
2019

Joachim Spoerhase

Approximation Algorithms
A!

Aalto University
School of Science

Combinatorics of
Efficient
Computations

Lecture 11: Maximum Satisfiability

Maximum Satisfiability (Max Sat)

Given: n boolean variables x1, . . . , xn, and m clauses
C1, . . . , Cm, where each clause Cj has a weight wj .

Maximum Satisfiability (Max Sat)

Given: n boolean variables x1, . . . , xn, and m clauses
C1, . . . , Cm, where each clause Cj has a weight wj .

Find: An assignment of the variables x1, . . . , xn such that the
total weight of satisfied clauses is maximized.

Maximum Satisfiability (Max Sat)

Given: n boolean variables x1, . . . , xn, and m clauses
C1, . . . , Cm, where each clause Cj has a weight wj .

Find: An assignment of the variables x1, . . . , xn such that the
total weight of satisfied clauses is maximized.

• Literal: variable or negation of a variable, e.g,. x1, x̄1

Maximum Satisfiability (Max Sat)

Given: n boolean variables x1, . . . , xn, and m clauses
C1, . . . , Cm, where each clause Cj has a weight wj .

Find: An assignment of the variables x1, . . . , xn such that the
total weight of satisfied clauses is maximized.

• Clause: disjuntion of literals – e.g., x1 ∨ x̄2 ∨ x3

• Literal: variable or negation of a variable, e.g,. x1, x̄1

Maximum Satisfiability (Max Sat)

Given: n boolean variables x1, . . . , xn, and m clauses
C1, . . . , Cm, where each clause Cj has a weight wj .

Find: An assignment of the variables x1, . . . , xn such that the
total weight of satisfied clauses is maximized.

• Clause: disjuntion of literals – e.g., x1 ∨ x̄2 ∨ x3

• Literal: variable or negation of a variable, e.g,. x1, x̄1

• Clause Length: number of literals

Maximum Satisfiability (Max Sat)

Given: n boolean variables x1, . . . , xn, and m clauses
C1, . . . , Cm, where each clause Cj has a weight wj .

Find: An assignment of the variables x1, . . . , xn such that the
total weight of satisfied clauses is maximized.

• Clause: disjuntion of literals – e.g., x1 ∨ x̄2 ∨ x3

• Literal: variable or negation of a variable, e.g,. x1, x̄1

• Clause Length: number of literals

• Note: Satisfiability (Sat) is NP-complete where one is
to decide whether a given propositional formula (in
conjunctive normal form) has a satisfying assignment.
E.g., (x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x̄3 ∨ x4) ∧ (x1 ∨ x̄4)

A simple randomized algorithm

Thm. 1 Independently setting each variable to 1 (true)
with probability 1

2 provides an expected
1
2 -approximation for Max Sat.

A simple randomized algorithm

Thm. 1 Independently setting each variable to 1 (true)
with probability 1

2 provides an expected
1
2 -approximation for Max Sat.

Proof.

• Let Yj ∈ {0, 1} and W be random variables where Yj is the
truth value of Cj and W is the weight of satisfied clauses.

A simple randomized algorithm

Thm. 1 Independently setting each variable to 1 (true)
with probability 1

2 provides an expected
1
2 -approximation for Max Sat.

Proof.

• Let Yj ∈ {0, 1} and W be random variables where Yj is the
truth value of Cj and W is the weight of satisfied clauses.

E[W] = E

 m∑
j=1

wjYj

 =
m∑
j=1

wjE[Yj] =
m∑
j=1

wjPr[Cj sat.]

A simple randomized algorithm

Thm. 1 Independently setting each variable to 1 (true)
with probability 1

2 provides an expected
1
2 -approximation for Max Sat.

Proof.

• Let Yj ∈ {0, 1} and W be random variables where Yj is the
truth value of Cj and W is the weight of satisfied clauses.

E[W] = E

 m∑
j=1

wjYj

 =
m∑
j=1

wjE[Yj] =
m∑
j=1

wjPr[Cj sat.]

• Let lj := length of Cj . Pr[Cj satisfied] = 1− (1
2)lj ≥ 1

2

A simple randomized algorithm

Thm. 1 Independently setting each variable to 1 (true)
with probability 1

2 provides an expected
1
2 -approximation for Max Sat.

Proof.

• Let Yj ∈ {0, 1} and W be random variables where Yj is the
truth value of Cj and W is the weight of satisfied clauses.

E[W] = E

 m∑
j=1

wjYj

 =
m∑
j=1

wjE[Yj] =
m∑
j=1

wjPr[Cj sat.]

• Let lj := length of Cj . Pr[Cj satisfied] = 1− (1
2)lj ≥ 1

2

A simple randomized algorithm

Thm. 1 Independently setting each variable to 1 (true)
with probability 1

2 provides an expected
1
2 -approximation for Max Sat.

Proof.

• Let Yj ∈ {0, 1} and W be random variables where Yj is the
truth value of Cj and W is the weight of satisfied clauses.

E[W] = E

 m∑
j=1

wjYj

 =
m∑
j=1

wjE[Yj] =
m∑
j=1

wjPr[Cj sat.]

• Let lj := length of Cj . Pr[Cj satisfied] = 1− (1
2)lj ≥ 1

2

• Thus, E[W] ≥ 1
2

∑m
j=1 wj ≥ 1

2 · OPT

Derandomization by Conditional Expectation

Thm. 2 The previous algorithm can be derandomized, i.e.,
there is a deterministic 1

2 -approximation algorithm
for Max Sat.Proof.

• Set x1 deterministically, but x2, . . . , xn randomly.

Derandomization by Conditional Expectation

Thm. 2 The previous algorithm can be derandomized, i.e.,
there is a deterministic 1

2 -approximation algorithm
for Max Sat.Proof.

• Set x1 deterministically, but x2, . . . , xn randomly.

• Namely: set x1 = 1 iff E[W |x1 = 1] ≥ E[W |x1 = 0],
where W is the same as in Thm. 1

Derandomization by Conditional Expectation

Thm. 2 The previous algorithm can be derandomized, i.e.,
there is a deterministic 1

2 -approximation algorithm
for Max Sat.Proof.

• Set x1 deterministically, but x2, . . . , xn randomly.

• Namely: set x1 = 1 iff E[W |x1 = 1] ≥ E[W |x1 = 0],
where W is the same as in Thm. 1

Note: we can compute E[W |x1 = 1] and E[W |x1 = 0] as
described in the proof of Thm. 1 (formalized later).

Derandomization by Conditional Expectation

Thm. 2 The previous algorithm can be derandomized, i.e.,
there is a deterministic 1

2 -approximation algorithm
for Max Sat.Proof.

• Set x1 deterministically, but x2, . . . , xn randomly.

• Namely: set x1 = 1 iff E[W |x1 = 1] ≥ E[W |x1 = 0],
where W is the same as in Thm. 1

• E[W] = 1
2 · (E[W |x1 = 0] + E[W |x1 = 1])

Note: we can compute E[W |x1 = 1] and E[W |x1 = 0] as
described in the proof of Thm. 1 (formalized later).

Derandomization by Conditional Expectation

Thm. 2 The previous algorithm can be derandomized, i.e.,
there is a deterministic 1

2 -approximation algorithm
for Max Sat.Proof.

• Set x1 deterministically, but x2, . . . , xn randomly.

• Namely: set x1 = 1 iff E[W |x1 = 1] ≥ E[W |x1 = 0],
where W is the same as in Thm. 1

• E[W] = 1
2 · (E[W |x1 = 0] + E[W |x1 = 1])

• for x1 = b1 chosen in this way, we have:
E[W |x1 = b1] ≥ E[W] ≥ 1

2 · OPT

Note: we can compute E[W |x1 = 1] and E[W |x1 = 0] as
described in the proof of Thm. 1 (formalized later).

Derandomization by Conditional Expectation

• (by induction) we have set x1, . . . , xi to b1, . . . , bi so that

E[W |x1 = b1, . . . , xi = bi] ≥ E[W] ≥ 1

2
· OPT

Derandomization by Conditional Expectation

• (by induction) we have set x1, . . . , xi to b1, . . . , bi so that

E[W |x1 = b1, . . . , xi = bi] ≥ E[W] ≥ 1

2
· OPT

• Now (similarly to the base case):

= 1
2 (E[W |x1 = b1, . . . , xi = bi, xi+1 = 0]

+E[W |x1 = b1, . . . , xi = bi, xi+1 = 1])

E[W |x1 = b1, . . . , xi = bi]

Derandomization by Conditional Expectation

• (by induction) we have set x1, . . . , xi to b1, . . . , bi so that

E[W |x1 = b1, . . . , xi = bi] ≥ E[W] ≥ 1

2
· OPT

• Now (similarly to the base case):

= 1
2 (E[W |x1 = b1, . . . , xi = bi, xi+1 = 0]

+E[W |x1 = b1, . . . , xi = bi, xi+1 = 1])

 E[W |x1 = b1, . . . , xi = bi, xi = bi+1] ≥ . . . ≥ 1
2 · OPT

• set xi+1 = 1 if and only if

E[W |x1 = b1, . . . , xi = bi, xi+1 = 1]
≥ E[W |x1 = b1, . . . , xi = bi, xi+1 = 0]

E[W |x1 = b1, . . . , xi = bi]

Derandomization by Conditional Expectation

• Thus, the algorithm can be derandomized if the conditional
expectation can be computed efficiently.

Derandomization by Conditional Expectation

• Thus, the algorithm can be derandomized if the conditional
expectation can be computed efficiently.

• Consider a partial assignment x1 = b1, . . . , xi = bi and a
clause Cj .

Derandomization by Conditional Expectation

• Thus, the algorithm can be derandomized if the conditional
expectation can be computed efficiently.

• Consider a partial assignment x1 = b1, . . . , xi = bi and a
clause Cj .

• If Cj is already satisfied, then it contributes wj to
E[W |x1 = b1, . . . , xi = bi].

Derandomization by Conditional Expectation

• Thus, the algorithm can be derandomized if the conditional
expectation can be computed efficiently.

• Consider a partial assignment x1 = b1, . . . , xi = bi and a
clause Cj .

• If Cj is already satisfied, then it contributes wj to
E[W |x1 = b1, . . . , xi = bi].

• If Cj is not satisfied, and contains k unassigned variables,
then it contributes precisely wj(1− (1

2)k) to
E[W |x1 = b1, . . . , xi = bi].

Derandomization by Conditional Expectation

• Thus, the algorithm can be derandomized if the conditional
expectation can be computed efficiently.

• Consider a partial assignment x1 = b1, . . . , xi = bi and a
clause Cj .

• If Cj is already satisfied, then it contributes wj to
E[W |x1 = b1, . . . , xi = bi].

• If Cj is not satisfied, and contains k unassigned variables,
then it contributes precisely wj(1− (1

2)k) to
E[W |x1 = b1, . . . , xi = bi].

• Note: the conditional expectation is simply the sum of the
contributions from each clause.

Derandomization by Conditional Expectation

Standard procedure with which many randomized algorithms
can be derandomized.

Derandomization by Conditional Expectation

Standard procedure with which many randomized algorithms
can be derandomized.

Requirement: respective conditional probabilities can be
appropriately estimated for each random decision.

Derandomization by Conditional Expectation

Standard procedure with which many randomized algorithms
can be derandomized.

Requirement: respective conditional probabilities can be
appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Derandomization by Conditional Expectation

Standard procedure with which many randomized algorithms
can be derandomized.

Requirement: respective conditional probabilities can be
appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Quality of the obtained solution is then at least as high as the
expected value.

An ILP

maximize
m∑
j=1

wjzj

subject to
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj , j = 1, . . . ,m

yi ∈ {0, 1}, i = 1, . . . , n

0 ≤ zj ≤ 1, j = 1, . . . ,m

where Cj =
∨
i∈Pj

xi ∨
∨

i∈Nj

x̄i for each j = 1, . . . ,m

Note: zj = 1 when Cj is satisfied, and zj = 0 otherwise.

... and its relaxation

maximize
m∑
j=1

wjzj

subject to
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj , j = 1, . . . ,m

0 ≤ yi ≤ 1, i = 1, . . . , n

0 ≤ zj ≤ 1, j = 1, . . . ,m

where Cj =
∨
i∈Pj

xi ∨
∨

i∈Nj

x̄i for each j = 1, . . . ,m

Note: zj = 1 when Cj is satisfied, and zj = 0 otherwise.

Randomized Rounding

Thm. 3 Let (y∗, z∗) be an optimal solution to the
LP-relaxation. Independently setting each variable
xi to 1 (true) with probability y∗i provides a
(1− 1

e)-approximation for Max Sat.

Randomized Rounding

Thm. 3 Let (y∗, z∗) be an optimal solution to the
LP-relaxation. Independently setting each variable
xi to 1 (true) with probability y∗i provides a
(1− 1

e)-approximation for Max Sat.

Fact#1: arithmetic-geometric mean inequality (agmi)

For all non-negative numbers a1, . . . , ak:(
k∏

i=1

ai

)1/k

≤ 1

k

(
k∑

i=1

ai

)

Proof.

Randomized Rounding (proof)

Fact#2: Let f(0) = a and f(1) = a + b for a function which is
concave on [0, 1] (i.e., f ′′(x) ≤ 0 on [0, 1]). Then we have
f(x) ≥ bx + a for x ∈ [0, 1]

a

a + b

0 1

f(x)

Randomized Rounding (proof)

Consider a fixed clause Cj of length lj . We have:

Pr[Cj not sat.] =
∏
i∈Pj

(1− y∗i)
∏
i∈Nj

y∗i

(agmi).

≤

 1

lj

∑
i∈Pj

(1− y∗i) +
∑
i∈Nj

y∗i

lj

=

1− 1

lj

∑
i∈Pj

y∗i +
∑
i∈Nj

(1− y∗i)

lj

LP-Relax.
≤

(
1−

z∗j
lj

)lj

︸ ︷︷ ︸
≥ z∗j

Randomized Rounding (proof)

Consider a fixed clause Cj of length lj . We have:

Pr[Cj not sat.] =
∏
i∈Pj

(1− y∗i)
∏
i∈Nj

y∗i

(agmi).

≤

 1

lj

∑
i∈Pj

(1− y∗i) +
∑
i∈Nj

y∗i

lj

=

1− 1

lj

∑
i∈Pj

y∗i +
∑
i∈Nj

(1− y∗i)

lj

LP-Relax.
≤

(
1−

z∗j
lj

)lj

︸ ︷︷ ︸
≥ z∗j

Randomized Rounding (proof)

Consider a fixed clause Cj of length lj . We have:

Pr[Cj not sat.] =
∏
i∈Pj

(1− y∗i)
∏
i∈Nj

y∗i

(agmi).

≤

 1

lj

∑
i∈Pj

(1− y∗i) +
∑
i∈Nj

y∗i

lj

=

1− 1

lj

∑
i∈Pj

y∗i +
∑
i∈Nj

(1− y∗i)

lj

LP-Relax.
≤

(
1−

z∗j
lj

)lj

︸ ︷︷ ︸
≥ z∗j

Randomized Rounding (proof)

Consider a fixed clause Cj of length lj . We have:

Pr[Cj not sat.] =
∏
i∈Pj

(1− y∗i)
∏
i∈Nj

y∗i

(agmi).

≤

 1

lj

∑
i∈Pj

(1− y∗i) +
∑
i∈Nj

y∗i

lj

=

1− 1

lj

∑
i∈Pj

y∗i +
∑
i∈Nj

(1− y∗i)

lj

LP-Relax.
≤

(
1−

z∗j
lj

)lj

︸ ︷︷ ︸
≥ z∗j

Randomized Rounding (proof)

The function f(z∗j) = 1−
(

1− z∗
j

lj

)lj
is concave.
Note: f(0) = 0

Randomized Rounding (proof)

The function f(z∗j) = 1−
(

1− z∗
j

lj

)lj
is concave.

Thus

Pr[Cj sat.] ≥ f(z∗j)

≥

[
1−

(
1− 1

lj

)lj
]
z∗j

Note :∀k ∈ Z+,

(
1− 1

k

)k

>
1

e

≥
(

1− 1

e

)
z∗j

Note: f(0) = 0

Randomized Rounding (proof)

Therefore,

E[W] =
m∑
j=1

Pr[Cj sat.] · wj

≥
(

1− 1

e

) m∑
j=1

wjz
∗
j

≥
(

1− 1

e

)
OPT

Thm. 4 The above algorithm can be derandomized by the
method of conditional expectation.

Take the better between the two solutions!

Thm. 5 The better solution among the randomized
algorithm (Thm. 1) and the randomized
LP-rounding algorithm (Thm. 3), provides a
3
4 -approximation for MaxSat

Take the better between the two solutions!

Thm. 5 The better solution among the randomized
algorithm (Thm. 1) and the randomized
LP-rounding algorithm (Thm. 3), provides a
3
4 -approximation for MaxSat

We use another probabilistic argument. With probability 1
2

choose the solution of Thm. 1 otherwise choose Thm. 3.

Proof.

Take the better between the two solutions!

Thm. 5 The better solution among the randomized
algorithm (Thm. 1) and the randomized
LP-rounding algorithm (Thm. 3), provides a
3
4 -approximation for MaxSat

We use another probabilistic argument. With probability 1
2

choose the solution of Thm. 1 otherwise choose Thm. 3.

The better solution is at least as good as the expectation of
the above algorithm.

Proof.

Take the better between the two solutions!

The probability that clause Cj is satisfied is at least:

P =
1

2

[(
1−

(
1− 1

lj

)lj
)

+
(
1− 2−lj

)]
z∗j

︷ ︸︸ ︷ ︷ ︸︸ ︷rand. Alg.LP-Rounding

Take the better between the two solutions!

The probability that clause Cj is satisfied is at least:

P =
1

2

[(
1−

(
1− 1

lj

)lj
)

+
(
1− 2−lj

)]
z∗j

We claim that this is at least 3
4 · z

∗
j . (the rest follows similarly

to Thm. 1 and Thm. 3 by the linearity of expectation).

︷ ︸︸ ︷ ︷ ︸︸ ︷rand. Alg.LP-Rounding

Take the better between the two solutions!

The probability that clause Cj is satisfied is at least:

P =
1

2

[(
1−

(
1− 1

lj

)lj
)

+
(
1− 2−lj

)]
z∗j

We claim that this is at least 3
4 · z

∗
j . (the rest follows similarly

to Thm. 1 and Thm. 3 by the linearity of expectation).

For lj = 1, 2, a simple calculation shows P = 3
4 · z

∗
j

︷ ︸︸ ︷ ︷ ︸︸ ︷rand. Alg.LP-Rounding

Take the better between the two solutions!

The probability that clause Cj is satisfied is at least:

P =
1

2

[(
1−

(
1− 1

lj

)lj
)

+
(
1− 2−lj

)]
z∗j

We claim that this is at least 3
4 · z

∗
j . (the rest follows similarly

to Thm. 1 and Thm. 3 by the linearity of expectation).

For lj = 1, 2, a simple calculation shows P = 3
4 · z

∗
j

For lj ≥ 3, 1− (1− 1
lj

)lj ≥ (1− 1
e) and 1− 2−lj ≥ 7/8. Thus,

we have:

P

z∗j
≥ 1

2

[(
1− 1

e

)
+

7

8

]
≈ 0, 753 >

3

4

︷ ︸︸ ︷ ︷ ︸︸ ︷rand. Alg.LP-Rounding

Visualization and Derandomization

Randomized alg. is better for large values of lj
Randomized LP-rounding is better for small values of lj
(probability of satisfying clause Cj)

Pr[Cj sat.]/z∗j

lj

1− (1− 1
lj

)lj

1− 2lj

Visualization and Derandomization

Randomized alg. is better for large values of lj
Randomized LP-rounding is better for small values of lj
(probability of satisfying clause Cj)

Mean of the two solutions
is at least 3

4 for all values
of lj .

Pr[Cj sat.]/z∗j

lj

1− (1− 1
lj

)lj

1− 2lj

Visualization and Derandomization

Randomized alg. is better for large values of lj
Randomized LP-rounding is better for small values of lj
(probability of satisfying clause Cj)

Mean of the two solutions
is at least 3

4 for all values
of lj .

And, the maximum is at
least as good as the mean.

Pr[Cj sat.]/z∗j

lj

1− (1− 1
lj

)lj

1− 2lj

Visualization and Derandomization

Randomized alg. is better for large values of lj
Randomized LP-rounding is better for small values of lj
(probability of satisfying clause Cj)

Mean of the two solutions
is at least 3

4 for all values
of lj .

And, the maximum is at
least as good as the mean.

This algorithm can also be
derandomized by
conditional expectation.

Pr[Cj sat.]/z∗j

lj

1− (1− 1
lj

)lj

1− 2lj

	Derandomization by Conditional Expectation

