

Lecture 10: Scheduling Jobs on Parallel Machines Joachim Spoerhase

Given: A set J of **Jobs**, a set M of **machines** and for each $j \in J$ and $i \in M$ the **processing time** $p_{ij} \in \mathbb{N}^+$ of j on i.

Find: A Schedule $\sigma: J \to M$ of the jobs on the machines, which minimizes the total time to completion (makespan), i.e., minimizes the maximum time a machine is in use.

A natural ILP

$\begin{array}{ll} \text{minimize} & t \\ \text{s.t.} & \sum_{i \in M} x_{ij} = 1, \qquad \qquad j \in J \\ & \sum_{j \in J} x_{ij} p_{ij} \leq t, \qquad \qquad i \in M \\ & x_{ij} \in \{0,1\}, \qquad i \in M, j \in J \end{array}$

A natural ILP

$\begin{array}{ll} \text{minimize} & t \\ \text{s.t.} & \sum_{i \in M} x_{ij} = 1, \qquad \qquad j \in J \\ & \sum_{j \in J} x_{ij} p_{ij} \leq t, \qquad \qquad i \in M \\ & x_{ij} \in \{0,1\}, \qquad i \in M, j \in J \end{array}$

Task: Show that the integrality gap of this ILP is unbounded.

A natural ILP

$\begin{array}{ll} \text{minimize} & t \\ \text{s.t.} & \sum_{i \in M} x_{ij} = 1, \qquad \qquad j \in J \\ & \sum_{j \in J} x_{ij} p_{ij} \leq t, \qquad \qquad i \in M \\ & x_{ij} \in \{0,1\}, \qquad i \in M, j \in J \end{array}$

Task: Show that the integrality gap of this ILP is unbounded.

Solution: A job with processing time m and m machines \rightsquigarrow $\mathsf{OPT}=m$ and $\mathsf{OPT}_f=1$

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$ then set $x_{ij} = 0$

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$ then set $x_{ij} = 0$

Parameter $T \in \mathbb{N}^+$. Estimate a lower bound on OPT

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$ then set $x_{ij} = 0$

Parameter $T \in \mathbb{N}^+$. Estimate a lower bound on OPT

Define $S_T := \{ (i, j) \mid i \in M, j \in J, p_{ij} \leq T \}$

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$ then set $x_{ij} = 0$

Parameter $T \in \mathbb{N}^+$. Estimate a lower bound on OPT

Define
$$S_T := \{ (i, j) \mid i \in M, j \in J, p_{ij} \leq T \}$$

Define the "pruned" relaxation LP(T)

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \qquad j \in J$$
$$\sum_{j: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \qquad i \in M$$
$$x_{ij} \ge 0, \qquad (i,j) \in S_T$$

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$ then set $x_{ij} = 0$

Parameter $T \in \mathbb{N}^+$. Estimate a lower bound on OPT

Define
$$S_T := \{ (i, j) \mid i \in M, j \in J, p_{ij} \leq T \}$$

Define the "pruned" relaxation LP(T),

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \qquad j \in J$$
$$\sum_{j: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \qquad i \in M$$
$$x_{ij} \ge 0, \qquad (i,j) \in S_T$$

no objective function; just need to determine if a feasible solution exists.

Use binary search to find the smallest T so that LP(T) has a solution and let T^* be this value of T.

$$\begin{aligned} \mathsf{LP}(T) \\ &\sum_{i: \ (i,j) \in S_T} x_{ij} = 1, \qquad j \in J \\ &\sum_{j: \ (i,j) \in S_T} x_{ij} p_{ij} \leq T, \qquad i \in M \\ &x_{ij} \geq 0, \qquad (i,j) \in S_T \end{aligned}$$

Use binary search to find the smallest T so that LP(T) has a solution and let T^* be this value of T.

What are the bounds for our search?

$$\begin{aligned} \mathsf{LP}(T) \\ &\sum_{i: \ (i,j) \in S_T} x_{ij} = 1, \qquad j \in J \\ &\sum_{j: \ (i,j) \in S_T} x_{ij} p_{ij} \leq T, \qquad i \in M \\ &x_{ij} \geq 0, \qquad (i,j) \in S_T \end{aligned}$$

Use binary search to find the smallest T so that LP(T) has a solution and let T^* be this value of T.

What are the bounds for our search? Note: $T^* \leq \mathsf{OPT}$

$$\begin{aligned} \mathsf{LP}(T) \\ &\sum_{i: \ (i,j) \in S_T} x_{ij} = 1, \qquad j \in J \\ &\sum_{j: \ (i,j) \in S_T} x_{ij} p_{ij} \leq T, \qquad i \in M \\ &x_{ij} \geq \mathbf{0}, \qquad (i,j) \in S_T \end{aligned}$$

Use binary search to find the smallest T so that LP(T) has a solution and let T^* be this value of T.

What are the bounds for our search?

Note: $T^* \leq \mathsf{OPT}$

Idea: Round an extreme-point solution of $LP(T^*)$ to a schedule whose makespan is $\leq 2T^*$

 $\mathsf{LP}(T)$

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \qquad j \in J$$
$$\sum_{j: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \qquad i \in M$$

 $x_{ij} \ge \mathbf{0}, \qquad (i,j) \in S_T$

Use binary search to find the smallest T so that LP(T) has a solution and let T^* be this value of T.

What are the bounds for our search? Note: $T^* < \mathsf{OPT}$

 $(i, j) \in \mathcal{S}_T$

Idea: Round an extreme-point solution of $LP(T^*)$ to a schedule whose makespan is $\leq 2T^*$ Lem. 1

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \qquad j \in S_T$$

Each extremepoint solution to LP(T) has at most m+n positive variables where m = |M|, n = |J|.

$$\sum_{\substack{j: (i,j) \in S_T}} x_{ij} p_{ij} \leq T, \quad i \in M$$
$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Use binary search to find the smallest T so that LP(T) has a solution and let T^* be this value of T.

What are the bounds for our search? Note: $T^* < \mathsf{OPT}$

Idea: Round an extreme-point solution of $LP(T^*)$ to a schedule whose makespan is $\leq 2T^*$ Lem. 1

LP(T)

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \qquad j \in .$$

 $x_{ij}p_{ij} \le T, \qquad i \in M$ $j: (i,j) \in S_T$

 $x_{ij} \geq 0,$

Each extremepoint solution to LP(T) has at most m + n positive variables where m = |M|, n = |J|.

Lem. 2

Any extreme-point solution to LP(T) must set at least $(i,j) \in S_T$ |n-m| jobs integrally.

Def. bipartite graph G = (J, M, E), where $(j, i) \in E \Leftrightarrow x_{ij} \neq 0$

Def. bipartite graph G = (J, M, E), where $(j, i) \in E \Leftrightarrow x_{ij} \neq 0$

Let $F \subseteq J$ be the set of fractionally assigned jobs and let $H := G[F \cup M]$

Def. bipartite graph G = (J, M, E), where $(j, i) \in E \Leftrightarrow x_{ij} \neq 0$

Let $F \subseteq J$ be the set of fractionally assigned jobs and let $H := G[F \cup M]$

Note: (i, j) is an edge in $H \Leftrightarrow 0 < x_{ij} < 1$

Def. bipartite graph G = (J, M, E), where $(j, i) \in E \Leftrightarrow x_{ij} \neq 0$

Let $F \subseteq J$ be the set of fractionally assigned jobs and let $H := G[F \cup M]$

Note: (i, j) is an edge in $H \Leftrightarrow 0 < x_{ij} < 1$

A matching in H is called F-**perfect**, when it matches every vertex in F.

Def. bipartite graph G = (J, M, E), where $(j, i) \in E \Leftrightarrow x_{ij} \neq 0$

Let $F \subseteq J$ be the set of fractionally assigned jobs and let $H := G[F \cup M]$

Note: (i, j) is an edge in $H \Leftrightarrow 0 < x_{ij} < 1$

A matching in H is called F-**perfect**, when it matches every vertex in F.

Key step: Show that H always has an F-perfect matching.

Def. bipartite graph G = (J, M, E), where $(j, i) \in E \Leftrightarrow x_{ij} \neq 0$

Let $F \subseteq J$ be the set of fractionally assigned jobs and let $H := G[F \cup M]$

Note: (i, j) is an edge in $H \Leftrightarrow 0 < x_{ij} < 1$

A matching in H is called F-perfect, when it matches every vertex in F.

Key step: Show that H always has an F-perfect matching.

Why is this useful?

• Assign job j to machine i such that i is the machine minimizing p_{ij} . Let α be the makespan of this schedule.

- Assign job j to machine i such that i is the machine minimizing p_{ij} . Let α be the makespan of this schedule.
- By a binary search in the interval $[\frac{\alpha}{m}, \alpha]$, find the smallest value of $T \in \mathbb{Z}^+$ for which LP(T) has a feasible solution and let this value be T^* .

- Assign job j to machine i such that i is the machine minimizing p_{ij} . Let α be the makespan of this schedule.
- By a binary search in the interval $[\frac{\alpha}{m}, \alpha]$, find the smallest value of $T \in \mathbb{Z}^+$ for which LP(T) has a feasible solution and let this value be T^* .
- Find an extreme point solution, say \mathbf{x} , to $LP(T^*)$.

- Assign job j to machine i such that i is the machine minimizing p_{ij} . Let α be the makespan of this schedule.
- By a binary search in the interval $[\frac{\alpha}{m}, \alpha]$, find the smallest value of $T \in \mathbb{Z}^+$ for which LP(T) has a feasible solution and let this value be T^* .
- Find an extreme point solution, say \mathbf{x} , to $LP(T^*)$.
- Assign all integrally set jobs to machines as in x.

- Assign job j to machine i such that i is the machine minimizing p_{ij} . Let α be the makespan of this schedule.
- By a binary search in the interval $[\frac{\alpha}{m}, \alpha]$, find the smallest value of $T \in \mathbb{Z}^+$ for which LP(T) has a feasible solution and let this value be T^* .
- Find an extreme point solution, say \mathbf{x} , to $LP(T^*)$.
- Assign all integrally set jobs to machines as in x.
- Construct the graph H and find a perfect matching P in it (see Lemma 4 later).

- Assign job j to machine i such that i is the machine minimizing p_{ij} . Let α be the makespan of this schedule.
- By a binary search in the interval $[\frac{\alpha}{m}, \alpha]$, find the smallest value of $T \in \mathbb{Z}^+$ for which LP(T) has a feasible solution and let this value be T^* .
- Find an extreme point solution, say \mathbf{x} , to $LP(T^*)$.
- Assign all integrally set jobs to machines as in x.
- Construct the graph H and find a perfect matching P in it (see Lemma 4 later).
- Assign the fractional jobs to machines using P.

- Assign job j to machine i such that i is the machine minimizing p_{ij} . Let α be the makespan of this schedule.
- By a binary search in the interval $[\frac{\alpha}{m}, \alpha]$, find the smallest value of $T \in \mathbb{Z}^+$ for which LP(T) has a feasible solution and let this value be T^* .
- Find an extreme point solution, say \mathbf{x} , to $LP(T^*)$.
- Assign all integrally set jobs to machines as in x.
- Construct the graph H and find a perfect matching P in it (see Lemma 4 later).
- Assign the fractional jobs to machines using P.
- **Thm.** This algorithm is a 2-approximation. (assuming we have the F-perfect matching)

A connected graph with vertex set V is called a **Pseudo-Tree**, when it has at most |V| edges.

A connected graph with vertex set V is called a **Pseudo-Tree**, when it has at most |V| edges.

A pseudo-tree is a tree or a tree plus a single edge.

A connected graph with vertex set V is called a **Pseudo-Tree**, when it has at most |V| edges.

A pseudo-tree is a tree or a tree plus a single edge.

A collection of disjoint pseudo-trees is called a **pseudo-forest**.

A connected graph with vertex set V is called a **Pseudo-Tree**, when it has at most |V| edges.

A pseudo-tree is a tree or a tree plus a single edge.

A collection of disjoint pseudo-trees is called a **pseudo-forest**.

Lem. 3 The bipartite graph G = (J, M, E) is a pseudo-forest.

A connected graph with vertex set V is called a **Pseudo-Tree**, when it has at most |V| edges.

A pseudo-tree is a tree or a tree plus a single edge.

A collection of disjoint pseudo-trees is called a **pseudo-forest**.

Lem. 3 The bipartite graph G = (J, M, E) is a pseudo-forest. Recall: (by Lem. 1) each extreme point solution has at most n + m non-zero variables.

A connected graph with vertex set V is called a **Pseudo-Tree**, when it has at most |V| edges.

A pseudo-tree is a tree or a tree plus a single edge.

A collection of disjoint pseudo-trees is called a **pseudo-forest**.

Lem. 3 The bipartite graph G = (J, M, E) is a pseudo-forest. Recall: (by Lem. 1) each extreme point solution has at most n + m non-zero variables.

Lem. 4 The graph H has an F-perfect matching.

Thm. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Thm. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Is this tight?

- Thm. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.
- Is this tight? Yes

Instance *m*:

- $m^2 m + 1$ jobs to be scheduled on m machines.
- job j_1 has a processing time of m on all machines,
- all other jobs have unit processing time on each machine.

- Thm. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.
- Is this tight? Yes

Instance *m*:

- $m^2 m + 1$ jobs to be scheduled on m machines.
- job j_1 has a processing time of m on all machines,
- all other jobs have unit processing time on each machine.

Optimum: one machine with j_1 , and all others spread evenly.

- Thm. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.
- Is this tight? Yes

Instance m:

- $m^2 m + 1$ jobs to be scheduled on m machines.
- job j_1 has a processing time of m on all machines,
- all other jobs have unit processing time on each machine.

Optimum: one machine with j_1 , and all others spread evenly.

- LP(T) has no feasible solutions for any T < m.
- extreme-pt. solution: assign 1/m of j_1 and m-1 other jobs to each machine. $\rightsquigarrow 2m-1$ makespan.

Thm. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines. The approximation factor is tight.