

Combinatorics of Efficient Computations

Approximation Algorithms

Lecture 11: Maximum Satisfiability

Joachim Spoerhase

Given: n boolean variables x_1, \ldots, x_n , and m clauses C_1, \ldots, C_m , where each clause C_j has a weight w_j .

Given: n boolean variables x_1, \ldots, x_n , and m clauses C_1, \ldots, C_m , where each clause C_j has a weight w_j .

Given: n boolean variables x_1, \ldots, x_n , and m clauses C_1, \ldots, C_m , where each clause C_j has a weight w_j .

Find: An assignment of the variables x_1, \ldots, x_n such that the total weight of satisfied clauses is maximized.

• Literal: variable or negation of a variable, e.g., x_1 , \bar{x}_1

Given: n boolean variables x_1, \ldots, x_n , and m clauses C_1, \ldots, C_m , where each clause C_j has a weight w_j .

- Literal: variable or negation of a variable, e.g., x_1 , \bar{x}_1
- Clause: disjuntion of *literals* e.g., $x_1 \vee \bar{x}_2 \vee x_3$

Given: n boolean variables x_1, \ldots, x_n , and m clauses C_1, \ldots, C_m , where each clause C_j has a weight w_j .

- Literal: variable or negation of a variable, e.g., x_1 , \bar{x}_1
- Clause: disjuntion of *literals* e.g., $x_1 \vee \bar{x}_2 \vee x_3$
- Clause Length: number of literals

Given: n boolean variables x_1, \ldots, x_n , and m clauses C_1, \ldots, C_m , where each clause C_j has a weight w_j .

- Literal: variable or negation of a variable, e.g., x_1 , \bar{x}_1
- Clause: disjuntion of *literals* e.g., $x_1 \vee \bar{x}_2 \vee x_3$
- Clause Length: number of literals
- Note: Satisfiability (Sat) is NP-complete where one is to decide whether a given propositional formula (in conjunctive normal form) has a satisfying assignment. E.g., $(x_1 \vee \bar{x}_2 \vee x_3) \wedge (x_2 \vee \bar{x}_3 \vee x_4) \wedge (x_1 \vee \bar{x}_4)$

Thm. 1 Independently setting each variable to 1 (true) with probability $\frac{1}{2}$ provides an expected $\frac{1}{2}$ -approximation for MAX SAT.

Thm. 1 Independently setting each variable to 1 (true) with probability $\frac{1}{2}$ provides an expected $\frac{1}{2}$ -approximation for MAX SAT.

Proof.

• Let $Y_j \in \{0,1\}$ and W be random variables where Y_j is the truth value of C_j and W is the weight of satisfied clauses.

Thm. 1 Independently setting each variable to 1 (true) with probability $\frac{1}{2}$ provides an expected $\frac{1}{2}$ -approximation for MAX SAT.

Proof.

• Let $Y_j \in \{0,1\}$ and W be random variables where Y_j is the truth value of C_j and W is the weight of satisfied clauses.

$$E[W] = E\left[\sum_{j=1}^{m} w_j Y_j\right] = \sum_{j=1}^{m} w_j E[Y_j] = \sum_{j=1}^{m} w_j \Pr[C_j \text{ sat.}]$$

Thm. 1 Independently setting each variable to 1 (true) with probability $\frac{1}{2}$ provides an expected $\frac{1}{2}$ -approximation for MAX SAT.

Proof.

• Let $Y_j \in \{0,1\}$ and W be random variables where Y_j is the truth value of C_j and W is the weight of satisfied clauses.

$$E[W] = E\left[\sum_{j=1}^{m} w_{j} Y_{j}\right] = \sum_{j=1}^{m} w_{j} E[Y_{j}] = \sum_{j=1}^{m} w_{j} \Pr[C_{j} \text{ sat.}]$$

• Let $l_j := \text{length of } C_j$. $\Pr[C_j \text{ satisfied}] =$

Thm. 1 Independently setting each variable to 1 (true) with probability $\frac{1}{2}$ provides an expected $\frac{1}{2}$ -approximation for MAX SAT.

Proof.

• Let $Y_j \in \{0,1\}$ and W be random variables where Y_j is the truth value of C_j and W is the weight of satisfied clauses.

$$E[W] = E\left[\sum_{j=1}^{m} w_j Y_j\right] = \sum_{j=1}^{m} w_j E[Y_j] = \sum_{j=1}^{m} w_j \Pr[C_j \text{ sat.}]$$

• Let $l_j := \text{length of } C_j$. $\Pr[C_j \text{ satisfied}] = 1 - (\frac{1}{2})^{l_j} \geq \frac{1}{2}$

Thm. 1 Independently setting each variable to 1 (true) with probability $\frac{1}{2}$ provides an expected $\frac{1}{2}$ -approximation for MAX SAT.

Proof.

• Let $Y_j \in \{0,1\}$ and W be random variables where Y_j is the truth value of C_j and W is the weight of satisfied clauses.

$$E[W] = E\left[\sum_{j=1}^{m} w_{j} Y_{j}\right] = \sum_{j=1}^{m} w_{j} E[Y_{j}] = \sum_{j=1}^{m} w_{j} \Pr[C_{j} \text{ sat.}]$$

- Let $l_j := \text{length of } C_j$. $\Pr[C_j \text{ satisfied}] = 1 (\frac{1}{2})^{l_j} \geq \frac{1}{2}$
- Thus, $E[W] \geq \frac{1}{2} \sum_{j=1}^{m} w_j \geq \frac{1}{2} \cdot \mathsf{OPT}$

Thm. 2 The previous algorithm can be derandomized, i.e., there is a deterministic $\frac{1}{2}$ -approximation algorithm for MAX SAT.

• Set x_1 deterministically, but x_2, \ldots, x_n randomly.

- Thm. 2 The previous algorithm can be derandomized, i.e., there is a deterministic $\frac{1}{2}$ -approximation algorithm for MAX SAT.
 - Set x_1 deterministically, but x_2, \ldots, x_n randomly.
 - Namely: set $x_1 = 1$ iff $E[W|x_1 = 1] \ge E[W|x_1 = 0]$, where W is the same as in Thm. 1

- Thm. 2 The previous algorithm can be derandomized, i.e., there is a deterministic $\frac{1}{2}$ -approximation algorithm for MAX SAT.
 - Set x_1 deterministically, but x_2, \ldots, x_n randomly.
 - Namely: set $x_1 = 1$ iff $E[W|x_1 = 1] \ge E[W|x_1 = 0]$, where W is the same as in Thm. 1

Note: we can compute $E[W|x_1=1]$ and $E[W|x_1=0]$ as described in the proof of Thm. 1 (formalized later).

- Thm. 2 The previous algorithm can be derandomized, i.e., there is a deterministic $\frac{1}{2}$ -approximation algorithm for MAX SAT.
 - Set x_1 deterministically, but x_2, \ldots, x_n randomly.
 - Namely: set $x_1 = 1$ iff $E[W|x_1 = 1] \ge E[W|x_1 = 0]$, where W is the same as in Thm. 1

Note: we can compute $E[W|x_1=1]$ and $E[W|x_1=0]$ as described in the proof of Thm. 1 (formalized later).

• $E[W] = \frac{1}{2} \cdot (E[W|x_1 = 0] + E[W|x_1 = 1])$

- Thm. 2 The previous algorithm can be derandomized, i.e., there is a deterministic $\frac{1}{2}$ -approximation algorithm for MAX SAT.
 - Set x_1 deterministically, but x_2, \ldots, x_n randomly.
 - Namely: set $x_1 = 1$ iff $E[W|x_1 = 1] \ge E[W|x_1 = 0]$, where W is the same as in Thm. 1

Note: we can compute $E[W|x_1=1]$ and $E[W|x_1=0]$ as described in the proof of Thm. 1 (formalized later).

- $E[W] = \frac{1}{2} \cdot (E[W|x_1 = 0] + E[W|x_1 = 1])$
- \leadsto for $x_1 = b_1$ chosen in this way, we have: $E[W|x_1 = b_1] \ge E[W] \ge \frac{1}{2} \cdot \mathsf{OPT}$

• (by induction) we have set x_1, \ldots, x_i to b_1, \ldots, b_i so that

$$E[W|x_1 = b_1, \dots, x_i = b_i] \ge E[W] \ge \frac{1}{2} \cdot \mathsf{OPT}$$

• (by induction) we have set x_1, \ldots, x_i to b_1, \ldots, b_i so that

$$E[W|x_1 = b_1, \dots, x_i = b_i] \ge E[W] \ge \frac{1}{2} \cdot \mathsf{OPT}$$

• Now (similarly to the base case):

$$E[W|x_1 = b_1, \dots, x_i = b_i]$$

$$= \frac{1}{2} (E[W|x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 0] + E[W|x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 1])$$

• (by induction) we have set x_1, \ldots, x_i to b_1, \ldots, b_i so that

$$E[W|x_1 = b_1, \dots, x_i = b_i] \ge E[W] \ge \frac{1}{2} \cdot \mathsf{OPT}$$

Now (similarly to the base case):

$$E[W|x_1 = b_1, \dots, x_i = b_i]$$

$$= \frac{1}{2} (E[W|x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 0] + E[W|x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 1])$$

• \rightsquigarrow set $x_{i+1} = 1$ if and only if

$$E[W|x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 1]$$

$$\geq E[W|x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 0]$$

$$\leadsto E[W|x_1 = b_1, \dots, x_i = b_i, x_i = b_{i+1}] \ge \dots \ge \frac{1}{2} \cdot \mathsf{OPT}$$

• Thus, the algorithm can be derandomized if the conditional expectation can be computed efficiently.

- Thus, the algorithm can be derandomized if the conditional expectation can be computed efficiently.
- Consider a partial assignment $x_1 = b_1, \ldots, x_i = b_i$ and a clause C_i .

- Thus, the algorithm can be derandomized if the conditional expectation can be computed efficiently.
- Consider a partial assignment $x_1 = b_1, \ldots, x_i = b_i$ and a clause C_j .
- If C_j is already satisfied, then it contributes w_j to $E[W|x_1=b_1,\ldots,x_i=b_i].$

- Thus, the algorithm can be derandomized if the conditional expectation can be computed efficiently.
- Consider a partial assignment $x_1 = b_1, \ldots, x_i = b_i$ and a clause C_j .
- If C_j is already satisfied, then it contributes w_j to $E[W|x_1=b_1,\ldots,x_i=b_i].$
- If C_j is not satisfied, and contains k unassigned variables, then it contributes precisely $w_j(1-(\frac{1}{2})^k)$ to $E[W|x_1=b_1,\ldots,x_i=b_i].$

- Thus, the algorithm can be derandomized if the conditional expectation can be computed efficiently.
- Consider a partial assignment $x_1 = b_1, \ldots, x_i = b_i$ and a clause C_j .
- If C_j is already satisfied, then it contributes w_j to $E[W|x_1=b_1,\ldots,x_i=b_i].$
- If C_j is not satisfied, and contains k unassigned variables, then it contributes precisely $w_j(1-(\frac{1}{2})^k)$ to $E[W|x_1=b_1,\ldots,x_i=b_i].$
- Note: the conditional expectation is simply the sum of the contributions from each clause.

Standard procedure with which many randomized algorithms can be derandomized.

Standard procedure with which many randomized algorithms can be derandomized.

Requirement: respective conditional probabilities can be appropriately estimated for each random decision.

Standard procedure with which many randomized algorithms can be derandomized.

Requirement: respective conditional probabilities can be appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Standard procedure with which many randomized algorithms can be derandomized.

Requirement: respective conditional probabilities can be appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Quality of the obtained solution is then at least as high as the expected value.

An ILP

maximize
$$\sum_{j=1}^m w_j z_j$$
 subject to $\sum_{i\in P_j} y_i + \sum_{i\in N_j} (1-y_i) \geq z_j, \quad j=1,\dots,m$ $y_i\in\{0,1\}, \qquad \qquad i=1,\dots,n$ $0\leq z_j\leq 1, \qquad \qquad j=1,\dots,m$ where $C_j=\bigvee_{i\in P_j} x_i\vee\bigvee_{i\in N_j} \bar{x}_i$ for each $j=1,\dots,m$

Note: $z_j = 1$ when C_j is satisfied, and $z_j = 0$ otherwise.

... and its relaxation

maximize
$$\sum_{j=1}^m w_j z_j$$
 subject to $\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1-y_i) \geq z_j, \quad j=1,\dots,m$ $0 \leq y_i \leq 1, \qquad \qquad i=1,\dots,n$ $0 \leq z_j \leq 1, \qquad \qquad j=1,\dots,m$ where $C_j = \bigvee_{i \in P_j} x_i \vee \bigvee_{i \in N_j} \bar{x}_i$ for each $j=1,\dots,m$

Note: $z_j = 1$ when C_j is satisfied, and $z_j = 0$ otherwise.

Randomized Rounding

Thm. 3 Let (y^*, z^*) be an optimal solution to the LP-relaxation. Independently setting each variable x_i to 1 (true) with probability y_i^* provides a $(1-\frac{1}{e})$ -approximation for MAX SAT.

Randomized Rounding

Thm. 3 Let $(\mathbf{y}^*, \mathbf{z}^*)$ be an optimal solution to the LP-relaxation. Independently setting each variable x_i to 1 (true) with probability y_i^* provides a $(1-\frac{1}{e})$ -approximation for MAX SAT.

Proof.

Fact#1: arithmetic-geometric mean inequality (agmi)

For all non-negative numbers a_1, \ldots, a_k :

$$\left(\prod_{i=1}^k a_i\right)^{1/k} \le \frac{1}{k} \left(\sum_{i=1}^k a_i\right)$$

Randomized Rounding (proof)

Fact#2: Let f(0) = a and f(1) = a + b for a function which is concave on [0,1] (i.e., $f''(x) \le 0$ on [0,1]). Then we have $f(x) \ge bx + a$ for $x \in [0,1]$

Randomized Rounding (proof)

Consider a fixed clause C_j of length l_j . We have:

$$\mathsf{Pr}[C_j \; \mathsf{not} \; \mathsf{sat.}] = \prod_{i \in P_j} (1 - y_i^*) \prod_{i \in N_j} y_i^*$$

Consider a fixed clause C_j of length l_j . We have:

$$ext{Pr}[C_j ext{ not sat.}] = \prod_{i \in P_j} (1-y_i^*) \prod_{i \in N_j} y_i^*$$
 $\leq \left[rac{1}{l_j} \left(\sum_{i \in P_j} (1-y_i^*) + \sum_{i \in N_j} y_i^*
ight)
ight]^{l_j}$

Consider a fixed clause C_j of length l_j . We have:

$$egin{aligned} \Pr[C_j ext{ not sat.}] &= \prod_{i \in P_j} (1-y_i^*) \prod_{i \in N_j} y_i^* \ &\leq \left[rac{1}{l_j} \left(\sum_{i \in P_j} (1-y_i^*) + \sum_{i \in N_j} y_i^*
ight)
ight]^{l_j} \ &= \left[1 - rac{1}{l_j} \left(\sum_{i \in P_j} y_i^* + \sum_{i \in N_j} (1-y_i^*)
ight)
ight]^{l_j} \end{aligned}$$

Consider a fixed clause C_i of length l_i . We have:

$$\begin{split} \Pr[C_j \text{ not sat.}] &= \prod_{i \in P_j} (1 - y_i^*) \prod_{i \in N_j} y_i^* \\ &\leq \left[\frac{1}{l_j} \left(\sum_{i \in P_j} (1 - y_i^*) + \sum_{i \in N_j} y_i^* \right) \right]^{l_j} \\ &= \left[1 - \frac{1}{l_j} \left(\sum_{i \in P_j} y_i^* + \sum_{i \in N_j} (1 - y_i^*) \right) \right]^{l_j} \\ &\stackrel{\mathsf{LP-Relax.}}{\leq} \left(1 - \frac{z_j^*}{l_i} \right)^{l_j} \end{split}$$

The function
$$f(z_j^*)=1-\left(1-rac{z_j^*}{l_j}
ight)^{l_j}$$
 is concave. Note: $f(0)=0$

The function
$$f(z_j^*)=1-\left(1-\frac{z_j^*}{l_j}\right)^{l_j}$$
 is concave. Note: $f(0)=0$

$$egin{aligned} &\operatorname{Pr}[C_j \; \operatorname{sat.}] \geq f(z_j^*) \ &\geq \left[1-\left(1-rac{1}{l_j}
ight)^{l_j}
ight]z_j^* \ &\operatorname{Note}: orall k \in \mathbb{Z}^+, \left(1-rac{1}{k}
ight)^k > rac{1}{e} \ &\geq \left(1-rac{1}{e}
ight)z_j^* \end{aligned}$$

Therefore,

$$E[W] = \sum_{j=1}^{m} \Pr[C_j \text{ sat.}] \cdot w_j$$
 $\geq \left(1 - \frac{1}{e}\right) \sum_{j=1}^{m} w_j z_j^*$
 $\geq \left(1 - \frac{1}{e}\right) \text{ OPT}$

Thm. 4 The above algorithm can be derandomized by the method of conditional expectation.

Thm. 5 The better solution among the randomized algorithm (Thm. 1) and the randomized LP-rounding algorithm (Thm. 3), provides a $\frac{3}{4}$ -approximation for MAXSAT

Thm. 5 The better solution among the randomized algorithm (Thm. 1) and the randomized LP-rounding algorithm (Thm. 3), provides a $\frac{3}{4}$ -approximation for MAXSAT

Proof.

We use another probabilistic argument. With probability $\frac{1}{2}$ choose the solution of Thm. 1 otherwise choose Thm. 3.

Thm. 5 The better solution among the randomized algorithm (Thm. 1) and the randomized LP-rounding algorithm (Thm. 3), provides a $\frac{3}{4}$ -approximation for MAXSAT

Proof.

We use another probabilistic argument. With probability $\frac{1}{2}$ choose the solution of Thm. 1 otherwise choose Thm. 3.

The better solution is at least as good as the expectation of the above algorithm.

The probability that clause C_i is satisfied is at least:

LP-Rounding rand. Alg.
$$P = \frac{1}{2} \left[\left(1 - \left(1 - \frac{1}{l_j} \right)^{l_j} \right) + \left(1 - 2^{-l_j} \right) \right] z_j^*$$

The probability that clause C_j is satisfied is at least:

LP-Rounding rand. Alg.
$$P = \frac{1}{2} \left[\left(1 - \left(1 - \frac{1}{l_j} \right)^{l_j} \right) + \left(1 - 2^{-l_j} \right) \right] z_j^*$$

We claim that this is at least $\frac{3}{4} \cdot z_j^*$. (the rest follows similarly to Thm. 1 and Thm. 3 by the linearity of expectation).

The probability that clause C_j is satisfied is at least:

LP-Rounding rand. Alg.
$$P = \frac{1}{2} \left[\left(1 - \left(1 - \frac{1}{l_j} \right)^{l_j} \right) + \left(1 - 2^{-l_j} \right) \right] z_j^*$$

We claim that this is at least $\frac{3}{4} \cdot z_j^*$. (the rest follows similarly to Thm. 1 and Thm. 3 by the linearity of expectation).

For $l_j=1,2$, a simple calculation shows $P=\frac{3}{4}\cdot z_j^*$

The probability that clause C_i is satisfied is at least:

LP-Rounding rand. Alg.
$$P = \frac{1}{2} \left[\left(1 - \left(1 - \frac{1}{l_j} \right)^{l_j} \right) + \left(1 - 2^{-l_j} \right) \right] z_j^*$$

We claim that this is at least $\frac{3}{4} \cdot z_j^*$. (the rest follows similarly to Thm. 1 and Thm. 3 by the linearity of expectation).

For $l_j=1,2$, a simple calculation shows $P=\frac{3}{4}\cdot z_j^*$ For $l_j\geq 3$, $1-(1-\frac{1}{l_j})^{l_j}\geq (1-\frac{1}{e})$ and $1-2^{-l_j}\geq 7/8$. Thus, we have:

$$\frac{P}{z_i^*} \ge \frac{1}{2} \left[\left(1 - \frac{1}{e} \right) + \frac{7}{8} \right] \approx 0,753 > \frac{3}{4}$$

Randomized alg. is better for large values of l_j Randomized LP-rounding is better for small values of l_j (\leadsto probability of satisfying clause C_j)

Randomized alg. is better for large values of l_j Randomized LP-rounding is better for small values of l_j (\leadsto probability of satisfying clause C_j)

Mean of the two solutions is at least $\frac{3}{4}$ for all values of l_j .

Randomized alg. is better for large values of l_j Randomized LP-rounding is better for small values of l_j (\leadsto probability of satisfying clause C_j)

Mean of the two solutions is at least $\frac{3}{4}$ for all values of l_j .

And, the maximum is at least as good as the mean.

Randomized alg. is better for large values of l_j Randomized LP-rounding is better for small values of l_j (\leadsto probability of satisfying clause C_j)

Mean of the two solutions is at least $\frac{3}{4}$ for all values of l_j .

And, the maximum is at least as good as the mean.

This algorithm can also be derandomized by conditional expectation.

