAC

learnable, then C is efficiently strong PAC learnable

turning weak learning to strong learning

proof idea

• transform a weak learner Aw to a strong learner As

• assume fixed parameters ε0 and δ0

• for desired accuracy and confidence parameters ε and δ

show how to construct As from Aw

• construction should be polynomial in 1/ε and 1/δ

two parts; we will show separately

• how to boost confidence δ0 to δ (easy)

• how to boost accuracy ε0 to ε (difficult)

warm up exercise on boosting

• consider a randomized algorithm A for a problem P

• assume that the answer to P is binary

• assume that for a given problem instance I, the algorithm A
returns the correct answer for I with probabity greater than
1
2 + ε, for some ε

– i.e., A does only slightly better than random guessing

task : design an algorithm A′ s.t., for any instance I, A′ returns
the correct answer with probability at least 1− δ, for any δ

warm up exercise on boosting

answer

• repeat A on I for a total of m times

• return the majority answer

analysis

• how large should m be?

• how to analyze?

hint : apply the Chernoff bound
• extremely useful tool for tail inequalities

• many applications in analysis of randomized algorithms,
machine learning, etc.

• there are many variants; useful in different scenarios

Chernoff bound (additive form known as Hoeffding bound)

• let X1, . . . ,Xm by m independent Bernoulli trials,
with probability of success E [Xi] = p
let S = X1 + . . .+ Xm, then E [S] = pm
then, for any 0 ≤ γ ≤ 1 we have

Pr[S > (p + γ)m] ≤ e−2mγ2

and
Pr[S < (p − γ)m] ≤ e−2mγ2

part 1 : boosting the confidence

• suppose that a learner Aw outputs a hypothesis h,
such that errorD(h) ≤ ε with probability at least δ0,
for any ε and δ0 ≥ 1/poly(n)

• we want to achieve confidence 1− δ, for any δ > 0

constructing a strong learner

• simulate Aw a total of k times (k to be determined)
each time by drawing new samples from EX (c,D)

• find k hypotheses h1, . . . ,hk

• probability all k hypotheses have error > ε is ≤ (1− δ0)
k

• set (1− δ0)
k ≤ δ/2, or equivalently k ≥ (1/δ0) ln(2/δ)

• for such k at least one hypothesis has error less than ε

boosting the confidence (cont’d)

• one hypothesis of h1, . . . ,hk has error less than ε
with probability at least 1− δ/2

– we want to find which one

• draw a “large enough” sample S using EX (c,D)

• output the hypothesis hi that makes less mistakes on S

• let m = |S|

– how large should m be?

• consider any hj with error error(hj)

• we want to bound by δ/2k the probability that hj ’s error
on S is greater than error(hj) + γ

• by Chernoff bound it suffices to take m ≥ (c0/γ2) ln(2k/δ)

boosting the confidence (cont’d)

• for each hj , the probability that hj ’s error on S is greater
than error(hj) + γ is bounded by δ/2k

(A) by the union bound, the probability that any of the k
hypotheses deviates its error by more than γ is bounded
by k(δ/2k) = δ/2

(B) recall that with probability at least 1− δ/2 there is a
hypothesis having error less than ε

• putting (A) and (B) together, we can find a hypothesis hi

having error at most ε+ γ

• and the failure probability (applying union bound again)
is bounded by δ/2 + δ/2 = δ

• to achieve error ε′, set ε = ε′/2 and γ = ε′/2

boosting the confidence (algorithm recap)

constructing a strong learner As from a weak learner Aw

1. simulate Aw a total of k ≥ (1/δ0) ln(2/δ) times

– find k hypotheses h1, . . . ,hk

2. draw a sample S of size |S| = m ≥ (c0/ε2) ln(2k/δ)

3. output the hypothesis hi that makes less mistakes on S

• note that the strong learner As makes a polynomial
(in 1/ε and 1/δ) number of calls to the weak learner Aw

(which is assumed polynomial)

part 2 : boosting the accuracy

• suppose that a learner Aw outputs a hypothesis h,
such that errorD(h) ≤ β with probability at least 1− δ,
for a fixed β < 1/2 and any δ > 0

• we want to achieve accuracy ε, for any ε > 0

• it seems to be an almost impossible task

• learner may always return a hypothesis with large error

• not clear how repeated runs can help to boost accuracy

boosting the accuracy

high-level idea

• take advantage of the fact that the learner Aw can find a
hypothesis with large error β, but can do so for any input
distribution

• run Aw not only on the target distribution D, but also on
“regions” of D in which the previously-learned hypothesis
performs poorly

for instance

• first run Aw on D and obtain h having error β

• then run Aw on inputs from D in which h errs

• we hope to learn “something new”

boosting the accuracy — a two-step process

step 1

• assume weak learner Aw with guaranteed error β

• build a new learner A that uses Aw as a subroutine and
has error g(β)

• A invokes Aw on three different distributions and learns
three hypotheses h1,h2,h3

• learner A forms h = majority{h1,h2,h3}

• hypothesis h is guaranteed to have error g(β)

step 2

• step 1 is repeated in a recursive manner

• overall accuracy is boosted to a desirable level ε

boosting the accuracy — step 1

• as usual, c is target concept, and D target distribution

• weak learner Aw achieves error β on any distribution

1. we invoke learner Aw on instances sampled from EX (c,D)
and find hypothesis h1

– we know that errorD(h1) ≤ β

2. we create a new distribution D2 by filtering D using h1

– w.p. 1/2 we draw (x, c(x)) from D such that c(x) = h1(x)

– w.p. 1/2 we draw (x, c(x)) from D such that c(x) 6= h1(x)

– notice errorD2(h1) = 1/2, i.e., h1 on D2 is random guessing

– invoking Aw on D2 we get h2 with error β < 1/2 (on D2)
i.e., h2 6= h1, i.e., h2 learns “something new”

boosting the accuracy — step 1 (cont’d)

3. we create a third distribution D3 by filtering D using
both h1 and h2

– we sample from EX (c,D) until we find instance (x, c(x))
for which h1(x) 6= h1(x)

– i.e., D3 focuses on the region of D that h1 and h2 disagree

– invoking Aw on D3 returns h3

– h3 learns “something new” for the input instances in which
h1 and h2 disagree

4. the learning algorithm returns h = majority{h1,h2,h3}

boosting the accuracy — step 1 (analysis, sketch)

• define
errorD1(h1) = β1, errorD2(h2) = β2, errorD3(h3) = β3

• we want to show that although β1, β2, β3 can be as large
as β, the errorD(h) will be significantly smaller than β

• it can be shown that errorD(h) is maximized if β i = β

(for details see K&V)

• hypothesis h makes two types of errors

– 1st type error : both h1 and h2 make an error

– 2nd type error : h1 and h2 disagree and h3 makes error

boosting the accuracy — step 1 (analysis, sketch)

• thus,

errorD(h) = Prx∈D[h1(x) 6= c(x) ∧ h2(x) 6= c(x)]
+ Prx∈D[h3(x) 6= c(x) | h1(x) 6= h2(x)]

Prx∈D[h1(x) 6= h2(x)]
= Prx∈D[h1(x) 6= c(x) ∧ h2(x) 6= c(x)]

+ β3 Prx∈D[h1(x) 6= h2(x)]

l.h.s. is maximized when β3 = β

• with further algebraic derivations (see K&V) we can show

errorD(h) ≤ 3β2 − 2β3

and thus, g(β) = 3β2 − 2β3, as desired

summary

• a weak learner can be transformed to a strong learner

• confidence can be boosted by iterative runs of the weak
learner

• accuracy can be boosted by focusing on regions of the
target distribution that are more difficult to learn

– two step process:
– 1. reduce error quadratically
– 2. recursive application of 1. to reduce error to ε

− analysis is quite involved (in particular the recursive part)

− algorithm is not practical

• can we design a practical boosting algorithm?
yes! AdaBoost

