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summary

• a weak learner can be transformed to a strong learner

• confidence can be boosted by iterative runs of the weak
learner

• accuracy can be boosted by focusing on regions of the
target distribution that are more difficult to learn

– two step process:
– 1. reduce error quadratically
– 2. recursive application of 1. to reduce error to ε

− analysis is quite involved (in particular the recursive part)

− algorithm is not practical

• can we design a practical boosting algorithm?
yes! AdaBoost



reading material

• Schapire, “The boosting approach to machine learning:
– an overview”, 2001

• Freund and Schapire, “Boosting: foundations and
– algorithms”. MIT press, 2012
– available as an e-book by the Aalto library services



the AdaBoost algorithm

high-level idea

• start with a training set

• assume that we can train a weak learner

• apply the weak learner repeatedly
– each time with a different weighting scheme of
– the training data

• in each iteration learn a different hypothesis

• combine those hypotheses into a single hypothesis

considerations

1. how to choose the weighting schemes for each iteration?

2. how to combine the learned hypotheses?



the AdaBoost algorithm

input: training set S = {(x1, y1), . . . , (xm, ym)},
where xi ∈ X and y i ∈ Y = {−1,+1}

initialize D1(i) = 1/m, for all i = 1, . . . ,m

for t = 1, . . . ,T

train weak learner Aw using Dt

find hypothesis ht

set parameter αt according to the accuracy of ht on Dt

update Dt+1(i) = 1
Zt
Dt(i)e−αt y i ht (xi ), for all i = 1, . . . ,m

(where Zt is a normalization parameter)

return h = sign
(∑T

t=1αtht

)



the AdaBoost algorithm

• the weak learner Aw at round t aims to minimize the error

εt = Prxi∼Dt [ht(xi) 6= y i ]

• in the binary case (Y = {−1,+1}) we typically set

αt =
1
2

ln
(

1− εt

εt

)



the training error of AdaBoost

• it can be shown that AdaBoost is able to reduce its error
on the training set

analysis (sketch)

• define f (x) =
∑

t αtht(x), so h(x) = sign(f (x))

if h(xi) 6= y i then 1 ≤ e−y i f (xi )

• the training error is

1
m
|i : h(xi) 6= y i | ≤

1
m

∑
i

e−y i f (xi ) =
∏

t

Zt

the equality is shown using the recursive definition of Dt



the training error of AdaBoost (analysis, cont’d)

• to minimize the training error we want to choose αt

and ht to minimize

Zt =
∑

i

Dt(i)e−αt y i ht (i)

in each round

• for the choice of αt =
1
2 ln

(
1−εt
εt

)
we get

∏
t

Zt ≤
∏

t

2
√
εt(1− εt) =

∏
t

√
1− 4γ2

t ≤ e−2
∑

t γ
2
t

where γ t =
1
2 − εt



the training error of AdaBoost (analysis, cont’d)

• assume that the weak learner A is better than random
in each round

• then εt <
1
2 , and so γ t =

1
2 − εt ≥ γ, for some γ > 0

• thus, the training error is bounded by

1
m
|i : h(xi) 6= y i | ≤ e−2

∑
t γ

2
t ≤ e−2Tγ2

• we conclude that AdaBoost is a true boosting algorithm,
where the error drops exponentially fast in T

• however, this is training error



some intuition on AdaBoost

• we seek to minimize the error∑
i

e−y i f (xi ) =
∑

i

e−y i
∑

t αt ht (xi )

where in each iteration we choose a new hypothesis ht

and coefficient αt

• can be seen as steepest-descend optimization where
the search is constrained to follow coordinate directions

– base classifiers ht define the coordinates



the generalization error of AdaBoost

• however, we are primarily interested to bound the
generalization error

• Freund and Schapire showed how to obtain generalization
error bounds for AdaBoost

• assume m samples, VC dimension d , and T rounds

• generalization error bound of AdaBoost was shown to be

P̂r[h(xi) 6= y i ] + Õ

(√
Td
m

)

where P̂r[·] denotes empirical probability on the training set
and Õ(·) “hides” polylogarithmic factors

• factor T in the numerator suggests overfitting



the generalization error of AdaBoost

• in practice the generalization error bound of AdaBoost is
often better than what theory suggests

P̂r[h(xi) 6= y i ] + Õ

(√
Td
m

)

• in practice AdaBoost often does not overfit
– while bound suggests overfitting with T

• in practice generalization error decreases long after
training error has reached to 0



generalization error in terms of margins

• the margin of an example (x, y) is defined as

marginf (x, y) =
yf (x)∑

t |αt |
=

y
∑

t αtht(x)∑
t |αt |

• margin is a number in [−1,+1]

• positive margin indicates that the example is classified
correctly

• magnitude of margin can be interpreted as a measure
of confidence in the prediction of the classifier



generalization error in terms of margins

• the larger the margin on the training set, the smaller
the generalization error

• Schapire et al. showed that generalization error is

P̂r[marginf (x, y) ≤ θ] + Õ

(√
d

mθ2

)

• independent on the number of rounds T

• margins are useful to understand the behavior of boosting
in practice

• e.g., in practice margin in the training set may keep
increasing even after training error has reached 0



in practice
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Figure 2: Error curves and the margin distribution graph for boosting C4.5 on
the letter dataset as reported by Schapire et al. [69]. Left: the training and test
error curves (lower and upper curves, respectively) of the combined classifier as
a function of the number of rounds of boosting. The horizontal lines indicate the
test error rate of the base classifier as well as the test error of the final combined
classifier. Right: The cumulative distribution of margins of the training examples
after 5, 100 and 1000 iterations, indicated by short-dashed, long-dashed (mostly
hidden) and solid curves, respectively.

It is a number in and is positive if and only if correctly classifies the
example. Moreover, as before, the magnitude of the margin can be interpreted as a
measure of confidence in the prediction. Schapire et al. proved that larger margins
on the training set translate into a superior upper bound on the generalization error.
Specifically, the generalization error is at most

for any with high probability. Note that this bound is entirely independent
of , the number of rounds of boosting. In addition, Schapire et al. proved that
boosting is particularly aggressive at reducing the margin (in a quantifiable sense)
since it concentrates on the examples with the smallest margins (whether positive
or negative). Boosting’s effect on the margins can be seen empirically, for instance,
on the right side of Fig. 2 which shows the cumulative distribution of margins of the
training examples on the “letter” dataset. In this case, even after the training error
reaches zero, boosting continues to increase the margins of the training examples
effecting a corresponding drop in the test error.

Although the margins theory gives a qualitative explanation of the effectiveness
of boosting, quantitatively, the bounds are rather weak. Breiman [9], for instance,
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summary

• AdaBoost is an important learning algorithm

• rigorous theoretical analysis, and works well in practice

• many extensions, interpretations, connections

– e.g., extensions to multi-class classification,
– logistic regression

– connections to stochastic optimization, linear
– programming, game theory


