Chapter 22

ULTRAFAST OPTICS II

Ultrafast linear optics

Pulse broadening in a single-lens imaging system:

Time delay due to propagation in glass is $\Delta \tau(x, y)=\left|\frac{1}{c}-\frac{1}{v}\right| \boldsymbol{d}(x, y)=\frac{|n-N|}{c_{o}} d(x, y)$

$$
\Rightarrow \Delta \tau=\frac{|n-N|}{n-1} \frac{1}{8 F_{\#}^{2}} \frac{f}{c_{o}}
$$

where $F_{\#}=f / D$ is the lens F-number.
Transverse spectral spreading of a pulsed beam:

Monochromatic plane-wave decomposition (spatiotemporal FT approach) can be used.

Applying Fourier optics to a Gaussian-pulsed Gaussian beam that propagates in free space, one obtains:

$W(z)=W_{0} z / z_{0}$,
$\rho_{0}=\pi N W(z), \quad N=\nu_{0} \tau_{0}$,

$I_{2}(x, y, t) \propto \frac{\exp \left[-2 \pi N \rho^{2} /\left(\rho^{2}+\rho_{0}^{2}\right)\right]}{1+\rho^{2} / \rho_{0}^{2}} \frac{\exp \left(-2 t_{\rho}^{2} / \tau_{\rho}^{2}\right)}{1+t_{\rho}^{2} / \pi^{2} N^{2} \tau_{0}^{2}}$,
$\tau_{\rho}=\tau_{0} \sqrt{1+\rho^{2} / \rho_{0}^{2}}$
$S_{2}(x, y, \nu) \propto \frac{\nu^{2}}{\nu_{0}^{2}} \exp \left[-2 \pi^{2} N^{2} \frac{\rho^{2}}{\rho^{2}+\rho_{0}^{2}}\right] \exp \left[-2 \pi^{2} N^{2} \frac{\left(\nu-\nu_{\rho}\right)^{2}}{\nu_{\rho}^{2}}\right], \quad \nu_{\rho}=\frac{\nu_{0}}{1+\rho^{2} / \rho_{0}^{2}}$
If the pulsed beam is focused with a nondispersive lens, the above equations are valid with $z=f$.

Ultrafast nonlinear optics

The conditions for pulsed three-wave mixing in a second-order nonlinear medium are

$$
\omega_{1}+\omega_{2}=\omega_{3}, \mathbf{k}_{1}+\mathbf{k}_{2}=\mathbf{k}_{3}, \text { and } v_{1}=v_{2}=v_{3} \text { (group velocities) }
$$

If $\beta\left(\omega_{q}+\Omega\right) \approx \beta_{q}+\Omega \beta_{q}^{\prime}, q=1,2,3$, the coupled-wave equations are

$$
\begin{array}{ll}
\beta_{q}^{\prime}=\frac{1}{v_{q}} & \left(\frac{\partial}{\partial z}+\frac{1}{v_{1}} \frac{\partial}{\partial t}\right) a_{1}=-j g a_{3} a_{2}^{*} \\
\beta_{q} \rightarrow \frac{\partial}{\partial z} & \left(\frac{\partial}{\partial z}+\frac{1}{v_{2}} \frac{\partial}{\partial t}\right) a_{2}=-j g a_{3} a_{1}^{*} \\
\Omega \rightarrow \frac{\partial}{\partial t} & \left(\frac{\partial}{\partial z}+\frac{1}{v_{3}} \frac{\partial}{\partial t}\right) a_{3}=-j g a_{1} a_{2} \\
\text { new terms compared to CW case }
\end{array}
$$

If $\beta\left(\omega_{q}+\Omega\right) \approx \beta_{q}+\Omega \beta_{q}^{\prime}+\underline{\frac{1}{2}} \Omega^{2} \beta_{q}^{\prime \prime}(G V D)$, the coupled-wave equations are

$$
\begin{aligned}
& \left(\frac{\partial}{\partial z}+\frac{1}{v_{1}} \frac{\partial}{\partial t}-j \frac{\beta_{1}^{\prime \prime}}{2} \frac{\partial^{2}}{\partial t^{2}}\right) a_{1}=-j g a_{3} a_{2}^{*} \\
& \left(\frac{\partial}{\partial z}+\frac{1}{v_{2}} \frac{\partial}{\partial t}-j \frac{\beta_{2}^{\prime \prime}}{2} \frac{\partial^{2}}{\partial t^{2}}\right) a_{2}=-j g a_{3} a_{1}^{*} \\
& \left(\frac{\partial}{\partial z}+\frac{1}{v_{3}} \frac{\partial}{\partial t}-j \frac{\beta_{3}^{\prime \prime}}{2} \frac{\partial^{2}}{\partial t^{2}}\right) a_{3}=-j g a_{1} a_{2}
\end{aligned}
$$

* THz pulse generation by down-conversion (optical rectification)

Monochromatic components of the pulse, $\omega_{1}=\omega$ and $\omega_{2}=\omega+\Omega$, are mixed in pairs

$$
\Rightarrow P_{\mathrm{THz}}(\Omega)=\int 2 \mathrm{~d} E^{*}(\omega) E(\omega+\Omega) d \omega
$$

The phase-matching error determines the frequency-conversion length $L_{\mathrm{c}}=2 \pi /|\Delta k|$,
where $\Delta k=k(\omega+\Omega)-k(\omega)-k(\Omega) \approx[N(\omega)-n(\Omega)] \Omega / c_{o}$.

* Pulse self-phase modulation (SPM)

In a third-order nonlinear medium, the phase shift due to the optical Kerr effect is now

$$
\begin{aligned}
& \Delta \varphi(t)=-n_{2} I(t) k_{0} z \\
& \Downarrow \\
& \Delta \omega_{i}=-n_{2} \frac{d I}{d t} k_{0} z
\end{aligned}
$$

\Downarrow
The pulse is up-chirped. If near the center, we write

Optical Kerr medium $\left(n_{2}>0\right)$

$I \approx I_{0}\left(1-2 t^{2} / \tau^{2}\right)$, the chirp parameter can be written as $a=z / z_{\mathrm{NL}}$, where

$$
z_{\mathrm{NL}}=\left(2 n_{2} I_{0} k_{0}\right)^{-1} \quad \text { (nonlinear characteristic length) }
$$

Optical solitons

Linear dispersive medium (negative GVD)

The chirp factor due to SPM must be equal to the negative of that due to GVD:

$$
\begin{aligned}
& 2 n_{2} I_{0} k_{0} \Delta z=-2 \beta^{\prime \prime} \tau_{0}^{-2} \Delta z \\
& \Rightarrow k_{0} n_{2} I_{0}=-\frac{\beta^{\prime \prime}}{\tau_{0}^{2}}=\left(2 z_{0}\right)^{-1}
\end{aligned}
$$

Shorter pulses require higher intensities.
The soliton envelope must be given by
$\mathcal{A}(z, t)=A_{0} \operatorname{sech}\left(\frac{t-z / v}{\tau_{0}}\right) \exp \left(j z / 4 z_{0}\right), \longleftarrow$
which is a solution of the wave equation in the presence of GVD and SPM. In general,

$$
\left.\left[\nabla^{2}-\frac{1}{c_{o}^{2}} \frac{\partial^{2}}{\partial t^{2}}\right] \mathcal{E}=\mu_{o} \frac{\partial^{2}}{\partial t^{2}} \underline{\left(\mathcal{P}_{L}\right.}+\underline{\mathcal{P}_{\mathrm{NL}}}\right) \Rightarrow\left[\nabla^{2}+\beta^{2}(\omega)\right] \mathcal{E}=-\mu_{o} \omega^{2} \mathcal{P}_{\mathrm{NL}}
$$

In the slowly varying envelope approximation at weak dispersion and nonlinearity,

$$
\mathcal{E}=\operatorname{Re}\left\{\mathcal{A}(z, t) \exp \left[j\left(\omega_{0} t-\beta_{0} z\right]\right\} \Rightarrow \frac{D_{\nu}}{4 \pi} \frac{\partial^{2} \mathcal{A}}{\partial t^{2}}+\gamma|\mathcal{A}|^{2} \mathcal{A}+j\left(\frac{\partial}{\partial z}+\frac{1}{v} \frac{\partial}{\partial t}\right) \mathcal{A}=0\right.
$$

Dimensionless variables:

$$
\mathrm{t}=\frac{t-z / v}{\tau_{0}}, \quad z=\frac{z}{2 z_{0}}, \quad \psi=\frac{A}{A_{0}} \quad \Rightarrow \quad \frac{1}{2} \frac{\partial^{2} \psi}{\partial \mathrm{t}^{2}}+|\psi|^{2} \psi+j \frac{\partial \psi}{\partial z}=0
$$

Spatial and temporal solitons

In the moving frame, the Schrödinger equation is

$$
\frac{D_{\nu}}{4 \pi} \frac{\partial^{2} \mathcal{A}}{\partial t^{2}}+\gamma|\mathcal{A}|^{2} \mathcal{A}+j \frac{\partial \mathcal{A}}{\partial z}=0, \quad \gamma=\frac{\pi n_{2}}{\lambda \eta_{0}}
$$

Nonlinear 1D beam diffraction was described by

$$
-\frac{\lambda}{4 \pi} \frac{\partial^{2} \mathcal{A}}{\partial x^{2}}+\gamma|\mathcal{A}|^{2} \mathcal{A}+j \frac{\partial \mathcal{A}}{\partial z}=0
$$

Nonlinear diffraction-dispersion equation is

$$
-\frac{\lambda}{4 \pi} \nabla_{T}^{2} \mathcal{A}+\frac{D_{\nu}}{4 \pi} \frac{\partial^{2} \mathcal{A}}{\partial t^{2}}+\gamma|\mathcal{A}|^{2} \mathcal{A}+j \frac{\partial \mathcal{A}}{\partial z}=0
$$

Supercontinuum light generation in a fiber

Broadening mechanisms:

Self-phase modulation $\left(\Delta \omega_{0} \sqrt{1+a^{2}}\right)$
Stimulated Raman scattering (red-shift due to vibrations) Soliton self-frequency shift
(due to intrapulse SRS)
Four-wave mixing
(2 peaks broadened by SPM)

Pulse detection

Fastest photodetectors have a response time of 100 ps and are too slow for fs pulses.
\Rightarrow Slow detector + fast shutter:

Gate realizations:

Pulse-train or multiple-detector single-shot measurement:

Streak camera (100 fs resolution)

Intensity autocorrelation measurement (the pulse provides the gate to itself)

The intensity autocorrelation is $G_{I}(\tau)=\int I(t) I(t-\tau) d t$. For example, if the signal is $I(t)=\exp \left(-2 \tau^{2} / \tau_{0}^{2}\right)$, the autocorrelation is $G_{I}(\tau) \propto \exp \left(-\tau^{2} / \tau_{0}^{2}\right)$, which gives τ_{0}.

Spectrum analyzers

Ordinary:

Interferometric:

Slow detector

$R_{U}(\tau)=G_{A}(0)+\operatorname{Re}\left\{G_{A}(\tau) \exp \left(-j 2 \pi \nu_{0} \tau\right)\right\}, S(v)=\operatorname{FT}\left\{G_{A}(\tau)\right\}$ $G_{A}(\tau)=\int A^{*}(t) A(t-\tau) d t$

Measurement of phase

Heterodyning (time-domain interference with a known field) could reveal the phase, but only if it varies slowly:

$$
\left|U(t)+U_{r}(t)\right|^{2}=I(t)+I_{r}(t)+2 \sqrt{I(t) I_{r}(t)} \cos \left[2 \pi f t+\varphi_{r}(t)-\varphi(t)\right]
$$

Spectral interferometry, in contrast, generates interferograms in the Fourier domain:

$$
\left|V(\nu) e^{-j 2 \pi \tau \nu}+V_{r}(\nu)\right|^{2}=S(\nu)+S_{r}(\nu)+2 \sqrt{S(\nu) S_{r}(\nu)} \cos \left[2 \pi \tau \nu+\psi_{r}(\nu)-\psi(\nu)\right]
$$

Measurement of spectrogram

The spectrum of a windowed part of the measured pulse is

$$
S(\nu, \tau)=|\Phi(\nu, \tau)|^{2} ; \quad \Phi(\nu, \tau)=\int U(t) W(t-\tau) \exp (-j 2 \pi \nu t) d t
$$

The measurement technique is known as frequency-resolved optical gating (FROG):

Experimental implementation of a SHG-FROG [with $W(t)=U(t)$]:

The phase of $\Phi(v, \tau)$ is not measured, but $U(t)$ can still be retrieved using certain iteration algorithms. Otherwise, we could find $U(t) \propto \iint \Phi(v, \tau) \exp (j 2 \pi v t) d v d \tau$.

