
MS-C1650 Numeerinen analyysi, Exercise 2,

Guidelines

Tuomas Lebedeff

May 10, 2019

• These are not model solutions, but “getting started guidelines”.

• You are allowed, and supposed, to use MATLAB (or Octave/Python/what-
ever), unless otherwise stated. It is probably a good idea to bring a laptop
with you to the exercise session.

• Ask questions at exercise sessions, by email, or at office M329 (afternoon
is more likely)

• Errors and stupidities (in these notes): contact lauri.perkkio@aalto.fi

Exercise 1

The exercise wants us to interpolate the function f with a piecewise polynomial
p. This means that we have two different polynomials for each interval, p1 and
p2. Third degree Hermite interpolation constructs a polynomial, which has the
same value and first derivative at the end points of the interval as the original
function f . There is a clear formula to construct such a polynomial, for example
in the lecture notes section 4.4.:

p(x) =
f ′(a)

h

∫ x

a

(t− b)dt+
f ′(b)

h

∫ x

a

(t− b)dt+ α

∫ x

a

(t− a)(t− b)dt+ C,

where the interval is [a, b], h = b− a (the lenght of the interval), C = f(a) and

α =
3

h2

(
f ′(a) + f ′(b)

)
+

6

h3

(
f(a)− f(b)

)

Exercise 2

In the first part of the exercise me must simply apply the functions p(x) and
q(x) to all the x-values of the date points and then verify that the resulting
value are the same as for f(x) in the table.

For the second part read the uniqueness theorem of polynomial interpolation
and its proof carefully. In the lecture notes it can be found in section 4.1.
proposition 4.1.4. How are the number of interpolation points and the degree
of the interpolation polynomial related to each others?

1

mailto:lauri.perkkio@aalto.fi

Exercise 3

Divided differences (fin. jaetut erotukset) is closely related to Newton interpo-
lation. The following should be regarded only as quick quide for the exercise.
The topic is covered in the lecture notes in section 4.2. with examples and more
detailed explanations.

If we are interpolating data points ((x0, y0), (x1, y1), (x2, y2), ..(xn−1, yn−1) with
Newton interpolation, we first construct a new basis functions for the polyno-
mials, namely 1, x−x0, (x−x0)(x−x1),,

∏n−1
j=0 (x−xj). Each basis function

is the previous basis function multiplied by a first degree polynomial (x − xj),
where xj is the x-coordinate of previously unused data point (xj , yj). Now every
polynomial of degree n− 1 can be represented in this basis:

pn(x) = a0 + a1(x− x0) + ...+ an−1

n−1∏
j=0

(x− xj),

where ai ∈ R for all indices i ∈ {0, 1, 2, .., n− 1}.
Only problem left is to figure out all coefficients a0, a1, ...an−1 that the in-

terpolation polynomial should have. If the coefficient except a0, a1, a2 and a3
are all zeros, the resulting interpolation polynomial is clearly cubic at most and
we are done with the exercise.

These coefficients can be calculated with divided differences. The divided
difference of degree k is defined as

f [x0, x1, x2, ..., xk] = ak

and they can be calculated recursively with the formulas

f [x0, x1, x2, ..., xk] =
f [x1, x2, ..., xk]− f [x0, x1, x2, ..., xk−1]

xk − x0
f [xj] = f(xj) = yj ∀j ∈ {0, 1, 2, ..., n− 1}.

Thus every coeffecient can be calculated recursevely using these formulae.

Exercise 4

If we have used n + 1 points (x0, x1, ..xn) on an interval [a, b] to interpolate a
function f(x), the error of the interpolation polynomial pn can be expessed as

f(x̂)− pn(x̂) =
1

(n+ 1)!
f (n+1)(ζ)

n∏
i=0

(x̂− xi), (1)

where ζ ∈ [a, b].
Now we are interpolating the cosine function f(x) = cos(x) on the interval

[0, π/4] with second order polynomials p2(x). This means that n = 2 and we
need n+ 1 = 3 nearest points to x̂ to construct the interpolating polynomial.

To make sure that the absolute error |f(x)−pn(x)| stays below 10−5, consider
what is the maximum absolute value of the function f (3)(ζ) in the interval and

what is the maximum absolute value of the product
∏2

i=0(x − xi). Note that
here the point xi (i = 0, 1, 2) refer to the three closest point to the point x̂.

2

MATLAB

a) Using a high order polynomial interpolant can oscillate (often an unwanted
thing), if used carelessly.

b) Using Chebyshev interpolation points reduces the oscillation.
c) Barycentric weights. See Lecture notes 4.1.5, or Greenbaum & Chartier,

or skim through this (especially formula 4.2)
https://people.maths.ox.ac.uk/trefethen/barycentric.pdf

CHALLENGE

A very ugly letter L, made in 5 minutes using MATLAB’s spline (consists of 6
splines).

0 1 2
0

0.5

1

1.5

2

2.5

3

0 1 2
0

0.5

1

1.5

2

2.5

3

3

https://people.maths.ox.ac.uk/trefethen/barycentric.pdf

