
CS-E4070 — Computational learning theory

Slide set 09 : submodular functions

Cigdem Aslay and Aris Gionis

Aalto University

spring 2019

motivation

• combinatorial optimization is concerned with problems of
the form

max{f (S) : S ∈ F}
min{f (S) : S ∈ F}

where f : 2U → R is a function defined on a ground set U

and F is the discrete set of feasible solutions.

• F could contain exponentially many solutions

• one way to make the problem tractable is to exploit the

properties of f and F

motivation

• in the continuous case, a function g : R→ R can be

– minimized efficiently if g is convex

– maximized efficiently if g is concave

• submodularity plays the role of concavity / convexity in the

discrete regime

motivation

motivation

• submodular optimization can provide elegant solutions to

many machine learning problems including

– MAP inference in Markov Random Fields

– variable selection / regularization

– clustering

– structure learning in graphical models

– active learning

– determinantal point processes

submodular (set) functions

• consider a ground set U

• a function f : 2U → R is submodular if

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B)

for all A,B ⊆ U

• equivalently (“diminishing returns”)

f (A ∪ {x})− f (A) ≥ f (B ∪ {x})− f (B)

for all A ⊆ B ⊆ U and x ∈ U \ B

submodular (set) functions

• intuitively submodularity says that “you have more

to gain from something new, if you have less to begin

with"

• in some sense submodular functions are the discrete

analogue of concave functions (but also has strong ties to

convexity as we will see later)

submodular (set) functions

• a function g : R→ R is concave if the derivative g′(x)

is non-increasing in x

• f is submodular if the “discrete derivative"

f (A ∪ {x})− f (A)

is non-increasing in x

• suppose h : N→ R and

f (A) = h(|A|)

then f is submodular iff h is concave

submodular (set) functions

• closedness: submodularity is closed under

nonnegative linear combinations

– f1, · · · , fm submodular functions on U and
– α1, · · · , αm > 0. then

f (A) =
m∑

i=1

αi fi(A)

– is submodular

submodular (set) functions

• restriction: f is submodular on U, W ⊆ U. then

f ′(A) = f (A ∩W)

is submodular

• conditioning: f is submodular on U, W ⊆ U. then

f ′(A) = f (A ∪W)

is submodular

• reflection: f is submodular on U then

f ′(A) = f (U \ A)

is submodular

submodular (set) functions

• if f is submodular then −f is supermodular

• f is modular (additive) if f is both supermodular and

submodular. e.g.,

f (A) =
∑

i∈A

w(i)

where w(i) is some constant, ∀i ∈ U

submodular (set) functions

may or may not satisfy the following properties

• non-negative : f (A) ≥ 0 for all A ⊆ U

• monotone : f (A) ≤ f (B) for all A ⊆ B ⊆ U

• symmetric : f (A) = f (U \ A) for all A ⊆ U

examples

• coverage in set systems

⇒ monotone and non-negative

• cut functions in undirected graphs and hypergraphs

⇒ symmetric and non-negative

• cut functions in directed graphs

⇒ non-negative

example: coverage in set systems

• V = {1, . . . ,n}

• U = {S1, . . . ,Sm} a collection of subsets of V

• function f : 2U → R+

• coverage :
f (A) = | ∪i∈A Si |

• weighted coverage :

w : U → R+ and f (A) =
∑

x∈∪i∈ASi

w(x)

example: set cover and maximum coverage

• set cover: choose the set A of minimum cardinality
such that all elements of U is covered

f (A) = | ∪i∈A Si | = |U|

• maximum coverage: given k ∈ N+, select a set A

of cardinality k such that

f (A) = | ∪i∈A Si |

is maximized

example: nr of colors of balls in an urn

• consider an urn containing colored balls.

• given a set S of balls, f (S) counts the number of distinct
colors in S

example: cut in graphs

• consider undirected graph G = (V ,E)

• cut function f : 2V → R+ defined as f (S) = |E(S,V \ S)|

Maximization of submodular set functions. Helsinki algorithms seminar, 10 Jan 2014

S

example: cut in graphs

✦ undirected graph

✦ with

6

G = (V, E)

f : 2V ! R+ f(S) = |E(S, V \ S)|

example: cut in graphs

• define f (S) from

f (S) =
∑

(i,j)∈E

fi,j(S ∩ {i , j})

where fi,j is the cut function in subgraph {i , j}

• fi,j is submodular so is f

• follows from closedness and restriction properties

example: entropy

• entropy of a discrete random variable X

H(X) = −
∑

x

Pr (x) log Pr (x)

• entropy of X conditioned on Y

H(X | Y) = −
∑

x ,y

Pr (x , y) log
Pr (x , y)
Pr (y)

example: entropy

• given n random variables U = {Xi}i∈[1,n], define

f (A) = H(XA)

to be the joint entropy of the variables indexed by A.

• f is submodular

example: entropy

• suppose that A ⊆ B, Xe ∈ U, then

f (A ∪ {Xe})− f (A) = H(XA,Xe)− H(XA)

= H(Xe | XA) “information never hurts"
≥ H(Xe | XB)

• information never hurts: conditioning on data never

increases uncertainty

• mutual information is also submodular

I(A) = f (A) + f (U \ A)− f (U)

the maximization problem

• given submodular function f : 2U → R

find S ⊆ X to maximize f (S)

subject to constraints

• value-oracle model

• generalizes many interesting NP-hard problems

• minimization problem is polynomial in the

unconstrained case (e.g., min-cut)

monotone submodular functions

• f (U) trivial maximizer in the unconstrained case

• more interesting to maximize under cardinality constraints

• find S ⊆ U subject to |S| ≤ k that maximizes f (S)

• MAX k -COVER is a special case

• greedy gives (1− 1/e) approximation

[Nemhauser et al., 1978]

• no better approximation unless P=NP

the greedy algorithm

1. S ← ∅
2. while |S| < k

3. i ← arg maxj f (S ∪ {j})− f (S)

4. S ← S ∪ {i}
5. return S

analysis of the greedy

• S∗ : the optimal solution

• Sj = {x1, · · · , xj} : the first j elements picked by the greedy

• let f (xj | Sj−1) denote the marginal gain of adding the

j-th element to Sj−1

f (xj | Sj−1) = f (Sj)− f (Sj−1)

• hence

f (S) =
k∑

j=1

f (xj | Sj−1)

analysis of the greedy

• claim:

f (xj | Sj−1) ≥
f (S∗)− f (Sj−1)

k

• proof. first we need to state a property of submodular
functions:

– if f is submodular, then the following holds ∀A,B ⊆ U:

f (A) ≤ f (B) +
∑

x∈A\B

f (x | B)−
∑

x∈B\A

f (x | A ∪ B \ {x})

(see Proposition 2.1 in [Nemhauser et al., 1978] for all
similar properties)

analysis of the greedy

• proof (cont’d). using this property, we have

f (S∗) ≤ f (Sj−1) +
∑

x∈S∗\Sj−1

f (x | Sj−1)

−
∑

x∈Sj−1\S∗
f (x | S∗ ∪ Sj−1 \ {x})

which further implies (due to monotonicity of f):

f (S∗)− f (Sj−1) ≤
∑

x∈S∗\Sj−1

f (x | Sj−1)

analysis of the greedy

• proof (cont’d). using also the fact that ∀x ∈ V \ Sj−1:

f (xj | Sj−1) ≥ f (x | Sj−1)

since otherwise xj wouldn’t be selected by greedy, we
have:

f (S∗)− f (Sj−1) ≤
∑

x∈S∗\Sj−1

f (x | Sj−1)

≤ k · f (xj | Sj−1)

• we have just proved our claim

analysis of the greedy

• continuing the analysis of greedy, we have

f (S∗)− f (Sj) ≤ (1− 1/k)j f (S∗) (by induction)

f (S∗)− f (Sk) ≤ (1− 1/k)k f (S∗)

f (Sk) ≥ (1− (1− 1/k)k)f (S∗)

≥
(

1− 1
e

)
f (S∗)

widely occurs in algorithmic data mining

• example : maximize the spread of influence in
social networks [Kempe et al., 2003]

influence maximization

influence maximization

influence maximization

non-monotone functions

• unconstrained version becomes interesting

• find S ⊆ X to maximize f (S)

• generalizes MAX-CUT

• what do we know about approximation?

• random set gives 1/2 (1/4 for MAX-DICUT)

• SDP gives 0.878 (0.796 for MAX-DICUT)
major breakthrough [Goemans and Williamson, 1995]

• 0.53 by spectral approach [Trevisan, 2012]

unconstrained problem

[Feige et al., 2011]

• first constant-factor approximations for non-negative
submodular functions

• simple algorithms: randomized / deterministic,
non-adaptive / adaptive

• 1/2 approx for symmetric functions

• 2/5 = 0.4 approx for the non-negative functions

• lower bound: better than 1/2 approx requires exponential
number of value queries

unconstrained problem

[Feige et al., 2011]

• pick a random set

1/4 for non-negative function (on expectation)

1/2 for symmetric function (on expectation)

• local search

– initialize S to best singleton

– S = local optimum (add or delete elements)

– return the best of S and U \ S

1/3 approx for non-negative function

1/2 for non-negative symmetric function

random set analysis

• for A ⊆ U, A(p) is a random set where each element
of A is selected with prob p

• algorithm returns R = U(1/2)

• lemma I
E [f (A(p))] ≥ (1− p) f (∅) + p f (A)

can prove by induction on the size of A
and using the submodularity property

• lemma II

E [f (A(p) ∪ B(q))] ≥ (1− p)(1− q) f (∅) +
p(1− q) f (A) +
(1− p)q f (B) +

pq f (A ∪ B)

to prove use lemma I

random set analysis

• algorithm returns

R = U(1/2) = S∗(1/2) ∪ S∗(1/2)

• by applying lemma II

E [f (R)] = E [f (S∗(1/2) ∪ S∗(1/2))]

=
1
4

f (∅) + 1
4

f (S∗) +
1
4

f (S∗) +
1
4

f (U)

• gives 1/4 for non-negative and 1/2 for symmetric function

unconstrained problem

[Feige et al., 2011]

• local search

– initialize S to best singleton

– S = local optimum (add or delete elements)

– return the best of S and U \ S

1/3 approx for non-negative function

1/2 for non-negative symmetric function

analysis of local search

• lemma if S is a local optimum then
f (S) ≥ f (T) for all S ⊆ T and T ⊆ S

• proof
take S ⊆ T and consider S = X0 ⊆ . . .X` = T
by submodularity and local optimality

0 ≥ f (S ∪ {xi})− f (S) ≥ f (Xi)− f (Xi−1)

summing up gives 0 ≥ f (X`)− (X0) or f (S) ≥ (T)

• corollary
for optimum S∗ and local optimum S it is
f (S) ≥ f (S ∪ S∗) and f (S) ≥ f (S ∩ S∗)

analysis of local search (cont)

• it is
f (S) ≥ f (S ∪ S∗) and f (S) ≥ f (S ∩ S∗)

• by submodularity and non-negativity

f (S ∪ S∗) + f (U \ S) ≥ f (S∗ \ S) + f (U) ≥ f (S∗ \ S)

f (S ∩ S∗) + f (S∗ \ S) ≥ f (S∗) + f (∅) ≥ f (S∗)

• combining we get

2f (S) + f (U \ S) ≥ f (S∗)

• and so
max{f (S), f (U \ S)} ≥ 1

3
f (S∗)

unconstrained problem

[Buchbinder et al., 2015]

• tight 1/2 approximation for general non-negative
submodular function

• randomized algorithm, approximation 1/2

• deterministic algorithm, approximation 1/3

deterministic algorithm

[Buchbinder et al., 2015]

Maximization of submodular set functions. Helsinki algorithms seminar, 10 Jan 2014

deterministic algorithm
✦ [Buchbinder-Feldman-Naor-Schwartz-2012]

21

of unconstrained submodular minimization can be solved in
polynomial time [32].

Another line of work deals with maximizing normalized
monotone submodular functions, again, subject to various
combinatorial constraints. A continuous greedy algorithm
was given by Calinescu et al. [3] for maximizing a nor-
malized monotone submodular function subject to a matroid
constraint. Later, Lee et al. [31] gave a local search algo-
rithm achieving 1/p−ε approximation for maximizing such
functions subject to the intersection of p matroids. Kulik
et al. [28] showed a 1 − 1/e − ε approximation algorithm
for maximizing a normalized monotone submodular function
subject to multiple knapsack constraints. Recently, Chekuri
et al. [5] and Feldman et al. [13] gave non-monotone
counterparts of the continuous greedy algorithm of [3], [38].
These results improve several non-monotone submodular
optimization problems. Some of the above results were
generalized by Chekuri et al. [4], who provide a dependent
rounding technique for various polytopes, including matroid
and matroid-intersection polytops. The advantage of this
rounding technique is that it guarantees strong concentration
bounds for submodular functions. Additionally, Chekuri et
al. [5] define a contention resolution rounding scheme which
allows one to obtain approximations for different combina-
tions of constraints.

II. A DETERMINISTIC (1/3)-APPROXIMATION
ALGORITHM

In this section we present a deterministic linear time
algorithm for USM. The algorithm proceeds in n iterations
that correspond to some arbitrary order u1, . . . , un of the
ground set N . The algorithm maintains two solutions X and
Y . Initially, we set the solutions to X0 = ∅ and Y0 = N .
In the ith iteration the algorithm either adds ui to Xi−1

or removes ui from Yi−1. This decision is done greedily
based on the marginal gain of each of the two options.
Eventually, after n iterations both solutions coincide, and
we get Xn = Yn; this is the output of the algorithm. A
formal description of the algorithm appears as Algorithm 1.

Algorithm 1: DeterministicUSM(f, N)

1 X0 ← ∅, Y0 ← N .
2 for i = 1 to n do
3 ai ← f(Xi−1 ∪ {ui})− f(Xi−1).
4 bi ← f(Yi−1 \ {ui})− f(Yi−1).
5 if ai ≥ bi then Xi ← Xi−1 ∪ {ui}, Yi ← Yi−1.
6 else Xi ← Xi−1, Yi ← Yi−1 \ {ui}.

7 return Xn (or equivalently Yn).

The rest of this section is devoted for proving Theo-
rem I.1, i.e., we prove that the approximation guarantee
of Algorithm 1 is 1/3. Denote by ai the change in value

of the first solution if element ui is added to it in the
ith iteration, i.e., f(Xi−1 ∪ {ui}) − f(Xi−1). Similarly,
denote by bi the change in value of the second solution
if element ui is removed from it in the ith iteration, i.e.,
f(Yi−1\{ui})−f(Yi−1). We start with the following useful
lemma.

Lemma II.1. For every 1 ≤ i ≤ n, ai + bi ≥ 0.

Proof: Notice that (Xi−1 ∪ {ui})∪ (Yi \ {ui}) = Yi−1

and (Xi−1∪{ui})∩(Yi\{ui}) = Xi−1. By combining both
observations with submodularity, one gets:

ai + bi = [f(Xi−1 ∪ {ui})− f(Xi−1)] +

[f(Yi−1 \ {ui})− f(Yi−1)]

= [f(Xi−1 ∪ {ui}) + f(Yi−1 \ {ui})]−
[f(Xi−1) + f(Yi−1)] ≥ 0 .

Let OPT denote an optimal solution. Define OPTi !
(OPT ∪Xi)∩Yi. Thus, OPTi coincides with Xi and Yi on
elements 1, . . . , i, and it coincides with OPT on elements
i + 1, . . . , n. Note that OPT0 = OPT and the output of
the algorithm is OPTn = Xn = Yn. Examine the sequence
f(OPT0), . . . , f(OPTn), which starts with f(OPT) and
ends with the value of the output of the algorithm. The
main idea of the proof is to bound the total loss of value
along this sequence. This goal is achieved by the following
lemma which upper bounds the loss in value between every
two consecutive steps in the sequence. Formally, the loss
of value, i.e., f(OPTi−1)− f(OPTi), is no more than the
total increase in value of both solutions maintained by the
algorithm, i.e., [f(Xi)− f(Xi−1)] + [f(Yi)− f(Yi−1)].

Lemma II.2. For every 1 ≤ i ≤ n,

f(OPTi−1)−f(OPTi) ≤
[f(Xi)− f(Xi−1)] + [f(Yi)− f(Yi−1)] .

Before proving Lemma II.2, let us show that Theorem I.1
follows from it.

Proof of Theorem I.1: Summing up Lemma II.2 for
every 1 ≤ i ≤ n gives:

n∑

i=1

[f(OPTi−1)− f(OPTi)] ≤

n∑

i=1

[f(Xi)− f(Xi−1)] +

n∑

i=1

[f(Yi)− f(Yi−1)] .

The above sum is telescopic. Collapsing it, we get:

f(OPT0)− f(OPTn) ≤
[f(Xn)− f(X0)] + [f(Yn)− f(Y0)] ≤ f(Xn) + f(Yn) .

Recalling the definitions of OPT0 and OPTn, we obtain
that f(Xn) = f(Yn) ≥ f(OPT)/3.

It is left to prove Lemma II.2.

randomized algorithm

[Buchbinder et al., 2015]

Maximization of submodular set functions. Helsinki algorithms seminar, 10 Jan 2014

randomized algorithm

25

Algorithm 2: RandomizedUSM(f, N)

1 X0 ← ∅, Y0 ← N .
2 for i = 1 to n do
3 ai ← f(Xi−1 ∪ {ui})− f(Xi−1).
4 bi ← f(Yi−1 \ {ui})− f(Yi−1).
5 a′

i ← max{ai, 0}, b′
i ← max{bi, 0}.

6 with probability a′
i/(a′

i + b′
i)

* do:
Xi ← Xi−1 ∪ {ui}, Yi ← Yi−1.

7 else (with the compliment probability b′
i/(a′

i + b′
i))

do: Xi ← Xi−1, Yi ← Yi−1 \ {ui}.
8 return Xn (or equivalently Yn).

* If a′
i = b′

i = 0, we assume a′
i/(a′

i + b′
i) = 1.

always holds: OPTn = Xn = Yn. The proof idea is similar
to that of the deterministic algorithm in Section II when
considering the sequence E[f(OPT0)], . . . , E[f(OPTn)].
This sequence starts with f(OPT) and ends with the
expected value of the algorithm’s output. The following
lemma upper bounds the loss of two consecutive elements
in the sequence. Formally, E[f(OPTi−1) − f(OPTi)] is
upper bounded by the average expected change in the
value of the two solutions maintained by the algorithm, i.e.,
1/2 · E [(f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)].

Lemma III.1. For every 1 ≤ i ≤ n,

E [f(OPTi−1)− f(OPTi)] ≤
1

2
· E [(f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)] , (1)

where expectations are taken over the random choices of the
algorithm.

Before proving Lemma III.1, let us show that Theorem I.2
follows from it.

Proof of Theorem I.2: Summing up Lemma III.1 for
every 1 ≤ i ≤ n yields:

n∑

i=1

E [f(OPTi−1)− f(OPTi)] ≤

1

2
·

n∑

i=1

E [f(Xi)− F (Xi−1) + f(Yi)− F (Yi−1)] .

The above sum is telescopic. Collapsing it, we get:

E [f(OPT0)− f(OPTn)] ≤
1

2
· E [f(Xn)− f(X0) + f(Yn)− f(Y0)] ≤

E[f(Xn) + f(Yn)]

2
.

Recalling the definitions of OPT0 and OPTn, we obtain
that E[f(Xn)] = E[f(Yn)] ≥ f(OPT)/2.

It is left to prove Lemma III.1.

Proof of Lemma III.1: Notice that it suffices to prove
Inequality (1) conditioned on any event of the form Xi−1 =
Si−1, when Si−1 ⊆ {u1, . . . , ui−1} and the probability
that Xi−1 = Si−1 is non-zero. Hence, fix such an event
for a given Si−1. The rest of the proof implicitly assumes
everything is conditioned on this event. Notice that due to
the conditioning, the following quantities become constants:

• Yi−1 = Si−1 ∪ {ui, . . . , un}.

• OPTi−1 ! (OPT ∪Xi−1) ∩ Yi−1 =

Si−1 ∪ (OPT ∩ {ui, . . . , un}).

• ai and bi.

Moreover, by Lemma II.1, ai + bi ≥ 0. Thus, it cannot be
that both ai, bi are strictly less than zero. Hence, we only
need to consider the following 3 cases:

Case 1 (ai ≥ 0 and bi ≤ 0): In this case a′
i/(a′

i +
b′
i) = 1, and so the following always happen: Yi = Yi−1 =

Si−1∪{ui, . . . , un} and Xi ← Si−1∪{ui}. Hence, f(Yi)−
f(Yi−1) = 0. Also, by our definition OPTi = (OPT∪Xi)∩
Yi = OPTi−1 ∪ {ui}. Thus, we are left to prove that:

f(OPTi−1)− f(OPTi−1 ∪ {ui}) ≤
1

2
· [f(Xi)− f(Xi−1)] =

ai

2
.

If ui ∈ OPT , then the left hand side of the last expression
is 0, which is clearly no larger than the non-negative ai/2.
If ui ̸∈ OPT , then:

f(OPTi−1)− f(OPTi−1 ∪ {ui}) ≤
f(Yi−1 \ {ui})− f(Yi−1) = bi ≤ 0 ≤ ai/2 .

The first inequality follows from submodularity since
OPTi−1 ! (OPT ∪ Xi−1) ∩ Yi−1 ⊆ Yi−1 \ {ui} (note
that ui ∈ Yi−1 and ui ̸∈ OPTi−1).

Case 2 (ai < 0 and bi ≥ 0): This case is analogous
to the previous one, and therefore, we omit its proof.

Case 3 (ai ≥ 0 and bi > 0): In this case a′
i = ai, b

′
i =

bi. Therefore, with probability ai/(ai + bi) the following
events happen: Xi ← Xi−1 ∪ {ui} and Yi ← Yi−1, and
with probability bi/(ai + bi) the following events happen:
Xi ← Xi−1 and Yi ← Yi−1 \ {ui}. Thus,

E[f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)] =
ai

ai + bi
· [f(Xi−1 ∪ {ui})− f(Xi−1)] +

bi

ai + bi
· [f(Yi−1 \ {ui})− f(Yi−1)]

=
a2

i + b2
i

ai + bi
. (2)

max-sum diversification

[Borodin et al., 2012]

• U is a ground set

• d : U × U → R is a metric distance function on U

• f : 2U → R is a submodular function

• we want to find S ⊆ U such that

φ(S) = f (S) + λ
∑

u,v∈S d(u, v) is maximized and

|S| ≤ k

max-sum diversification

[Borodin et al., 2012]

• consider S ⊆ U and x ∈ U \ S

• define the following types of marginal gain

dx(S) =
∑

v∈S d(x , v)

fx(S) = f (S ∪ {x})− f (S)

φx(S) = 1
2 fx(S) + λdx(S)

• greedy algorithm on marginal gain φx(S) gives
factor 2 approximation

max-sum diversification – the greedy

[Borodin et al., 2012]

1. S ← ∅
2. while |S| < k

3. i ← arg max{j∈U\S} φj(S)

4. S ← S ∪ {i}
5. return S

references

Borodin, A., Lee, H. C., and Ye, Y. (2012).
Max-sum diversification, monotone submodular functions
and dynamic updates.
In Proceedings of the 31st symposium on Principles of
Database Systems, pages 155–166. ACM.

Buchbinder, N., Feldman, M., Seffi, J., and Schwartz, R.
(2015).
A tight linear time (1/2)-approximation for unconstrained
submodular maximization.
SIAM Journal on Computing, 44(5):1384–1402.

Feige, U., Mirrokni, V. S., and Vondrak, J. (2011).
Maximizing non-monotone submodular functions.
SIAM Journal on Computing, 40(4):1133–1153.

references (cont.)

Goemans, M. X. and Williamson, D. P. (1995).
Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming.
Journal of the ACM (JACM), 42(6):1115–1145.

Kempe, D., Kleinberg, J., and Tardos, E. (2003).
Maximizing the spread of influence through a social
network.
In KDD ’03: Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data
mining, pages 137–146. ACM Press.

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. (1978).
An analysis of approximations for maximizing submodular
set functions I.
Mathematical Programming, 14(1):265–294.

references (cont.)

Trevisan, L. (2012).
Max cut and the smallest eigenvalue.
SIAM Journal on Computing, 41(6):1769–1786.

