## CS-E4070 — Computational learning theory

## Slide set 09 : submodular functions

Cigdem Aslay and Aris Gionis
Aalto University
spring 2019

## motivation

- combinatorial optimization is concerned with problems of the form

$$
\begin{aligned}
& \max \{f(S): S \in \mathcal{F}\} \\
& \min \{f(S): S \in \mathcal{F}\}
\end{aligned}
$$

where $f: 2^{U} \rightarrow \mathbb{R}$ is a function defined on a ground set $U$ and $\mathcal{F}$ is the discrete set of feasible solutions.

- F could contain exponentially many solutions
- one way to make the problem tractable is to exploit the properties of $f$ and $\mathcal{F}$


## motivation

- in the continuous case, a function $g: \mathbb{R} \rightarrow \mathbb{R}$ can be
- minimized efficiently if $g$ is convex
- maximized efficiently if $g$ is concave
- submodularity plays the role of concavity / convexity in the discrete regime


## motivation



## motivation

- submodular optimization can provide elegant solutions to many machine learning problems including
- MAP inference in Markov Random Fields
- variable selection / regularization
- clustering
- structure learning in graphical models
- active learning
- determinantal point processes


## submodular (set) functions

- consider a ground set $U$
- a function $f: 2^{U} \rightarrow \mathbb{R}$ is submodular if

$$
f(A)+f(B) \geq f(A \cup B)+f(A \cap B)
$$

for all $A, B \subseteq U$

- equivalently ("diminishing returns")

$$
f(A \cup\{x\})-f(A) \geq f(B \cup\{x\})-f(B)
$$

for all $A \subseteq B \subseteq U$ and $x \in U \backslash B$

## submodular (set) functions

- intuitively submodularity says that "you have more to gain from something new, if you have less to begin with"
- in some sense submodular functions are the discrete analogue of concave functions (but also has strong ties to convexity as we will see later)


## submodular (set) functions

- a function $g: \mathbb{R} \rightarrow \mathbb{R}$ is concave if the derivative $g^{\prime}(x)$ is non-increasing in $x$
- $f$ is submodular if the "discrete derivative"

$$
f(A \cup\{x\})-f(A)
$$

is non-increasing in $x$

- suppose $h: \mathbb{N} \rightarrow \mathbb{R}$ and

$$
f(A)=h(|A|)
$$

then $f$ is submodular iff $h$ is concave

## submodular (set) functions

- closedness: submodularity is closed under nonnegative linear combinations
$f_{1}, \cdots, f_{m}$ submodular functions on $U$ and
$\alpha_{1}, \cdots, \alpha_{m}>0$. then

$$
f(A)=\sum_{i=1}^{m} \alpha_{i} f_{i}(A)
$$

is submodular

## submodular (set) functions

- restriction: $f$ is submodular on $U, W \subseteq U$. then

$$
f^{\prime}(A)=f(A \cap W)
$$

is submodular

- conditioning: $f$ is submodular on $U, W \subseteq U$. then

$$
f^{\prime}(A)=f(A \cup W)
$$

is submodular

- reflection: $f$ is submodular on $U$ then

$$
f^{\prime}(A)=f(U \backslash A)
$$

is submodular

## submodular (set) functions

- if $f$ is submodular then $-f$ is supermodular
- $f$ is modular (additive) if $f$ is both supermodular and submodular. e.g.,

$$
f(A)=\sum_{i \in A} w(i)
$$

where $w(i)$ is some constant, $\forall i \in U$

## submodular (set) functions

may or may not satisfy the following properties

- non-negative : $f(A) \geq 0$ for all $A \subseteq U$
- monotone : $f(A) \leq f(B)$ for all $A \subseteq B \subseteq U$
- symmetric : $f(A)=f(U \backslash A)$ for all $A \subseteq U$


## examples

- coverage in set systems
$\Rightarrow$ monotone and non-negative
- cut functions in undirected graphs and hypergraphs
$\Rightarrow$ symmetric and non-negative
- cut functions in directed graphs
$\Rightarrow$ non-negative


## example: coverage in set systems

- $V=\{1, \ldots, n\}$
- $U=\left\{S_{1}, \ldots, S_{m}\right\}$ a collection of subsets of $V$
- function $f: 2^{U} \rightarrow \mathbb{R}_{+}$
- coverage :

$$
f(A)=\left|\cup_{i \in A} S_{i}\right|
$$

- weighted coverage :

$$
w: U \rightarrow \mathbb{R}_{+} \text {and } f(A)=\sum_{x \in \cup_{i \in A} S_{i}} w(x)
$$

## example: set cover and maximum coverage

- set cover: choose the set $A$ of minimum cardinality such that all elements of $U$ is covered

$$
f(A)=\left|\cup_{i \in A} S_{i}\right|=|U|
$$

- maximum coverage: given $k \in \mathbb{N}^{+}$, select a set $A$ of cardinality $k$ such that

$$
f(A)=\left|\cup_{i \in A} S_{i}\right|
$$

is maximized

## example: nr of colors of balls in an urn

- consider an urn containing colored balls.
- given a set $S$ of balls, $f(S)$ counts the number of distinct colors in $S$


Initial value: 2 (colors in urn).
New value with added blue ball: 3


Initial value: 3 (colors in urn). New value with added blue ball: 3

## example: cut in graphs

- consider undirected graph $G=(V, E)$
- cut function $f: 2^{V} \rightarrow R_{+}$defined as $f(S)=|E(S, V \backslash S)|$



## example: cut in graphs

- define $f(S)$ from

$$
f(S)=\sum_{(i, j) \in E} f_{i, j}(S \cap\{i, j\})
$$

where $f_{i, j}$ is the cut function in subgraph $\{i, j\}$

- $f_{i, j}$ is submodular so is $f$
- follows from closedness and restriction properties


## example: entropy

- entropy of a discrete random variable $X$

$$
H(X)=-\sum_{x} \operatorname{Pr}(x) \log \operatorname{Pr}(x)
$$

- entropy of $X$ conditioned on $Y$

$$
H(X \mid Y)=-\sum_{x, y} \operatorname{Pr}(x, y) \log \frac{\operatorname{Pr}(x, y)}{\operatorname{Pr}(y)}
$$

## example: entropy

- given $n$ random variables $U=\left\{X_{i}\right\}_{i \in[1, n]}$, define

$$
f(A)=H\left(X_{A}\right)
$$

to be the joint entropy of the variables indexed by $A$.

- $f$ is submodular


## example: entropy

- suppose that $A \subseteq B, X_{e} \in U$, then

$$
\begin{aligned}
f\left(A \cup\left\{X_{e}\right\}\right)-f(A) & =H\left(X_{A}, X_{e}\right)-H\left(X_{A}\right) \\
& =H\left(X_{e} \mid X_{A}\right) \text { "information never hurts" } \\
& \geq H\left(X_{e} \mid X_{B}\right)
\end{aligned}
$$

- information never hurts: conditioning on data never increases uncertainty
- mutual information is also submodular

$$
I(A)=f(A)+f(U \backslash A)-f(U)
$$

## the maximization problem

- given submodular function $f: 2^{U} \rightarrow \mathbb{R}$
find $S \subseteq X$ to maximize $f(S)$
subject to constraints
- value-oracle model
- generalizes many interesting NP-hard problems
- minimization problem is polynomial in the unconstrained case (e.g., min-cut)


## monotone submodular functions

- $f(U)$ trivial maximizer in the unconstrained case
- more interesting to maximize under cardinality constraints
- find $S \subseteq U$ subject to $|S| \leq k$ that maximizes $f(S)$
- MAX $k$-COVER is a special case
- greedy gives (1-1/e) approximation
[Nemhauser et al., 1978]
- no better approximation unless $\mathbf{P}=\mathbf{N P}$


## the greedy algorithm

1. $S \leftarrow \emptyset$
2. while $|S|<k$
3. $i \leftarrow \arg \max _{j} f(S \cup\{j\})-f(S)$
4. $S \leftarrow S \cup\{i\}$
5. return $S$

## analysis of the greedy

- $S^{*}$ : the optimal solution
- $S_{j}=\left\{x_{1}, \cdots, x_{j}\right\}$ : the first $j$ elements picked by the greedy
- let $f\left(x_{j} \mid S_{j-1}\right)$ denote the marginal gain of adding the $j$-th element to $S_{j-1}$

$$
f\left(x_{j} \mid S_{j-1}\right)=f\left(S_{j}\right)-f\left(S_{j-1}\right)
$$

- hence

$$
f(S)=\sum_{j=1}^{k} f\left(x_{j} \mid S_{j-1}\right)
$$

## analysis of the greedy

- claim:

$$
f\left(x_{j} \mid S_{j-1}\right) \geq \frac{f\left(S^{*}\right)-f\left(S_{j-1}\right)}{k}
$$

- proof. first we need to state a property of submodular functions:
- if $f$ is submodular, then the following holds $\forall A, B \subseteq U$ :

$$
f(A) \leq f(B)+\sum_{x \in A \backslash B} f(x \mid B)-\sum_{x \in B \backslash A} f(x \mid A \cup B \backslash\{x\})
$$

(see Proposition 2.1 in [Nemhauser et al., 1978] for all similar properties)

## analysis of the greedy

- proof (cont'd). using this property, we have

$$
\begin{aligned}
f\left(S^{*}\right) & \leq f\left(S_{j-1}\right)+\sum_{x \in S^{*} \backslash S_{j-1}} f\left(x \mid S_{j-1}\right) \\
& -\sum_{x \in S_{j-1} \backslash S^{*}} f\left(x \mid S^{*} \cup S_{j-1} \backslash\{x\}\right)
\end{aligned}
$$

which further implies (due to monotonicity of $f$ ):

$$
f\left(S^{*}\right)-f\left(S_{j-1}\right) \leq \sum_{x \in S^{*} \backslash S_{j-1}} f\left(x \mid S_{j-1}\right)
$$

## analysis of the greedy

- proof (cont'd). using also the fact that $\forall x \in V \backslash S_{j-1}$ :

$$
f\left(x_{j} \mid S_{j-1}\right) \geq f\left(x \mid S_{j-1}\right)
$$

since otherwise $x_{j}$ wouldn't be selected by greedy, we have:

$$
\begin{aligned}
f\left(S^{*}\right)-f\left(S_{j-1}\right) & \leq \sum_{x \in S^{*} \backslash S_{j-1}} f\left(x \mid S_{j-1}\right) \\
& \leq k \cdot f\left(x_{j} \mid S_{j-1}\right)
\end{aligned}
$$

- we have just proved our claim


## analysis of the greedy

- continuing the analysis of greedy, we have

$$
\begin{aligned}
& f\left(S^{*}\right)-f\left(S_{j}\right) \leq(1-1 / k)^{j} f\left(S^{*}\right) \\
& f\left(S^{*}\right)-f\left(S_{k}\right) \leq(1-1 / k)^{k} f\left(S^{*}\right) \\
& f\left(S_{k}\right) \geq\left(1-(1-1 / k)^{k}\right) f\left(S^{*}\right) \\
& \geq\left(1-\frac{1}{e}\right) f\left(S^{*}\right)
\end{aligned}
$$

(by induction)

## widely occurs in algorithmic data mining

- example : maximize the spread of influence in social networks [Kempe et al., 2003]


## influence maximization

- Social Influence Induced Viral Phenomena



## Grumpy Cat

- $25 K+$ votes in Reddit (< 1 day)
- 1M+ views in Imgur
- 300+ variants in Reddit
- 100+ Quickmeme macros $]$



## influence maximization

## Influence in Online Social Networks

## Viral Marketing*

exploit the "word of mouth" effect in a social network to achieve marketing goals through self-replicating viral processes

## Hotmail

- Attached a promotional message with a clickable URL for free sign up
- Merely spent \$50K
- 12M users signed up within the first 18 months
- Sign-up to the service only through invitation from a friend
- No money spent on marketing
- Resulted in bidding on Ebay for invites


## influence maximization

## Influence Maximization

## Discrete Optimization Problem*

- Given
- a directed social network $G=(V, E)$
- a propagation model m
- a cardinality budget k

- Define
- S : initial set of k (seed) nodes to start the propagation
- $\sigma_{m}(S)$ : expected size of the influence propagation from $S$
- Find

$$
S^{*}=\underset{S \subseteq V,|S|=k}{\operatorname{argmax}} \sigma_{m}(S)
$$

## non-monotone functions

- unconstrained version becomes interesting
- find $S \subseteq X$ to maximize $f(S)$
- generalizes MAX-CUT
- what do we know about approximation?
- random set gives $1 / 2$
(1/4 for MAX-DICUT)
- SDP gives 0.878
(0.796 for MAX-DICUT)
major breakthrough [Goemans and Williamson, 1995]
- 0.53 by spectral approach
[Trevisan, 2012]


## unconstrained problem

[Feige et al., 2011]

- first constant-factor approximations for non-negative submodular functions
- simple algorithms: randomized / deterministic, non-adaptive / adaptive
- $1 / 2$ approx for symmetric functions
- $2 / 5=0.4$ approx for the non-negative functions
- lower bound: better than $1 / 2$ approx requires exponential number of value queries


## unconstrained problem

## [Feige et al., 2011]

- pick a random set

1/4 for non-negative function (on expectation)
$1 / 2$ for symmetric function (on expectation)

- local search
- initialize $S$ to best singleton
- $S=$ local optimum (add or delete elements)
- return the best of $S$ and $U \backslash S$

1/3 approx for non-negative function
$1 / 2$ for non-negative symmetric function

## random set analysis

- for $A \subseteq U, A(p)$ is a random set where each element of $A$ is selected with prob $p$
- algorithm returns $R=U(1 / 2)$
- lemma I

$$
E[f(A(p))] \geq(1-p) f(\emptyset)+p f(A)
$$

can prove by induction on the size of $A$ and using the submodularity property

- lemma II

$$
\begin{aligned}
E[f(A(p) \cup B(q))] \geq & (1-p)(1-q) f(\emptyset)+ \\
& p(1-q) f(A)+ \\
& (1-p) q f(B)+ \\
& p q f(A \cup B)
\end{aligned}
$$

to prove use lemma I

## random set analysis

- algorithm returns

$$
R=U(1 / 2)=S^{*}(1 / 2) \cup \overline{S^{*}}(1 / 2)
$$

- by applying lemma II

$$
\begin{aligned}
E[f(R)] & =E\left[f\left(S^{*}(1 / 2) \cup \overline{S^{*}}(1 / 2)\right)\right] \\
& =\frac{1}{4} f(\emptyset)+\frac{1}{4} f\left(S^{*}\right)+\frac{1}{4} f\left(\overline{S^{*}}\right)+\frac{1}{4} f(U)
\end{aligned}
$$

- gives $1 / 4$ for non-negative and 1/2 for symmetric function


## unconstrained problem

[Feige et al., 2011]

- local search
- initialize $S$ to best singleton
- $S=$ local optimum (add or delete elements)
- return the best of $S$ and $U \backslash S$

1/3 approx for non-negative function
$1 / 2$ for non-negative symmetric function

## analysis of local search

- lemma if $S$ is a local optimum then
$f(S) \geq f(T)$ for all $S \subseteq T$ and $T \subseteq S$
- proof
take $S \subseteq T$ and consider $S=X_{0} \subseteq \ldots X_{\ell}=T$
by submodularity and local optimality

$$
0 \geq f\left(S \cup\left\{x_{i}\right\}\right)-f(S) \geq f\left(X_{i}\right)-f\left(X_{i-1}\right)
$$

summing up gives $0 \geq f\left(X_{\ell}\right)-\left(X_{0}\right)$ or $f(S) \geq(T)$

- corollary
for optimum $S^{*}$ and local optimum $S$ it is
$f(S) \geq f\left(S \cup S^{*}\right)$ and $f(S) \geq f\left(S \cap S^{*}\right)$


## analysis of local search (cont)

- it is

$$
f(S) \geq f\left(S \cup S^{*}\right) \text { and } f(S) \geq f\left(S \cap S^{*}\right)
$$

- by submodularity and non-negativity

$$
\begin{gathered}
f\left(S \cup S^{*}\right)+f(U \backslash S) \geq f\left(S^{*} \backslash S\right)+f(U) \geq f\left(S^{*} \backslash S\right) \\
f\left(S \cap S^{*}\right)+f\left(S^{*} \backslash S\right) \geq f\left(S^{*}\right)+f(\emptyset) \geq f\left(S^{*}\right)
\end{gathered}
$$

- combining we get

$$
2 f(S)+f(U \backslash S) \geq f\left(S^{*}\right)
$$

- and so

$$
\max \{f(S), f(U \backslash S)\} \geq \frac{1}{3} f\left(S^{*}\right)
$$

## unconstrained problem

[Buchbinder et al., 2015]

- tight $1 / 2$ approximation for general non-negative submodular function
- randomized algorithm, approximation 1/2
- deterministic algorithm, approximation $1 / 3$


## deterministic algorithm

[Buchbinder et al., 2015]

Algorithm 1: DeterministicUSM $(f, \mathcal{N})$
$1 X_{0} \leftarrow \emptyset, Y_{0} \leftarrow \mathcal{N}$.
2 for $i=1$ to $n$ do

| $\mathbf{3}$ | $a_{i} \leftarrow f\left(X_{i-1} \cup\left\{u_{i}\right\}\right)-f\left(X_{i-1}\right)$. |
| :--- | :--- |
| $\mathbf{4}$ | $b_{i} \leftarrow f\left(Y_{i-1} \backslash\left\{u_{i}\right\}\right)-f\left(Y_{i-1}\right)$. |
| $\mathbf{5}$ | if $a_{i} \geq b_{i}$ then $X_{i} \leftarrow X_{i-1} \cup\left\{u_{i}\right\}, Y_{i} \leftarrow Y_{i-1}$. |

$6 \quad$ else $X_{i} \leftarrow X_{i-1}, Y_{i} \leftarrow Y_{i-1} \backslash\left\{u_{i}\right\}$.
7 return $X_{n}$ (or equivalently $Y_{n}$ ).

## randomized algorithm

[Buchbinder et al., 2015]

Algorithm 2: RandomizedUSM $(f, \mathcal{N})$
$\mathbf{1} X_{0} \leftarrow \emptyset, Y_{0} \leftarrow \mathcal{N}$.
2 for $i=1$ to $n$ do
$3 \quad a_{i} \leftarrow f\left(X_{i-1} \cup\left\{u_{i}\right\}\right)-f\left(X_{i-1}\right)$.
$4 \quad b_{i} \leftarrow f\left(Y_{i-1} \backslash\left\{u_{i}\right\}\right)-f\left(Y_{i-1}\right)$.
$5 \quad a_{i}^{\prime} \leftarrow \max \left\{a_{i}, 0\right\}, b_{i}^{\prime} \leftarrow \max \left\{b_{i}, 0\right\}$.
$6 \quad$ with probability $a_{i}^{\prime} /\left(a_{i}^{\prime}+b_{i}^{\prime}\right)^{*}$ do: $X_{i} \leftarrow X_{i-1} \cup\left\{u_{i}\right\}, Y_{i} \leftarrow Y_{i-1}$.
7 else (with the compliment probability $b_{i}^{\prime} /\left(a_{i}^{\prime}+b_{i}^{\prime}\right)$ ) do: $X_{i} \leftarrow X_{i-1}, Y_{i} \leftarrow Y_{i-1} \backslash\left\{u_{i}\right\}$.
8 return $X_{n}$ (or equivalently $Y_{n}$ ).

$$
{ }^{*} \text { If } a_{i}^{\prime}=b_{i}^{\prime}=0, \text { we assume } a_{i}^{\prime} /\left(a_{i}^{\prime}+b_{i}^{\prime}\right)=1
$$

## max-sum diversification

[Borodin et al., 2012]

- $U$ is a ground set
- $d: U \times U \rightarrow \mathbb{R}$ is a metric distance function on $U$
- $f: 2^{U} \rightarrow \mathbb{R}$ is a submodular function
- we want to find $S \subseteq U$ such that
$\phi(S)=f(S)+\lambda \sum_{u, v \in S} d(u, v)$ is maximized and
$|S| \leq k$


## max-sum diversification

[Borodin et al., 2012]

- consider $S \subseteq U$ and $x \in U \backslash S$
- define the following types of marginal gain

$$
\begin{aligned}
& d_{x}(S)=\sum_{v \in S} d(x, v) \\
& f_{x}(S)=f(S \cup\{x\})-f(S) \\
& \phi_{x}(S)=\frac{1}{2} f_{x}(S)+\lambda d_{x}(S)
\end{aligned}
$$

- greedy algorithm on marginal gain $\phi_{x}(S)$ gives factor 2 approximation


## max-sum diversification - the greedy

[Borodin et al., 2012]

1. $S \leftarrow \emptyset$
2. while $|S|<k$
3. $i \leftarrow \arg \max _{\{j \in U \backslash S\}} \phi_{j}(S)$
4. $S \leftarrow S \cup\{i\}$
5. return $S$

## references

國 Borodin, A., Lee, H. C., and Ye, Y. (2012).
Max-sum diversification, monotone submodular functions and dynamic updates.
In Proceedings of the 31st symposium on Principles of Database Systems, pages 155-166. ACM.
R Buchbinder, N., Feldman, M., Seffi, J., and Schwartz, R. (2015).

A tight linear time (1/2)-approximation for unconstrained submodular maximization.
SIAM Journal on Computing, 44(5):1384-1402.
Feige, U., Mirrokni, V. S., and Vondrak, J. (2011). Maximizing non-monotone submodular functions. SIAM Journal on Computing, 40(4):1133-1153.

## references (cont.)

國 Goemans, M. X. and Williamson, D. P. (1995). Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM (JACM), 42(6):1115-1145.

囲 Kempe, D., Kleinberg, J., and Tardos, E. (2003). Maximizing the spread of influence through a social network.
In KDD '03: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 137-146. ACM Press.
Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. (1978). An analysis of approximations for maximizing submodular set functions I.
Mathematical Programming, 14(1):265-294.

## references (cont.)

逗
Trevisan, L. (2012).
Max cut and the smallest eigenvalue.
SIAM Journal on Computing, 41(6):1769-1786.

