Chapter 22

ULTRAFAST
OPTICS I



Ultrafast linear optics

Pulse broadening in a single-lens imaging system:
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Time delay due to propagation in glass is A7(x,y) = (z,y)
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where Fiz = f/D is the lens F-number.

Transverse spectral spreading of a pulsed beam:
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Monochromatic plane-wave decomposition (spatiotemporal FT approach) can be used.
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Applying Fourier optics to a Gaussian-pulsed Gaussian beam that propagates in free
space, one obtains:
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If the pulsed beam is focused with a nondispersive lens, the above equations are
valid with z =T,
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Ultrafast nonlinear optics

The conditions for pulsed three-wave mixing in a second-order nonlinear medium are

o + o, = a;, K +K,=k;, and v, =v, =v; (group velocities)

If Blwy, + Q) =~ By + Qﬁ(’}_ ,q=1, 2,3, the coupled-wave equations are
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new terms compared to CW case

If Blwg + Q) = B, + Q6 + %Qzﬁg’(GVQ), the coupled-wave equations are
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+* THz pulse generation by down-conversion (optical rectification)

Monochromatic components of the pulse,

Dptica THz
H”ﬁm' pulse | w, = ® and @, = @+ O, are mixed in pairs
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frequency-conversion length L_ = 21t/| Ak],
where Ak = k(w + Q) — k(w) — k(Q) = [N(w) — n(Q2)]Q/ co-

s Pulse self-phase modulation (SPM)
In a third-order nonlinear medium, the phase shift due to the optical Kerr effect is now
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The pulse is up-chirped. If i/ s
near the center, we write ' 0 T

| = 1,(1-2t%/72), the chirp parameter can be written as a = z/2zn1, Where
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Optical solitons
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The soliton envelope must be given by

t—z/v
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which is a solution of the wave equation in the presence of GVD and SPM. In general,
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In the slowly varying envelope approximation at weak dispersion and nonlinearity,
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Spatial and temporal solitons

In the moving frame, the Schrodinger equation is X\ pulse spreading | eT(2) -
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Nonlinear 1D beam diffraction was described by
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Supercontinuum light generation in a fiber
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Pulse detection

Fastest photodetectors have a response time of 100 ps and are too slow for fs pulses.
= Slow detector + fast shutter:

(1) Slow i(7)
i detector
| Gate

oy IOW(t —7) | =
I(r) L 5 | X $ - ‘
Variable W(r-7)
delay
. |
W) - 0 T 1 optical gate opens for only a short window;
' the measurement repeated and rscanned.

Gate realizations:
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Pulse-train or multiple-detector single-shot measurement:
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Streak camera (100 fs resolution)
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Intensity autocorrelation measurement (the pulse provides the gate to itself)

I(1) Slow  C1(7)
Gate detector ‘

I(1) I(OI(1—7) & -
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The intensity autocorrelation is G(7) = /I(t)I(t — 7)dt. For example, if the signal is

I(t) = exp(—27%/7§), the autocorrelation is Gr(7) o exp(—72/7%), which gives .
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Spectrum analyzers

Ordinary: Interferometric: Slow

) detector
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Optical spectrum analyzer

Ry (1) = G4(0) + Re {Ga(T) exp(—7271o7)}, S(V) = FT{GA(T)}

Ga(r) = /A*(t)A(t—*r)dt
Measurement of phase

Heterodyning (time-domain interference with a known field) could reveal the phase,
but only if it varies slowly:

U (&) + Up(t)|? = I(t) + L.(t) + 2+/I(t) I (t) cos 27 ft + @, (t) — o(t)]

Spectral interferometry, in contrast, generates interferograms in the Fourier domain:

|V(u)e‘j2”” + V,.(u)|2 = S(v) + S, (V) +2V/ S(V)S, (V) cos 27TV + . (V) — (V)]

Fixed
delay
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Measurement of spectrogram

The spectrum of a windowed part of the measured pulse is
S(v,7) = |®(v,7)|*; @(v,7) = /U(t)W(t — 1) exp(—j2nvt)dt.

The measurement technique is known as frequency-resolved optical gating (FROG):

Gate
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Experimental implementation of a SHG-FROG [with W(t) = U(t)]:
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The phase of ®(v, 7) is not measured, but U(t) can still be retrieved using certain

iteration algorithms. Otherwise, we could find U(t) « [[ ®(v, 1) exp(j2mvt) dvdr.
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