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reading material

• K&V, chapter 3
• SS&BD, chapter 6



the VC dimension – reminder

• a set A of m instances is shattered by H iff there exist

hypotheses in H that label A in all possible 2m ways

• ΠH(A): restriction of H to A

ΠH(A) = {(h(x1), . . . ,h(xm)) : h ∈ H}

• H shatters A iff
ΠH(A) = {0,1}m



the VC dimension – reminder

• equivalent set-theoretic definitions:

– restriction of H to A

ΠH(A) = {h ∩ A : h ∈ H}

– H shatters A iff

ΠH(A) = 2A



the VC dimension – reminder

• the VC dimension, VCD(H), of a hypothesis

class H is the cardinality of the largest finite subset

of X shattered by H.

VCD(H) = sup{|A| : H shatters A}

• If H can shatter arbitrarily large finite sets, then

VCD(H) =∞



the VC dimension – reminder

• to show that VCD(H) is d we need to show that:

– there exists a set of size d which is shattered by H

– no set of size d + 1 can be shattered by H



growth function

• the VC dimension only looks at the largest set that H can
shatter

• the growth function ΠH : N→ N gives the number of ways

that m instances can be labeled by H

ΠH(m) = max
A⊂X ,|A|=m

|ΠH(A)|

• that is how many different dichotomies that H can produce
maximally

ΠH(m) = max
A⊂X ,|A|=m

|{(h(x1), . . . ,h(xm)) : h ∈ H}|



growth function

• the growth function further characterizes complexity of H:

the faster the growth, more dichotomies with increasing m

• clearly, if H does not have finite VC dimension, then

ΠH(m) = 2m,∀m

• if VCD(H) = d and m ≤ d , then ΠH(m) = 2m

– if there is a d sized set that H can shatter, for each

– integer k < d , there is also a set of size k that H

– can shatter



growth function

• what about m > d?

• the fact that H cannot shatter a set of size m doesn’t mean
that it is completely useless for sets of size m

– it might label almost all m instances correctly, or

– might do a horrible labeling for any m instances

• Sauer-Shelah-Perles lemma tells us what to expect when
m > d



a polynomial bound on ΠH(m)

• Sauer-Shelah-Perles lemma: let H be a hypothesis class

with VCD(H) ≤ d <∞. then, ∀m:

ΠH(m) ≤
d∑

i=0

(
m
i

)
and, if m > d then

ΠH(m) ≤
(em

d

)d
= O(md )



a polynomial bound on ΠH(m)

• Sauer-Shelah-Perles lemma shows that

– when m becomes larger than d , the growth function

– increases polynomially rather than exponentially

– with sample size m

• to prove Sauer-Shelah-Perles lemma, we first need Pajor’s
lemma

• Pajor’s lemma: for any A, the cardinality of ΠH(A) is

bounded by the number of subsets of A that H shatters



Pajor’s lemma

• lemma: let H be any hypothesis class with VCD(H) = d .

For any A = {x1, . . . ,xm} ⊂ X

|ΠH(A)| ≤ |{B ⊆ A : H shatters B}|

• proof (sketch): by induction. for m = 1, either both sides
are equal to 1 or are equal to 2

– empty set is always considered to be shattered by H

• now assume that the inequality holds for all k < m

• let A′ = A \ {x1}



Pajor’s lemma

• (proof cont’d.) define two sets Y0 and Y1:

Y0 = {(y2, · · · , ym) : (0, y2, · · · , ym) ∈ ΠH(A) ∨
(1, y2, · · · , ym) ∈ ΠH(A)}

– and

Y1 = {(y2, · · · , ym) : (0, y2, · · · , ym) ∈ ΠH(A) ∧
(1, y2, · · · , ym) ∈ ΠH(A)}

• Notice that |ΠH(A)| = |Y0|+ |Y1|



Pajor’s lemma

• (proof cont’d.) since Y0 = ΠH(A′), by the induction

assumption (applied on H and A′), we have:

|Y0| = |ΠH(A′)| ≤ |{B ⊆ A′ : H shatters B}|
= |{B ⊆ A : x1 6∈ B ∧ H shatters B}|

• let H′ ⊆ H contain the pairs of hypotheses that agree

on A′ but disagree on x1

H′ = {h ∈ H : ∃h′ ∈ H s.t . h(x1) 6= h′(x1) and
h(xi) = h′(xi), i = 2, · · · ,m}

• notice that, if H′ shatters a set B ⊆ A′ it also shatters

the set B ∪ {x1} and vice versa.



Pajor’s lemma

• (proof cont’d.) notice also that Y1 = ΠH′(A′)

• so by induction (applied on H’ and A′ ) we obtain

|Y1| = |ΠH′(A′)| ≤ |{B ⊆ A′ : H′ shatters B}|
= |{B ⊆ A′ : H′ shatters B ∪ {x1}}|
= |{B ⊆ A : x1 ∈ B ∧ H′ shatters B}|
≤ |{B ⊆ A : x1 ∈ B ∧ H shatters B}|

• Hence, we have:

|ΠH(A)| = |Y0|+ |Y1|
≤ {B ⊆ A : x1 6∈ B ∧ H shatters B}
+ |{B ⊆ A : x1 ∈ B ∧ H shatters B}|
= |{B ⊆ A : H shatters B}|



Sauer-Shelah-Perles lemma

• Sauer-Shelah-Perles lemma: let H be a hypothesis class

with VCD(H) ≤ d <∞. then, ∀m:

ΠH(m) ≤
d∑

i=0

(
m
i

)
and, if m > d then

ΠH(m) ≤
(em

d

)d
= O(md )



Sauer-Shelah-Perles lemma

• proof: since VCD(H) ≤ d , no set with size larger than d is

shattered by H. let Am = arg max
A⊂X ,|A|=m

|ΠH(A)|

• then by Pajor’s lemma it follows that for any m:

ΠH(m) ≤ |{B ⊆ Am : H shatters B}| ≤
d∑

i=0

(
m
i

)
• and when m > d :

d∑
i=0

(
m
i

)
<
(em

d

)d

• (verify the above inequality, see Lemma A.5 in SS&BD if
you need help)



polynomial sample complexity of PAC learning

• previously: finite hypothesis classes are PAC learnable with
sample complexity

mH(ε, δ) ≤
⌈

log(|H|/δ)

ε

⌉
• if a finite hypothesis class H shatters a finite set A then

|H| ≥ |ΠH(A)| = 2|A|

• this immediately implies that VCD(H) ≤ log|H|

• the difference between VCD(H) and |logH| can be

arbitrarily large



sample complexity upper bound

• theorem 1: let C be a concept class with VC dimension d .

Let L be any algorithm that takes as input a set S of m

labeled examples of a concept in C and outputs a

hypothesis h ∈ C that is consistent with S.

Then, L is a PAC learning algorithm for C provided that

it is given a random sample of m examples from EX (D, c)

where m satisfies

m ≥ a0

(
1
ε

log
1
δ

+
d
ε

log
1
ε

)
for some constant a0 > 0.



sample complexity upper bound

• theorem 2: let C be any concept class. let H be any

representation class of VC dimension d . Let L be

any algorithm that takes as input a set S of m

labeled examples of a concept in C and outputs a

hypothesis h ∈ H that is consistent with S.

Then, L is a PAC learning algorithm for C using H provided

that it is given a random sample of m examples from

EX (D, c) where m satisfies

m ≥ a0

(
1
ε

log
1
δ

+
d
ε

log
1
ε

)
for some constant a0 > 0.



sample complexity upper bound - proof (sketch)

• let c denote the target concept

• denote by c ⊕ h the hypothesis defined as

(c ⊕ h)(x) =

{
1 if c(x) 6= h(x)
0 if c(x) = h(x)

• notice that errorD(h) = Prx∼D[(c ⊕ h)(x) = 1]

• define the class of error regions w.r.t c and H as follows

∆(c) = {c ⊕ h : h ∈ H}

• notice that VCD(H) = VCD(∆(c))

– for any set S, we can map each element h ∈ ΠH(S)

– to a h̃ ∈ Π∆(c)(S). this mapping is bijective.



sample complexity upper bound - proof (sketch)

• refine ∆(c) to consider only error regions with weight

at least ε under D

∆ε(c) = {h̃ ∈ ∆(c) : Prx∼D[h̃(x) = 1] ≥ ε}

• this means that, any h ∈ H such that c ⊕ h ∈ ∆ε(c) is

potentially problematic as errorD(h) ≥ ε

• definition: for any ε > 0, a set S is an ε-net for ∆(c) if, for

every h̃ ∈ ∆ε(c), there exists x ∈ S such that h̃(x) = 1



sample complexity upper bound - proof (sketch)

• main idea: if S is an ε-net for ∆(c), and L outputs h ∈ H

that is consistent with S, then it must be that errorD(h) ≤ ε

– any h ∈ H consistent with S cannot be in ∆ε(c)

• main goal: if we can bound the probability that a set S of

m random examples fails to be an ε-net for ∆(c),

then we have bounded the probability that h consistent

with S has error greater than ε



sample complexity upper bound - proof (sketch)

• notice that for finite H, we bound this probability

by |H|(1− ε)m

• we want to show that if we draw a small set of instances

from EX (D, c), then they form an ε-net with high

probability

• also we want to show that the sample size required for this

depends on VCD(H), ε, and δ (independent of |H| and |X |)



sample complexity upper bound - proof (sketch)

• draw a multiset S1 of m random examples from D

• let A be the event that elements of S1 fail to form an ε-net
for ∆(c)

• suppose that A occurs, then there exists h̃ ∈ ∆ε(c) such

that h̃(x) = 0,∀x ∈ S1

• now, fix this h̃ and draw a second sample S2 of size m

• our goal is to upper bound the probability of A

• we will do so by obtaining a lower bound on the number of

instances x in S2 that satisfy h̃(x) = 1



sample complexity upper bound - proof (sketch)

• let Z i denote the random variable that takes value 1 if

the i-th element xi of S2 satisfies h̃(xi) = 1 and 0
otherwise

• let Z =
∑m

i=1Z i be the number of such instances in S2

• notice that E [Z] ≥ εm, because each element of S2 has

probability at least ε to hit an error region



sample complexity upper bound - proof (sketch)

• using Markov’s inequality, we get

Pr
[
Z <

εm
2

]
≤ Pr

[
|Z − E [Z]| > E [Z]

2

]
≤ 2 exp

(
−εm

2

)
• the probability that at least εm/2 instances in S2

satisfy h̃(x) = 1 is at least 1/2 (for εm ≥ 24)

• let B be the combined event over the random draws of S1

and S2 that A occurs on the draw of S1 (i.e., S1 is not an

ε-net) and S2 has at least εm/2 hits in a region of ∆ε(c)

that is missed by S1



sample complexity upper bound - proof (sketch)

• the definition of B requires that A occurs on S1

• we have shown in previous slide that Pr [B | A] ≥ 1/2

• then we have Pr [B] = Pr [B | A] Pr [A] ≥ 1/2Pr [A]

• so our goal of bounding Pr [A] is equivalent to finding δ
such that

Pr [B] ≤ δ
2

because this would imply

Pr [A] ≤ δ



sample complexity upper bound - proof (sketch)

• bounding Pr [B] is a purely combinatorial problem

• we are given 2m balls out of which r ≥ εm/2 are red and

the remaining are black. if we divided them into two sets

of size m, without seeing the colors, what is the probability

that the first set has no red balls and the second set has

all of them?

• this probability is simply given by(m
r

)(2m
r

) ≤ 1
2r



sample complexity upper bound - proof (sketch)

• thus we have, by the union bound over all h̃ ∈ Π∆ε(c)(S)

Pr [A] ≤ 2 · Pr [B] ≤ 2 · |Π∆ε(c)(S)| · 2−
εm
2

≤ 2 · |Π∆(c)(S)| · 2−
εm
2

≤ 2 ·
(

2em
d

)d

· 2−
εm
2



sample complexity lower bound

• theorem: any algorithm for PAC learning a hypothesis

class H with VC dimension d must use Ω(d/ε) examples

in the worst case.



sample complexity lower bound – proof (main
ideas)

• let S = {|x1, · · · ,xd} be a set of size d

shattered by H

• let D be a distribution defined as follows

– D(x1) = 1− 8ε

– D(xj) = 8ε/(d − 1), for j = 2, · · · ,d

• suppose the learning algorithm L receives

m =
d − 1
32ε

examples drawn from D



sample complexity lower bound – proof (main
ideas)

• claim: L receives very few examples from the set S \ {x1}

• let Z i be the random variable that equals 1 if the i-th

example drawn from D is in the set S \ {x1} and 0

otherwise

• then Z i = 1 with probability 8ε and Z i = 0 with probability

1− 8ε



sample complexity lower bound – proof (main
ideas)

• let Z =
∑m

i=1Z i be the number of examples seen from

the set S \ {x1} (possibly with repetitions)

• E [Z] =
d − 1

4
• using Markov’s inequality

Pr
[
Z ≥ d − 1

2

]
≤ Pr [|Z − E [Z]| ≥ E [Z]] ≤ 2 exp

(
−d − 1

12

)



sample complexity lower bound – proof (main
ideas)

• we can simulate the example oracle by drawing examples

from D and assigning a random label by coin tosses to any

newly seen example

• for the previously seen examples, retain the labelings

initially given

• since S is shattered by H, the labeling is consistent

with some h ∈ H



sample complexity lower bound – proof (main
ideas)

• thus any h output by L errs with probability at least 1/2

on any example it has not seen

• hence with probability at least 2 exp
(
−d − 1

12

)
≥ 1/2,

the error of h output by L is at least 2ε, as it has not seen

at least half the examples from S \ {x1} which has total

probability mass of 8ε (equally distributed)


