

Aalto University School of Science

Combinatorics of Efficient Computations

Approximation Algorithms

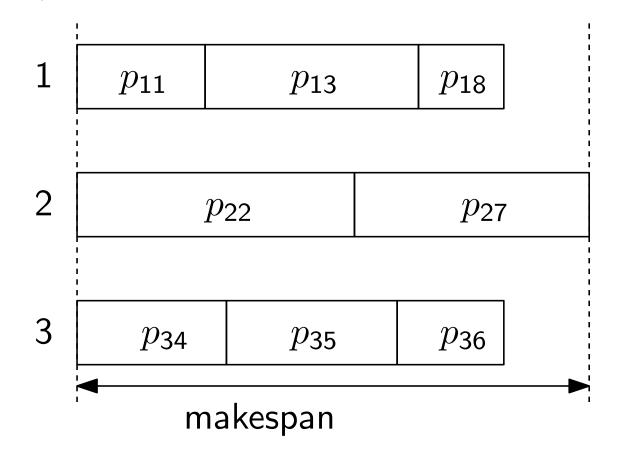
Lecture 10: Scheduling Jobs on Parallel Machines

Joachim Spoerhase

Scheduling on Parallel Machines

Given: A set J of **Jobs**, a set M of machines and for each $j \in J$ and $i \in M$ the processing time $p_{ij} \in \mathbb{N}^+$ of j on i.

Find: A Schedule $\sigma: J \to M$ of the jobs on the machines, which minimizes the total time to completion (makespan), i.e., minimizes the maximum time a machine is in use.



$$J = \{1, 2, \dots, 8\}$$

$$M = \{1, 2, 3\}$$

A natural ILP

minimize t

s.t.
$$\sum_{i\in M}x_{ij}=1, \qquad j\in J$$
 $\sum_{j\in J}x_{ij}p_{ij}\leq t, \qquad i\in M$ $x_{ij}\in\{0,1\}, \qquad i\in M, j\in J$

Task: Show that the integrality gap of this ILP is unbounded.

Solution: A job with processing time m and m machines \leadsto OPT = m and OPT $_f = 1$

Parametrized Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$ then set $x_{ij} = 0$

Parameter $T \in \mathbb{N}^+$. Estimate a lower bound on OPT

Define
$$S_T := \{ (i, j) \mid i \in M, j \in J, p_{ij} \leq T \}$$

Define the "pruned" relaxation LP(T)

$$\sum_{i:\;(i,j)\in S_T}x_{ij}=1,\qquad j\in J$$
 $\sum_{j:\;(i,j)\in S_T}x_{ij}p_{ij}\leq T,\qquad i\in M$
 $j:\;(i,j)\in S_T$
 $x_{ij}\geq 0,\qquad (i,j)\in S_T$

no objective function; just need to determine if a feasible solution exists.

Properties of Extreme-Point Solutions

Use binary search to find the smallest T so that LP(T) has a solution and let T^* be this value of T.

What are the bounds for our search?

Note: $T^* \leq \mathsf{OPT}$

Idea: Round an extreme-point solution of $LP(T^*)$ to a schedule

whose makespan is $\leq 2T^*$

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \qquad j \in J$$

$$\sum_{j: (i,j) \in S_T} x_{ij} p_{ij} \le T, \qquad i \in M$$

$$x_{ij} \ge 0, \qquad (i,j) \in S_T$$

Lem. 1

Each extremepoint solution to LP(T) has at most $j \in J$ m+n positive variables where m=|M|, n=|J|.

Lem. 2

Any extreme-point solution to $\mathsf{LP}(T)$ must set at least $(i,j) \in S_T$ n-m jobs integrally.

Extreme-Point Solutions of LP(T)

Def. bipartite graph G = (J, M, E), where $(j, i) \in E \Leftrightarrow x_{ij} \neq 0$

Let $F\subseteq J$ be the set of fractionally assigned jobs and let $H:=G[F\cup M]$

Note: (i,j) is an edge in $H \Leftrightarrow 0 < x_{ij} < 1$

A matching in H is called F-perfect, when it matches every vertex in F.

Key step: Show that H always has an F-perfect matching.

Why is this useful?

Algorithm

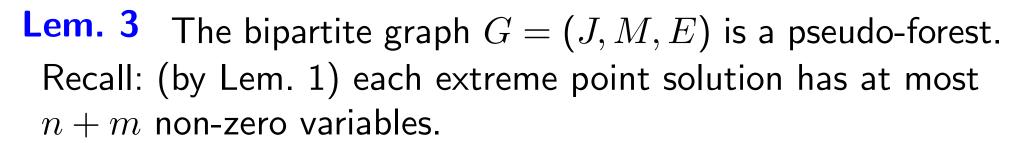
- Assign job j to machine i such that i is the machine minimizing p_{ij} . Let α be the makespan of this schedule.
- By a binary search in the interval $\left[\frac{\alpha}{m}, \alpha\right]$, find the smallest value of $T \in \mathbb{Z}^+$ for which LP(T) has a feasible solution and let this value be T^* .
- Find an extreme point solution, say x, to $LP(T^*)$.
- Assign all integrally set jobs to machines as in x.
- Construct the graph H and find a perfect matching P in it (see Lemma 4 later).
- Assign the fractional jobs to machines using P.
- Thm. This algorithm is a 2-approximation. (assuming we have the F-perfect matching)

Pseudo-Trees and -Forests

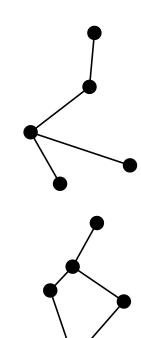
A connected graph with vertex set V is called a **Pseudo-Tree**, when it has at most |V| edges.

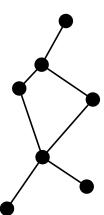
A pseudo-tree is a tree or a tree plus a single edge.

A collection of disjoint pseudo-trees is called a pseudo-forest.



The graph H has an F-perfect matching.





Scheduling on Parallel Machines

Thm. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Is this tight? Yes

Instance m:

- $m^2 m + 1$ jobs to be scheduled on m machines.
- ullet job j_1 has a processing time of m on all machines,
- all other jobs have unit processing time on each machine.

Optimum: one machine with j_1 , and all others spread evenly.

Algorithm:

- LP(T) has no feasible solutions for any T < m.
- extreme-pt. solution: assign 1/m of j_1 and m-1 other jobs to each machine. $\rightsquigarrow 2m-1$ makespan.

Scheduling on Parallel Machines

Thm. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines. The approximation factor is tight.