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motivation

e combinatorial optimization is concerned with problems of
the form
max{f(S): S e F}

min{f(S) : S € F}
where 7 : 2Y — R is a function defined on a ground set U
and F is the discrete set of feasible solutions.

e F could contain exponentially many solutions

e one way to make the problem fractable is to exploit the

properties of f and F



motivation

¢ in the continuous case, a function g : R — R can be
— minimized efficiently if g is convex

— maximized efficiently if g is concave

e submodularity plays the role of concavity / convexity in the

discrete regime



motivation

submodular

functions




motivation

e submodular optimization can provide elegant solutions to

many machine learning problems including

— MAP inference in Markov Random Fields

variable selection / regularization

clustering

structure learning in graphical models

active learning

determinantal point processes



submodular (set) functions

e consider a ground set U
o afunction 7 : 2Y — R is submodular if
f(A)+f(B) > f(AUB) + f(AN B)
forall AABC U
e equivalently (“diminishing returns”)
f(AU{x}) — f(A) > f(BU{x}) — f(B)

foral ACBC Uandx e U\ B



submodular (set) functions

e intuitively submodularity says that “you have more
to gain from something new, if you have less to begin
with"

¢ in some sense submodular functions are the discrete
analogue of concave functions (but also has strong ties to

convexity as we will see later)



submodular (set) functions

e afunction g : R — R is concave if the derivative g/(x)
is non-increasing in x
e fis submodular if the “discrete derivative"
f(AU {x}) — f(A)
is non-increasing in x
e suppose h: N — R and
f(A) = h(|A))

then f is submodular iff h is concave



submodular (set) functions

e closedness: submodularity is closed under

nonnegative linear combinations

fy,- -+, f;» submodular functions on U and
oy, ,am > 0. then

f(A) =3 aifi(A)
i=1

is submodular



submodular (set) functions

e restriction: f is submodularon U, W C U. then
f'(A) = f(An W)
is submodular
e conditioning: f is submodular on U, W C U. then
f'(A) = f(AU W)
is submodular
e reflection: 7 is submodular on U then
f'(A) = f(U\ A)

is submodular



submodular (set) functions

e if f is submodular then —f is supermodular
e fis modular (additive) if f is both supermodular and

submodular. e.g.,

i€eA

where w(/) is some constant, Vi € U



submodular (set) functions

may or may not satisfy the following properties
e non-negative : f(A) > 0forall AC U
e monotone : f(A) < f(B)foral AC BC U

e symmetric : f(A) = f(U\ A)forall AC U



examples

e coverage in set systems

= monotone and non-negative

e cut functions in undirected graphs and hypergraphs

= symmetric and non-negative

e cut functions in directed graphs

= non-negative



example: coverage in set systems

e V={1,...,n}
e U=1{S5,..., Sy} acollection of subsets of V

function f: 2V — R,

coverage :
f(A) = | Ujea Si

weighted coverage :

w:U—Ry and f(A)= ) w(x)

XGU/GAS/



example: set cover and maximum coverage

¢ set cover: choose the set A of minimum cardinality
such that all elements of U is covered

f(A) = |Ujea Si| = |U]

e maximum coverage: given k € N, select a set A

of cardinality k such that
f(A) = | Uiea Si

is maximized



example: nr of colors of balls in an urn

e consider an urn containing colored balls.

e given a set S of balls, f(S) counts the number of distinct
colorsin S

r<® <@
o/ \ueb

Initial value: 2 (colors in urn). Initial value: 3 (colors in urn).
New value with added blue ball: 3 New value with added blue ball: 3



example: cut in graphs

e consider undirected graph G = (V. E)

o cut function 7 : 2¥ — R, defined as f(S) = |E(S, V' \ S)|




example: cut in graphs

e define (S) from

f(S)= > fij(Sn{ij})

(i))eE

where f;; is the cut function in subgraph {/. /}

e f;;is submodular so is f

e follows from closedness and restriction properties



example: entropy

e entropy of a discrete random variable X

Z Pr (x) log Pr (x)
e entropy of X conditioned on Y

HX | Y) == Pr(x,y)log P;ﬁ)((’y})’ )
X,y




example: entropy

e given nrandom variables U = {Xj};c[1 5, define
f(A) = H(Xa)

to be the joint entropy of the variables indexed by A.

e fis submodular



example: entropy

e suppose that A C B, X, € U, then

F(AU {Xe}) — F(A) = H(Xa, Xe) — H(Xa)
H(Xe | Xa) “information never hurts"
H(Xe | XB)

v

e information never hurts: conditioning on data never
increases uncertainty

e mutual information is also submodular

I(A) = f(A) + f(U\ A) — f(U)



the maximization problem

e given submodular function f : 2V — R
find S C X to maximize f(S)

subject to constraints

e value-oracle model
e generalizes many interesting NP-hard problems
e minimization problem is polynomial in the

unconstrained case (e.g., min-cut)



monotone submodular functions

f(U) trivial maximizer in the unconstrained case

more interesting to maximize under cardinality constraints

find S C U subject to |S| < k that maximizes f(S)

MAX k-COVER is a special case

greedy gives (1 — 1/e) approximation
[Nemhauser et al., 1978]

¢ no better approximation unless P=NP



the greedy algorithm

1. S« 0

2. while [S| < k

3. i< argmax;f(SU{j})—f(S)
4 S+ Su{i}

5

. return S



analysis of the greedy

e S* : the optimal solution
e S = {xq,---,x} : thefirst j elements picked by the greedy
e let f(x; | S;_1) denote the marginal gain of adding the
J-th element to S;_;
0 | Sj-1) = 1(S)) = (Sj-1)

e hence

k
fol‘sl 1
j=1



analysis of the greedy

e claim: H(S) — HS)
f(x; | Sj-1) = p =

e proof. first we need to state a property of submodular
functions:

— if f is submodular, then the following holds VA, B C U:

+ > f(x|B)— ) f(x| AUB\{x})

X€A\B XeB\A

(see Proposition 2.1 in [Nemhauser et al., 1978] for all
similar properties)



analysis of the greedy

e proof (cont'd). using this property, we have

(S)<HS-1)+ D, flx[S)
XeS*\S;_4
- ) fxISUS\{x})

X€S;_1\S*

which further implies (due to monotonicity of f):

(S-S < Y fx|Sa)

XES\S)_;



analysis of the greedy

e proof (cont'd). using also the fact that Vx € V' \ S;_1:
f0] Sj1) > f(x | §;-4)
since otherwise x; wouldn't be selected by greedy, we

have:
(S)—f(S)< > f(x]|S)
X€S*\S;_
<k 0] Sj-1)

e we have just proved our claim



analysis of the greedy

e continuing the analysis of greedy, we have
f(S*) — f(S)) < (1 —1/k)f(S*) (by induction)

f(S*) — f(Sk) < (1~ 1/k)¥H(S")

f(Sk) = (1= (1 =1/K))(S")

> (1 - l) f(S%)



widely occurs in algorithmic data mining

e example : maximize the spread of influence in
social networks [Kempe et al., 2003]



influence maximization

» Social Influence Induced Viral Phenomena

(LTR[0T Crumpy Cat
l « 25K+ votes in Reddit (< 1 day)
wgl’.'l'“’!nx * 1M+ views in Imgur

* 300+ variants in Reddit :|>(< 2 days)
* 100+ Quickmeme macros

nice meme! indeed!

@@]o——0[Ex]




influence maximization

Influence in Online Social Networks

Viral Marketing”

exploit the “word of mouth” effect in a social network to achieve
marketing goals through self-replicating viral processes

) B
H(\ﬁail' Gmail

- Attached a promotional message with  « Sign-up to the service only through

a clickable URL for free sign up invitation from a friend
- Merely spent $50K » No money spent on marketing
* 12M users signed up within the first * Resulted in bidding on Ebay for
18 months invites



influence maximization

Influence Maximization

Discrete Optimization Problem’ )
. Gi 7\
Given ‘& &
- a directed social network G = (V,E) e
. @ & €
+ a propagation model m ¥ i "R "
- a cardinality budget k ¢ & €& &
* Define

« S:initial set of k (seed) nodes to start the propagation
* om(S): expected size of the influence propagation from S
« Find

S* = argmax 0,,(5)
SCV,|S|=k



non-monotone functions

unconstrained version becomes interesting
find S C X to maximize f(S)

generalizes MAX-CUT

what do we know about approximation?

e random set gives 1/2 (1/4 for MAX-DICUT)
e SDP gives 0.878 (0.796 for MAX-DICUT)
major breakthrough [Goemans and Williamson, 1995]

0.53 by spectral approach [Trevisan, 2012]



unconstrained problem

[Feige et al., 2011]

first constant-factor approximations for non-negative
submodular functions

simple algorithms: randomized / deterministic,
non-adaptive / adaptive

1/2 approx for symmetric functions
2/5 = 0.4 approx for the non-negative functions

lower bound: better than 1/2 approx requires exponential
number of value queries



unconstrained problem
[Feige et al., 2011]

e pick a random set
1/4 for non-negative function (on expectation)

1/2 for symmetric function (on expectation)

e |ocal search
— initialize S to best singleton
— S =local optimum (add or delete elements)
— returnthe bestof Sand U\ S
1/3 approx for non-negative function

1/2 for non-negative symmetric function



random set analysis

o for AC U, A(p) is a random set where each element
of A is selected with prob p
e algorithm returns R = U(1/2)

e lemma |
E[f(A(p))] = (1 — p) f(0) + pf(A)

can prove by induction on the size of A
and using the submodularity property

e lemma ll
E[f(A(p) U B(q))] = (1—-p)(1—q)f(0)+
p(1—q)f(A) +

(1-p)qf(B)+
pq f(AU B)

to prove use lemma |



random set analysis

e algorithm returns

R=U(1/2) = S*(1/2) U S*(1/2)

e by applying lemma Il

E[f(R)] = EIf(S*(1/2)L S*(1/2))]
1

[PPURS [PPSR
= 210+ 21(S") + 21(5°) + 7f(U)

e gives 1/4 for non-negative and 1/2 for symmetric function



unconstrained problem

[Feige et al., 2011]

¢ local search
— initialize S to best singleton
— S =local optimum (add or delete elements)
— returnthe bestof Sand U\ S

1/3 approx for non-negative function

1/2 for non-negative symmetric function



analysis of local search

e lemma if Sis a local optimum then
f(S)=f(T)foral SC Tand TC S

e proof
take SC TandconsiderS=X, C ... X, =T
by submodularity and local optimality
0> f(Su{xi}) — £(S) = (X;) — f(Xi—1)

summing up gives 0 > 7(X;) — (Xp) or f(S) > (T)
e corollary

for optimum S* and local optimum S it is
f(S) > f(SuS*)and f(S) > f(SN S*)



analysis of local search (cont)

e itis
f(S)>f(SUS*) and f(S) > f(SNSY)

e by submodularity and non-negativity

F(SUS*) + f(U\ S) > (S*\ S) + f(U) > f(S*\ S)
(SN S*) +£(S*\ S) = f(S*) + f(0) > £(S*)

e combining we get

2f(S) + f(U\ S) > £(S*)

e and so ]
max{f(S),f(U\ S)} > éf(S*)



unconstrained problem

[Buchbinder et al., 2015]

e tight 1/2 approximation for general non-negative
submodular function

e randomized algorithm, approximation 1/2

e deterministic algorithm, approximation 1/3



deterministic algorithm

[Buchbinder et al., 2015]

Algorithm 1: DeterministicUSM( f, V)

1 Xo+ 0, Yy N.

2 fori =11t ndo

3 ai < f(Xi—1U{ui}) — f(Xio1).

bi + f(Yi1 \{wi}) — f(Yi-1).

if a; > bz then Xl — Xi—l U {UZ}, Y; — Y;'_l.
else XZ — X@‘_l, Y; — Yvi_l \ {u,}

7 return X, (or equivalently Y,,).

S A




randomized algorithm

[Buchbinder et al., 2015]

Algorithm 2: RandomizedUSM( f, )

1 Xg @, Yy N.

2 for i =11t ndo

3 a; < f(Xifl @) {u,}) — f(Xz'fl)-

4 | b f(Yier \{ui}) = f(Yiz1).

5 a; < max{a;, 0}, b} < max{b;,0}.

6 | with probability a//(a} + b,)" do:

Xi — XioiU{w}, Vs < Y.

7 else (with the compliment probability b} /(a + b}))
| do: Xz «— Xi,1, Y; — }/i,1 \ {’U,z}

8 return X,, (or equivalently Y,,).

“1If @) = b, =0, we assume a/(a; + ) = 1.




max-sum diversification

[Borodin et al., 2012]

Uis a ground set

d: U x U — Ris ametric distance function on U

f-2V 5 Ris asubmodular function

we want to find S C U such that
(S) = 1(S) + A >_, ves d(u, v) is maximized and
S| < k



max-sum diversification

[Borodin et al., 2012]

e consider SC Uand x € U\ S

e define the following types of marginal gain
d(S) = 2_ves d(x, V)
(S) =f(SU{x})—£(S)
$x(S) = 31(S) + Ad(S)

e greedy algorithm on marginal gain ¢,(S) gives
factor 2 approximation



max-sum diversification — the greedy

[Borodin et al., 2012]

1. S« 0

2. while |S| < k

3. i< argmaxgey sy 9j(S)
4. S Sufi

5

. return S
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