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Scheduling on Parallel Machines

Given: A set J of Jobs, a set M of machines and for each
j ∈ J and i ∈M the processing time pij ∈ N+ of j on i.

Find: A Schedule σ : J →M of the jobs on the machines,
which minimizes the total time to completion (makespan),
i.e., minimizes the maximum time a machine is in use.
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A natural ILP

minimize t

s.t.
∑
i∈M

xij = 1, j ∈ J∑
j∈J

xijpij ≤ t, i ∈M

xij ∈ {0, 1}, i ∈M, j ∈ J

Task: Show that the integrality gap of this ILP is unbounded.

Solution: A job with processing time m and m machines  
OPT = m and OPTf = 1
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Parametrized Pruning

Strengthen the ILP → implicit (non-linear) constraint:
If pij > t then set xij = 0

Parameter T ∈ N+. Estimate a lower bound on OPT

Define ST := { (i, j) | i ∈M, j ∈ J, pij ≤ T }

Define the “pruned” relaxation LP(T )

∑
i : (i,j)∈ST

xij = 1, j ∈ J

∑
j : (i,j)∈ST

xijpij ≤ T, i ∈M

xij ≥ 0, (i, j) ∈ ST

no objective
function; just
need to
determine if a
feasible solution
exists.
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Properties of Extreme-Point Solutions

Use binary search to find the smallest T so that LP(T ) has a
solution and let T ∗ be this value of T .

Note: T ∗ ≤ OPT

Idea: Round an extreme-point solution of LP(T ∗) to a schedule
whose makespan is ≤ 2T ∗ Lem. 1

Each extremepoint solution
to LP(T ) has at most
m+ n positive variables
where m = |M |, n = |J |.
Lem. 2
Any extreme-point solution
to LP(T ) must set at least
n−m jobs integrally.

What are the bounds for our search?
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∑
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xijpij ≤ T, i ∈M

xij ≥ 0, (i, j) ∈ ST

LP(T )



Extreme-Point Solutions of LP(T )

Def. bipartite graph G = (J,M,E), where
(j, i) ∈ E ⇔ xij 6= 0



Extreme-Point Solutions of LP(T )

Def. bipartite graph G = (J,M,E), where
(j, i) ∈ E ⇔ xij 6= 0

Let F ⊆ J be the set of fractionally assigned jobs and let
H := G[F ∪M ]



Extreme-Point Solutions of LP(T )

Def. bipartite graph G = (J,M,E), where
(j, i) ∈ E ⇔ xij 6= 0

Let F ⊆ J be the set of fractionally assigned jobs and let
H := G[F ∪M ]

Note: (i, j) is an edge in H ⇔ 0 < xij < 1



Extreme-Point Solutions of LP(T )

Def. bipartite graph G = (J,M,E), where
(j, i) ∈ E ⇔ xij 6= 0

Let F ⊆ J be the set of fractionally assigned jobs and let
H := G[F ∪M ]

Note: (i, j) is an edge in H ⇔ 0 < xij < 1

A matching in H is called F -perfect, when it matches every
vertex in F .



Extreme-Point Solutions of LP(T )

Def. bipartite graph G = (J,M,E), where
(j, i) ∈ E ⇔ xij 6= 0

Let F ⊆ J be the set of fractionally assigned jobs and let
H := G[F ∪M ]

Note: (i, j) is an edge in H ⇔ 0 < xij < 1

A matching in H is called F -perfect, when it matches every
vertex in F .

Key step: Show that H always has an F -perfect matching.



Extreme-Point Solutions of LP(T )

Def. bipartite graph G = (J,M,E), where
(j, i) ∈ E ⇔ xij 6= 0

Let F ⊆ J be the set of fractionally assigned jobs and let
H := G[F ∪M ]

Note: (i, j) is an edge in H ⇔ 0 < xij < 1

A matching in H is called F -perfect, when it matches every
vertex in F .

Key step: Show that H always has an F -perfect matching.

Why is this useful ....?
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Algorithm

• Assign job j to machine i such that i is the machine
minimizing pij . Let α be the makespan of this schedule.

• By a binary search in the interval [ αm , α], find the smallest
value of T ∈ Z+ for which LP(T ) has a feasible solution
and let this value be T ∗.

• Find an extreme point solution, say x, to LP(T ∗).

• Assign all integrally set jobs to machines as in x.

• Construct the graph H and find a perfect matching P in it
(see Lemma 4 later).

• Assign the fractional jobs to machines using P.

Thm. This algorithm is a 2-approximation.
(assuming we have the F -perfect matching)
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Pseudo-Trees and -Forests

A connected graph with vertex set V is called a
Pseudo-Tree, when it has at most |V | edges.

A pseudo-tree is a tree or a tree plus a single edge.

A collection of disjoint pseudo-trees is called a
pseudo-forest.

Lem. 3 The bipartite graph G = (J,M,E) is a pseudo-forest.

Lem. 4 The graph H has an F -perfect matching.

Recall: (by Lem. 1) each extreme point solution has at most
n+m non-zero variables.
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Scheduling on Parallel Machines

Thm. There is an LP-based 2-approximation algorithm for
the problem of scheduling jobs on unrelated parallel
machines.

Is this tight?

Instance m:

• m2 −m+ 1 jobs to be scheduled on m machines.
• job j1 has a processing time of m on all machines,
• all other jobs have unit processing time on each machine.

Optimum: one machine with j1, and all others spread evenly.

Algorithm:

• LP(T) has no feasible solutions for any T < m.
• extreme-pt. solution: assign 1/m of j1 and m− 1 other

jobs to each machine.  2m− 1 makespan.

Yes



Scheduling on Parallel Machines

Thm. There is an LP-based 2-approximation algorithm for
the problem of scheduling jobs on unrelated parallel
machines. The approximation factor is tight.


