Aalto University

Lecture 11: Maximum Satisfiability

Joachim Spoerhase

Maximum Satisfiability (Max Sat)

Given: n boolean variables x_{1}, \ldots, x_{n}, and m clauses C_{1}, \ldots, C_{m}, where each clause C_{j} has a weight w_{j}.

Maximum Satisfiability (Max SAT)

Given: n boolean variables x_{1}, \ldots, x_{n}, and m clauses C_{1}, \ldots, C_{m}, where each clause C_{j} has a weight w_{j}.

Find: An assignment of the variables x_{1}, \ldots, x_{n} such that the total weight of satisfied clauses is maximized.

Maximum Satisfiability (Max SAT)

Given: n boolean variables x_{1}, \ldots, x_{n}, and m clauses C_{1}, \ldots, C_{m}, where each clause C_{j} has a weight w_{j}.

Find: An assignment of the variables x_{1}, \ldots, x_{n} such that the total weight of satisfied clauses is maximized.

- Literal: variable or negation of a variable, e.g,. x_{1}, \bar{x}_{1}

Maximum Satisfiability (MAX SAT)

Given: n boolean variables x_{1}, \ldots, x_{n}, and m clauses C_{1}, \ldots, C_{m}, where each clause C_{j} has a weight w_{j}.

Find: An assignment of the variables x_{1}, \ldots, x_{n} such that the total weight of satisfied clauses is maximized.

- Literal: variable or negation of a variable, e.g,. x_{1}, \bar{x}_{1}
- Clause: disjuntion of literals - e.g., $x_{1} \vee \bar{x}_{2} \vee x_{3}$

Maximum Satisfiability (MAX SAT)

Given: n boolean variables x_{1}, \ldots, x_{n}, and m clauses C_{1}, \ldots, C_{m}, where each clause C_{j} has a weight w_{j}.

Find: An assignment of the variables x_{1}, \ldots, x_{n} such that the total weight of satisfied clauses is maximized.

- Literal: variable or negation of a variable, e.g,. x_{1}, \bar{x}_{1}
- Clause: disjuntion of literals - e.g., $x_{1} \vee \bar{x}_{2} \vee x_{3}$
- Clause Length: number of literals

Maximum Satisfiability (MAX SAT)

Given: n boolean variables x_{1}, \ldots, x_{n}, and m clauses C_{1}, \ldots, C_{m}, where each clause C_{j} has a weight w_{j}.

Find: An assignment of the variables x_{1}, \ldots, x_{n} such that the total weight of satisfied clauses is maximized.

- Literal: variable or negation of a variable, e.g,. x_{1}, \bar{x}_{1}
- Clause: disjuntion of literals - e.g., $x_{1} \vee \bar{x}_{2} \vee x_{3}$
- Clause Length: number of literals
- Note: Satisfiability (Sat) is NP-complete where one is to decide whether a given propositional formula (in conjunctive normal form) has a satisfying assignment. E.g., $\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \bar{x}_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \bar{x}_{4}\right)$

A simple randomized algorithm

Thm. 1 Independently setting each variable to 1 (true) with probability $\frac{1}{2}$ provides an expected $\frac{1}{2}$-approximation for Max Sat.

A simple randomized algorithm

Thm. 1 Independently setting each variable to 1 (true) with probability $\frac{1}{2}$ provides an expected $\frac{1}{2}$-approximation for Max Sat.

Proof.

- Let $Y_{j} \in\{0,1\}$ and W be random variables where Y_{j} is the truth value of C_{j} and W is the weight of satisfied clauses.

A simple randomized algorithm

Thm. 1 Independently setting each variable to 1 (true)
with probability $\frac{1}{2}$ provides an expected $\frac{1}{2}$-approximation for Max Sat.

Proof.

- Let $Y_{j} \in\{0,1\}$ and W be random variables where Y_{j} is the truth value of C_{j} and W is the weight of satisfied clauses.

$$
E[W]=E\left[\sum_{j=1}^{m} w_{j} Y_{j}\right]=\sum_{j=1}^{m} w_{j} E\left[Y_{j}\right]=\sum_{j=1}^{m} w_{j} \operatorname{Pr}\left[C_{j} \text { sat. }\right]
$$

A simple randomized algorithm

Thm. 1 Independently setting each variable to 1 (true)
with probability $\frac{1}{2}$ provides an expected $\frac{1}{2}$-approximation for Max Sat.

Proof.

- Let $Y_{j} \in\{0,1\}$ and W be random variables where Y_{j} is the truth value of C_{j} and W is the weight of satisfied clauses.

$$
E[W]=E\left[\sum_{j=1}^{m} w_{j} Y_{j}\right]=\sum_{j=1}^{m} w_{j} E\left[Y_{j}\right]=\sum_{j=1}^{m} w_{j} \operatorname{Pr}\left[C_{j} \text { sat. }\right]
$$

- Let $l_{j}:=$ length of C_{j}. $\operatorname{Pr}\left[C_{j}\right.$ satisfied $]=$

A simple randomized algorithm

Thm. 1 Independently setting each variable to 1 (true)
with probability $\frac{1}{2}$ provides an expected $\frac{1}{2}$-approximation for Max Sat.

Proof.

- Let $Y_{j} \in\{0,1\}$ and W be random variables where Y_{j} is the truth value of C_{j} and W is the weight of satisfied clauses.

$$
E[W]=E\left[\sum_{j=1}^{m} w_{j} Y_{j}\right]=\sum_{j=1}^{m} w_{j} E\left[Y_{j}\right]=\sum_{j=1}^{m} w_{j} \operatorname{Pr}\left[C_{j} \text { sat. }\right]
$$

- Let $l_{j}:=$ length of $C_{j} . \operatorname{Pr}\left[C_{j}\right.$ satisfied $]=1-\left(\frac{1}{2}\right)^{l_{j}} \geq \frac{1}{2}$

A simple randomized algorithm

Thm. 1 Independently setting each variable to 1 (true)
with probability $\frac{1}{2}$ provides an expected
$\frac{1}{2}$-approximation for Max Sat.

Proof.

- Let $Y_{j} \in\{0,1\}$ and W be random variables where Y_{j} is the truth value of C_{j} and W is the weight of satisfied clauses.

$$
E[W]=E\left[\sum_{j=1}^{m} w_{j} Y_{j}\right]=\sum_{j=1}^{m} w_{j} E\left[Y_{j}\right]=\sum_{j=1}^{m} w_{j} \operatorname{Pr}\left[C_{j} \text { sat. }\right]
$$

- Let $l_{j}:=$ length of $C_{j} . \operatorname{Pr}\left[C_{j}\right.$ satisfied $]=1-\left(\frac{1}{2}\right)^{l_{j}} \geq \frac{1}{2}$
- Thus, $E[W] \geq \frac{1}{2} \sum_{j=1}^{m} w_{j} \geq \frac{1}{2} \cdot$ OPT

Derandomization by Conditional Expectation

Thm. 2 The previous algorithm can be derandomized, i.e., there is a deterministic $\frac{1}{2}$-approximation algorithm Proof. for Max Sat.

- Set x_{1} deterministically, but x_{2}, \ldots, x_{n} randomly.

Derandomization by Conditional Expectation

Thm. 2 The previous algorithm can be derandomized, i.e., there is a deterministic $\frac{1}{2}$-approximation algorithm Proof. for Max Sat.

- Set x_{1} deterministically, but x_{2}, \ldots, x_{n} randomly.
- Namely: set $x_{1}=1$ iff $E\left[W \mid x_{1}=1\right] \geq E\left[W \mid x_{1}=0\right]$, where W is the same as in Thm. 1

Derandomization by Conditional Expectation

Thm. 2 The previous algorithm can be derandomized, i.e., there is a deterministic $\frac{1}{2}$-approximation algorithm Proof. for Max Sat.

- Set x_{1} deterministically, but x_{2}, \ldots, x_{n} randomly.
- Namely: set $x_{1}=1$ iff $E\left[W \mid x_{1}=1\right] \geq E\left[W \mid x_{1}=0\right]$, where W is the same as in Thm. 1
Note: we can compute $E\left[W \mid x_{1}=1\right]$ and $E\left[W \mid x_{1}=0\right]$ as described in the proof of Thm. 1 (formalized later).

Derandomization by Conditional Expectation

Thm. 2 The previous algorithm can be derandomized, i.e., there is a deterministic $\frac{1}{2}$-approximation algorithm Proof. for Max Sat.

- Set x_{1} deterministically, but x_{2}, \ldots, x_{n} randomly.
- Namely: set $x_{1}=1$ iff $E\left[W \mid x_{1}=1\right] \geq E\left[W \mid x_{1}=0\right]$, where W is the same as in Thm. 1
Note: we can compute $E\left[W \mid x_{1}=1\right]$ and $E\left[W \mid x_{1}=0\right]$ as described in the proof of Thm. 1 (formalized later).
- $E[W]=\frac{1}{2} \cdot\left(E\left[W \mid x_{1}=0\right]+E\left[W \mid x_{1}=1\right]\right)$

Derandomization by Conditional Expectation

Thm. 2 The previous algorithm can be derandomized, i.e., there is a deterministic $\frac{1}{2}$-approximation algorithm Proof. for Max Sat.

- Set x_{1} deterministically, but x_{2}, \ldots, x_{n} randomly.
- Namely: set $x_{1}=1$ iff $E\left[W \mid x_{1}=1\right] \geq E\left[W \mid x_{1}=0\right]$, where W is the same as in Thm. 1
Note: we can compute $E\left[W \mid x_{1}=1\right]$ and $E\left[W \mid x_{1}=0\right]$ as described in the proof of Thm. 1 (formalized later).
- $E[W]=\frac{1}{2} \cdot\left(E\left[W \mid x_{1}=0\right]+E\left[W \mid x_{1}=1\right]\right)$
- \rightsquigarrow for $x_{1}=b_{1}$ chosen in this way, we have: $E\left[W \mid x_{1}=b_{1}\right] \geq E[W] \geq \frac{1}{2} \cdot$ OPT

Derandomization by Conditional Expectation

- (by induction) we have set x_{1}, \ldots, x_{i} to b_{1}, \ldots, b_{i} so that

$$
E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right] \geq E[W] \geq \frac{1}{2} \cdot \mathrm{OPT}
$$

Derandomization by Conditional Expectation

- (by induction) we have set x_{1}, \ldots, x_{i} to b_{1}, \ldots, b_{i} so that

$$
E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right] \geq E[W] \geq \frac{1}{2} \cdot \mathrm{OPT}
$$

- Now (similarly to the base case):

$$
\begin{aligned}
& E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right] \\
& \quad=\frac{1}{2}\left(E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}, x_{i+1}=0\right]\right. \\
& \left.\quad+E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}, x_{i+1}=1\right]\right)
\end{aligned}
$$

Derandomization by Conditional Expectation

- (by induction) we have set x_{1}, \ldots, x_{i} to b_{1}, \ldots, b_{i} so that

$$
E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right] \geq E[W] \geq \frac{1}{2} \cdot \mathrm{OPT}
$$

- Now (similarly to the base case):

$$
\begin{aligned}
& E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right] \\
& \quad=\frac{1}{2}\left(E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}, x_{i+1}=0\right]\right. \\
& \left.\quad+E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}, x_{i+1}=1\right]\right)
\end{aligned}
$$

- \rightsquigarrow set $x_{i+1}=1$ if and only if

$$
\begin{aligned}
& E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}, x_{i+1}=1\right] \\
& \geq E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}, x_{i+1}=0\right] \\
\rightsquigarrow & E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}, x_{i}=b_{i+1}\right] \geq \ldots \geq \frac{1}{2} \cdot \text { OPT }
\end{aligned}
$$

Derandomization by Conditional Expectation

- Thus, the algorithm can be derandomized if the conditional expectation can be computed efficiently.

Derandomization by Conditional Expectation

- Thus, the algorithm can be derandomized if the conditional expectation can be computed efficiently.
- Consider a partial assignment $x_{1}=b_{1}, \ldots, x_{i}=b_{i}$ and a clause C_{j}.

Derandomization by Conditional Expectation

- Thus, the algorithm can be derandomized if the conditional expectation can be computed efficiently.
- Consider a partial assignment $x_{1}=b_{1}, \ldots, x_{i}=b_{i}$ and a clause C_{j}.
- If C_{j} is already satisfied, then it contributes w_{j} to $E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right]$.

Derandomization by Conditional Expectation

- Thus, the algorithm can be derandomized if the conditional expectation can be computed efficiently.
- Consider a partial assignment $x_{1}=b_{1}, \ldots, x_{i}=b_{i}$ and a clause C_{j}.
- If C_{j} is already satisfied, then it contributes w_{j} to $E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right]$.
- If C_{j} is not satisfied, and contains k unassigned variables, then it contributes precisely $w_{j}\left(1-\left(\frac{1}{2}\right)^{k}\right)$ to $E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right]$.

Derandomization by Conditional Expectation

- Thus, the algorithm can be derandomized if the conditional expectation can be computed efficiently.
- Consider a partial assignment $x_{1}=b_{1}, \ldots, x_{i}=b_{i}$ and a clause C_{j}.
- If C_{j} is already satisfied, then it contributes w_{j} to $E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right]$.
- If C_{j} is not satisfied, and contains k unassigned variables, then it contributes precisely $w_{j}\left(1-\left(\frac{1}{2}\right)^{k}\right)$ to $E\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right]$.
- Note: the conditional expectation is simply the sum of the contributions from each clause.

Derandomization by Conditional Expectation

Standard procedure with which many randomized algorithms can be derandomized.

Derandomization by Conditional Expectation

Standard procedure with which many randomized algorithms can be derandomized.

Requirement: respective conditional probabilities can be appropriately estimated for each random decision.

Derandomization by Conditional Expectation

Standard procedure with which many randomized algorithms can be derandomized.

Requirement: respective conditional probabilities can be appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Derandomization by Conditional Expectation

Standard procedure with which many randomized algorithms can be derandomized.

Requirement: respective conditional probabilities can be appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Quality of the obtained solution is then at least as high as the expected value.

An ILP

maximize $\sum_{j=1}^{m} w_{j} z_{j}$
subject to $\quad \sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) \geq z_{j}, \quad j=1, \ldots, m$

$$
\begin{array}{lc}
y_{i} \in\{0,1\}, & i=1, \ldots, n \\
0 \leq z_{j} \leq 1, & j=1, \ldots, m
\end{array}
$$

where $C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i}$ for each $j=1, \ldots, m$

Note: $z_{j}=1$ when C_{j} is satisfied, and $z_{j}=0$ otherwise.

... and its relaxation

$\operatorname{maximize} \sum_{j=1}^{m} w_{j} z_{j}$
subject to $\quad \sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) \geq z_{j}, \quad j=1, \ldots, m$

$$
\begin{array}{lr}
0 \leq y_{i} \leq 1, & i=1, \ldots, n \\
0 \leq z_{j} \leq 1, & j=1, \ldots, m
\end{array}
$$

where $C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i}$ for each $j=1, \ldots, m$

Note: $z_{j}=1$ when C_{j} is satisfied, and $z_{j}=0$ otherwise.

Randomized Rounding

Thm. 3 Let $\left(\mathbf{y}^{*}, \mathbf{z}^{*}\right)$ be an optimal solution to the LP-relaxation. Independently setting each variable x_{i} to 1 (true) with probability y_{i}^{*} provides a
($1-\frac{1}{e}$)-approximation for Max SAt.

Randomized Rounding

Thm. 3 Let $\left(\mathbf{y}^{*}, \mathbf{z}^{*}\right)$ be an optimal solution to the LP-relaxation. Independently setting each variable x_{i} to 1 (true) with probability y_{i}^{*} provides a ($1-\frac{1}{e}$)-approximation for MAX Sat.

Proof.

Fact\#1: arithmetic-geometric mean inequality (agmi)

For all non-negative numbers a_{1}, \ldots, a_{k} :

$$
\left(\prod_{i=1}^{k} a_{i}\right)^{1 / k} \leq \frac{1}{k}\left(\sum_{i=1}^{k} a_{i}\right)
$$

Randomized Rounding (proof)

Fact\#2: Let $f(0)=a$ and $f(1)=a+b$ for a function which is concave on $[0,1]$ (i.e., $f^{\prime \prime}(x) \leq 0$ on $[0,1]$). Then we have $f(x) \geq b x+a$ for $x \in[0,1]$

Randomized Rounding (proof)

Consider a fixed clause C_{j} of length l_{j}. We have:

$$
\operatorname{Pr}\left[C_{j} \text { not sat. }\right]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right) \prod_{i \in N_{j}} y_{i}^{*}
$$

Randomized Rounding (proof)

Consider a fixed clause C_{j} of length l_{j}. We have:

$$
\begin{aligned}
& \operatorname{Pr}\left[C_{j} \text { not sat. }\right]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right) \prod_{i \in N_{j}} y_{i}^{*} \\
& \stackrel{\text { (agmi). }}{\leq}\left[\frac{1}{l_{j}}\left(\sum_{i \in P_{j}}\left(1-y_{i}^{*}\right)+\sum_{i \in N_{j}} y_{i}^{*}\right)\right]^{l_{j}}
\end{aligned}
$$

Randomized Rounding (proof)

Consider a fixed clause C_{j} of length l_{j}. We have:

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { not sat. }\right] & =\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right) \prod_{i \in N_{j}} y_{i}^{*} \\
& \stackrel{\text { (agmi). }}{\leq}\left[\frac{1}{l_{j}}\left(\sum_{i \in P_{j}}\left(1-y_{i}^{*}\right)+\sum_{i \in N_{j}} y_{i}^{*}\right)\right]^{l_{j}} \\
& =\left[1-\frac{1}{l_{j}}\left(\sum_{i \in P_{j}} y_{i}^{*}+\sum_{i \in N_{j}}\left(1-y_{i}^{*}\right)\right)\right]^{l_{j}}
\end{aligned}
$$

Randomized Rounding (proof)

Consider a fixed clause C_{j} of length l_{j}. We have:

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { not sat. }\right] & =\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right) \prod_{i \in N_{j}} y_{i}^{*} \\
& \stackrel{\text { (agni). }}{\leq}\left[\frac{1}{l_{j}}\left(\sum_{i \in P_{j}}\left(1-y_{i}^{*}\right)+\sum_{i \in N_{j}} y_{i}^{*}\right)\right]^{l_{j}} \\
& =[1-\frac{1}{l_{j}}(\underbrace{\sum_{i \in P_{j}} y_{i}^{*}+\sum_{i \in N_{j}}\left(1-y_{i}^{*}\right)})]^{l_{j}} \\
& \stackrel{\text { LP-Relax. }}{\leq}\left(1-\frac{z_{j}^{*}}{l_{j}}\right)^{l_{j}} \geq z_{j}^{*}
\end{aligned}
$$

Randomized Rounding (proof)

Randomized Rounding (proof)

The function $f\left(z_{j}^{*}\right)=1-\left(1-\frac{z_{j}^{*}}{l_{j}}\right)^{l_{j}}$ is concave.
Thus
Note: $f(0)=0$

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { sat. }\right] & \geq f\left(z_{j}^{*}\right) \\
& \geq\left[1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right] z_{j}^{*} \\
& \text { Note }: \forall k \in \mathbb{Z}^{+},\left(1-\frac{1}{k}\right)^{k}>\frac{1}{e} \\
& \geq\left(1-\frac{1}{e}\right) z_{j}^{*}
\end{aligned}
$$

Randomized Rounding (proof)

Therefore,

$$
\begin{aligned}
E[W] & =\sum_{j=1}^{m} \operatorname{Pr}\left[C_{j} \text { sat. }\right] \cdot w_{j} \\
& \geq\left(1-\frac{1}{e}\right) \sum_{j=1}^{m} w_{j} z_{j}^{*} \\
& \geq\left(1-\frac{1}{e}\right) \text { OPT }
\end{aligned}
$$

Thm. 4 The above algorithm can be derandomized by the method of conditional expectation.

Take the better between the two solutions!

Thm. 5 The better solution among the randomized algorithm (Thm. 1) and the randomized LP-rounding algorithm (Thm. 3), provides a $\frac{3}{4}$-approximation for MaxSat

Take the better between the two solutions!

Thm. 5 The better solution among the randomized algorithm (Thm. 1) and the randomized LP-rounding algorithm (Thm. 3), provides a $\frac{3}{4}$-approximation for MaxSat

Proof.

We use another probabilistic argument. With probability $\frac{1}{2}$ choose the solution of Thm. 1 otherwise choose Thm. 3.

Take the better between the two solutions!

Thm. 5 The better solution among the randomized algorithm (Thm. 1) and the randomized LP-rounding algorithm (Thm. 3), provides a $\frac{3}{4}$-approximation for MaxSat

Proof.

We use another probabilistic argument. With probability $\frac{1}{2}$ choose the solution of Thm. 1 otherwise choose Thm. 3.

The better solution is at least as good as the expectation of the above algorithm.

Take the better between the two solutions!

The probability that clause C_{j} is satisfied is at least:

$$
P=\frac{1}{2}[(\overbrace{\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right.}^{\text {LP-Rounding }})+\overbrace{\left(1-2^{-l_{j}}\right)}^{\text {rand. Alg. }}] z_{j}^{*}
$$

Take the better between the two solutions!

The probability that clause C_{j} is satisfied is at least:

$$
P=\frac{1}{2}[(\overbrace{\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right.}^{\text {LP-Rounding }}+\overbrace{\left(1-2^{-l_{j}}\right)}^{\text {rand. Alg. }}] z_{j}^{*}
$$

We claim that this is at least $\frac{3}{4} \cdot z_{j}^{*}$. (the rest follows similarly to Thm. 1 and Thm. 3 by the linearity of expectation).

Take the better between the two solutions!

The probability that clause C_{j} is satisfied is at least:

$$
P=\frac{1}{2}[(\overbrace{\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right.}^{\text {LP-Rounding }})+\overbrace{\left(1-2^{-l_{j}}\right)}^{\text {rand. Alg. }}] z_{j}^{*}
$$

We claim that this is at least $\frac{3}{4} \cdot z_{j}^{*}$. (the rest follows similarly to Thm. 1 and Thm. 3 by the linearity of expectation).
For $l_{j}=1,2$, a simple calculation shows $P=\frac{3}{4} \cdot z_{j}^{*}$

Take the better between the two solutions!

The probability that clause C_{j} is satisfied is at least:

$$
P=\frac{1}{2}[(\overbrace{\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right.}^{\text {LP-Rounding }})+\overbrace{\left(1-2^{-l_{j}}\right)}^{\text {rand. Alg. }}] z_{j}^{*}
$$

We claim that this is at least $\frac{3}{4} \cdot z_{j}^{*}$. (the rest follows similarly to Thm. 1 and Thm. 3 by the linearity of expectation).
For $l_{j}=1,2$, a simple calculation shows $P=\frac{3}{4} \cdot z_{j}^{*}$
For $l_{j} \geq 3,1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}} \geq\left(1-\frac{1}{e}\right)$ and $1-2^{-l_{j}} \geq 7 / 8$. Thus, we have:

$$
\frac{P}{z_{j}^{*}} \geq \frac{1}{2}\left[\left(1-\frac{1}{e}\right)+\frac{7}{8}\right] \approx 0,753>\frac{3}{4}
$$

Visualization and Derandomization

Randomized alg. is better for large values of l_{j} Randomized LP-rounding is better for small values of l_{j} (\rightsquigarrow probability of satisfying clause C_{j})

Visualization and Derandomization

Randomized alg. is better for large values of l_{j} Randomized LP-rounding is better for small values of l_{j} (\rightsquigarrow probability of satisfying clause C_{j})

Mean of the two solutions is at least $\frac{3}{4}$ for all values of l_{j}.

Visualization and Derandomization

Randomized alg. is better for large values of l_{j} Randomized LP-rounding is better for small values of l_{j} (\rightsquigarrow probability of satisfying clause C_{j})

Mean of the two solutions is at least $\frac{3}{4}$ for all values of l_{j}.

And, the maximum is at least as good as the mean.

Visualization and Derandomization

Randomized alg. is better for large values of l_{j} Randomized LP-rounding is better for small values of l_{j} (\rightsquigarrow probability of satisfying clause C_{j})

Mean of the two solutions is at least $\frac{3}{4}$ for all values of l_{j}.

And, the maximum is at least as good as the mean.

This algorithm can also be derandomized by conditional expectation.

