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reading material

• K&V, chapter 5



PAC learning

• PAC learning: a concept class C if PAC learnable, if there
exists an algorithm A, so that for every concept c ∈ C,
every distribution D, and every ε > 0 and δ ∈ (0,1), the
algorithm A outputs a hypothesis h ∈ C that satisfies

errorD(h) ≤ ε

with probability at least 1− δ.

• another limitation of the model: so far we have assumed
that the example generator EX (c,D) is noise free

• in this lecture: we will see how to extend the PAC learning
framework to deal with noise



a possible extension to introduce noise

• introduce example generator EX η(c,D)

• an extension of EX (c,D)

• η is a noise parameter

• each call to EX η(c,D) returns a sample (x, y) such that
– x is sampled from D
– with probability 1− η we set y = c(x)
– with probability η we set y = ¬c(x) (negation)

• we assume 0 ≤ η < 1
2

• η = 1
2 gives totally random samples

– no hope in learning anything



our aim
• as before, we want to ensure that for any concept c,

any distribution D, any ε and δ, the learner A returns
a hypothesis h having

errorD(h) = Prx∼D[h(x) 6= c(x)] ≤ ε

with probability at least 1− δ

• but now the learner gets samples drawn from EX η(c,D)

• in addition, we assume that the learner has some
knowledge about the amount of noise in the data

– we assume an upper bound η0, i.e., 0 ≤ η ≤ η0 <
1
2

– the learner knows η0

– we will allow time polynomial in 1
1−2η0



is it really a more challenging setting?

• consider some of the previous PAC learning algorithms
in this new noise-tolerant model

– learning axis-aligned rectangles

– learning boolean conjunctions

• how do they perform?



learning axis-aligned rectangles

positive
negative

learned

hypothesis

K&V, section 1.1



a single noisy sample can break the algorithm

positive
negative

empty

hypothesis

K&V, section 1.1



learning boolean conjunctions

K&V, section 1.3

learning algorithm

• initial hypothesis

h(x1, . . . , xn) = x1 ∧ x1 ∧ x2 ∧ x2 ∧ . . . ∧ xn ∧ xn

(initially not satisfiable)

• negative examples drawn from EX (D, c) are ignored

• for positive examples

– if ai = 0 we delete literal xi from h

– if ai = 1 we delete literal x i from h



learning boolean conjunctions

the previous algorithm in the noise-tolerant model:

• consider a boolean conjunction with a literal z

• assume prob. γ to draw a sample that does not satisfy z

• such a sample should be negative

• with probability γη the sample becomes positive

– due to EX η(c,D)

• leading to eliminating z

• in the same manner, we may eliminate all literals from
the target conjunction



learning boolean conjunctions:
a different algorithm

still in the original noise-free setting

• consider literal z over boolean variables x1, . . . , xn

• p0(z) : prob. z is set to 0 in a sample
if p0(z) is “small” we can “ignore” z – it is always set to 1

• p01(z) : prob. z is set to 0 in a positive sample
notice that if z ∈ c then p01(z) = 0
if p01(z) is “large” we should avoid including z in h

• we say that z is significant if p0(z) ≥ ε/8n

• we say that z is harmful if p01(z) ≥ ε/8n

• since p01(z) ≤ p0(z) any harmful literal is also significant

• we want to include in our hypothesis literals that are
significant but not harmful



learning boolean conjunctions:
a different algorithm

• we can show:

• theorem : if a hypothesis h contains all literals that
are significant but not harmful, then error(h) ≤ ε with
probability at least 1− δ

• this gives a different PAC learning algorithm
– estimate p0(z) and p01(z) for all literals z
– include literals in h based on these estimates

• how can we estimate p0(z) and p01(z)?
– by sampling from EX (c,D)
– in practice, we get approximations p̂0(z) and p̂01(z)
– we can control the error by Chernoff bounds



learning boolean conjunctions:
a different algorithm

• PAC learnability of new algorithm is shown for the original
noise-free setting

• however, intuitively the new algorithm seems more robust
• it seems that can be used for learning in the noise setting
• what is the difference of the two algorithms?

– previous algorithm examines examples one-by-one
– and makes a decision upon seen each example
– a noisy example may force it to make a bad decision
– from which it cannot recover
– new algorithm gathers information about statistical
– properties of the data and makes decision based
– on those properties
– the latter idea can be generalized



statistical query learning model

• we replace the oracle EX (c,D) by oracle STAT (c,D)

• oracle STAT (c,D) takes input a pair (χ, τ )

where χ : X × {0,1} → {0,1} indicates the presence
of some property in an example (x, y), and 0 ≤ τ ≤ 1

• oracle STAT (c,D) outputs an estimate of

Pχ = Prx∼D[χ(x, c(x)) = 1]

• in particular, oracle STAT (c,D) returns a value P̂χ s.t.

Pχ − τ ≤ P̂χ ≤ Pχ + τ

• the parameter τ is called tolerance

• example: in the previous algorithm p01(z) = Pχz



statistical query learning model

• oracle STAT (c,D) can be computed by calls to EX (c,D)

• how?

– draw examples (x, c(x)) and compute the fraction of which
χ(x, c(x)) = 1 as the estimate P̂χ of Pχ

• using Chernoff bounds we can show that, with probability
at least 1− δ, the estimate P̂χ approximates Pχ within
tolerance τ , if the number of calls to EX (c,D) is
polynomial in 1/τ and ln(1/δ)



statistical query learning model

• definition : we say that a concept class C is learnable from
statistical queries using a hypothesis class H, if there is
an algorithm A with access to queries STAT (c,D), so that
for any c ∈ C, any distribution D, and any 0 ≤ ε < 1

2 , the
algorithm A returns a hypothesis h ∈ H that satisfies
error(h) ≤ ε

• we say that such an algorithm is efficient if its running time
is polynomial in 1/τ , 1/ε, and n.

• why there is no confidence δ in this definition?



statistical query learning model

• theorem : if a concept class C is efficiently learnable from
statistical queries, then C is efficiently PAC learnable

still in the noise-free setting



learning in the presence of noise

• we want to achieve PAC learning in the presence of noise

• we can leverage the previous result if we can compute

Pχ = Prx∼D[χ(x, c(x)) = 1]

by access to queries EX η(c,D)

• this is shown in K&V, section 5.4.1

Pχ = p1
PrEXη [χ = 1]− η

1− 2η
+ PrEXη [(χ = 1) ∧ (x ∈ X 2)]

details omitted



putting everything together

• theorem : if a concept class C is efficiently learnable from
statistical queries, then C is efficiently PAC learnable in
the presence of noise

• corollary : the class of boolean conjunctions is efficiently
PAC learnable in the presence of noise


