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Problem 1

See Lecture notes, Example 6.1.4.
Idea of Monte Carlo: We have a random variable, whose mean should be

the quantity we try to compute (the area of an ellipse), and standard deviation
measures the reliability of our simulations. These quantities are explored by
sampling (using a computer), rather than using pen-and-paper.

This model problem: We know the true values, but let’s pretend that we
don’t. Use Monte Carlo to estimate the expectation and standard deviance.

a-c) A computer is recommended
d) Denote the ellipse by A, and the rectangle by Ω. Randomly generated

points inside the rectangle are denoted by (xi, yi). The random variable Xi is
defined by

Xi =

{
1 if (xi, yi) ∈ A,
0 otherwise.

The expectation value (i.e., the percentage of random points inside the ellipse)
is now estimated by a computer simulation,

µ := E[Xi] ≈ ...

The variance (= standard deviation σ squared) of a random variable is de-
fined by

σ2 = Var(Xi) := E[(Xi − µ)2] = E[X2
i − 2µE[Xi] + µ2]

= E[X2
i ]− 2µE[Xi] + µ2 = E[X2

i ]− 2µ2 + µ2

= E[X2
i ]− µ2.

In this case,
X2
i = ...

e) Central Limit Theorem: “Quite often, the average of N independent ran-
dom variables with the mean µ, standard deviation σ, tends towards a Gaussian
distribution with the mean µ and std σ, as N increases” (see Wikipedia or some
book for proper definitions). In this case, the average is a random variable

AN :=
1

N

N∑
i=1

Xi,

1



with
E[AN ] = µ,

and

Var[AN ] =
1

N2

N∑
i=1

Var[Xi] =
σ2

N
.

After running N simulations, σ can be estimated by computing...
My test runs with N = 1000 and N = 5000 points, each of them repeated

10000 times to plot something Gaussian-like. Red bar = true value, histogram
= frequency of each simulation, curve = Gaussian with true µ, estimated σ:
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The width of the distribution decreases as N increases, as it should be.
f) The exact formula for the area of an ellipse is ...

Problem 2

a) We sample the function at the midpoint of each interval and multiply by the
width of the interval, so the integral estimation can be illustrated by...

b) Apply the midpoint rule for f(x) = cx + d, where c, d can be any real
numbers, and find out that∫ xi

xi−1

f(x) dx = hf(xi−1/2).

c) First, consider only a single interval, and try to figure out why∣∣∣∣∣
∫ xi

xi−1

f(x) dx− hf(xi−1/2)

∣∣∣∣∣ ≤ Ch3.
(As explained in the exercise sheet: insert the 1st order Taylor polynomial
evaluated at the midpoint + the error term into the integral, and see what
happens). Then, the number of intervals n is related to the interval length h as
... so you get the result.
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Exercise 3

UPDATED 5/21/2019
In other words, find the weights A0, A1 and the sample points x0, x1 such

that ∫ 3

−1
(x+ 1)f(x) dx = A0f(x0) +A1f(x1)

holds exactly for all functions of form f(x) =
∑3
i=0 cix

i.
Method 1: Brute force (Lecture notes 6.3) leads to a nonlinear system of four

equations, four unknowns. Is it solvable/how to solve it? But a more elegant
method is

Method 2: Denote

〈p, q〉w :=

∫ b

a

p(x)q(x)w(x) dx.

The polynomials p, q are said to be w-orthogonal, if 〈p, q〉w = 0.

Theorem 1 (6.3.4 from the Lecture notes) Let q be a (nontrivial) polyno-
mial of degree n+ 1 such that

〈q, xk〉w = 0 for k = 0, 1, ..., n. (1)

Let x0, ..., xn be the roots of q. Then the quadrature rule∫ b

a

f(x)w(x) dx ≈
n∑
i=0

Aif(xi)

is exact when f(x) is a polynomial of order up to 2n+ 1.

Now, we have weight w = x+1 and interval (a, b) = (−1, 3), two quadrature
points so n = 1. The first problem: find the polynomial q that fulfills (1). The
space Pn(a, b) denotes order n polynomials in the interval (a, b), and it is a
vector space of dimension n + 1. The bilinear form 〈·, ·〉w given above defines
an inner product in that space, and you can do “linear algebra”.

Orthogonal polynomial 1. We can assume q is monic (leading coefficient
is 1), so q(x) = c0 + c1x+ x2. Then the equation (1) becomes a linear system

c0〈1, 1〉w + c1〈x, 1〉w = −〈x2, 1〉w
c0〈1, x〉w + c1〈x, x〉w = −〈x2, x〉w,

from where you can solve c0, c1 (warning: numerically bad when the polynomial
order is large, Google for Hilbert matrix).

Orthogonal polynomial 2. Use Gram-Schmidt. Construct a w-orthogonal
basis {v0, v1, v2} for the space P2(−1, 3), where Pn(a, b) denotes order n poly-
nomials in the interval (a, b), and vi ∈ Pi(−1, 3). This can be done by Gram-
Schmidt, starting from the monomial basis {1, x, x2}:

v0 = 1

v1 = x− 〈x, v0〉w
〈v0, v0〉w

v0

v2 = x2 − 〈x
2, v0〉w
〈v0, v0〉w

v0 −
〈x2, v1〉w
〈v1, v1〉w

v1

3



Now, why q := v2 is a polynomial satisfying (1)?
Do a reality check with your polynomial: verify 〈q, 1〉w = 0 and 〈q, x〉w =

0. The quadrature points x0, x1 are the zeros of q. (By some theorem, the
quadrature points have to be inside (a, b) [??]). Finally, you can figure out the
weights A0, A1 by one way or another.

Exercise 4

Brute force: Insert f(x) = a0, f(x) = a0 + a1x, f(x) = a0 + a1x+ a2x
2 etc and

see when the quadrature rule fails to be exact for arbitrary an.
More clever: ?

MATLAB

a) Compute the Taylor polynomial coefficients at x0 = 0 by one way or another.
Plot the obtained Taylor polynomials of different orders, along with the original
function f(x) = esin(πx). Integrate the Taylor polynomial(s) over [−1, 1]. The
result: probably bad.

b) The n-point Gauss-Legendre quadrature rule integrates polynomial up to
order 2n− 1 exactly. Thus, use the Taylor theorem

f(x) = f(0) + f ′(0)x+
1

2!
f ′′(0)x2 + ...+

1

(2n− 1)!
f2n−1(0) +R2n(x),

with a suitable formula for the remainder term. Estimate the error
∫ 1

−1R2n(x) dx
somehow. You will probably get a very pessimistic estimate (i.e., the actual er-
ror is muuuuch smaller than the estimate).

Morale of the story (a-b): a Taylor polynomial Pn(x) ≈ esin(πx) is not a good
approximation in the interval [−1, 1]. (But the Gauss quadrature rule should
be ok).

The next question: How do you get a sensible error estimate? Ask the
lecturer, if you really want to know.

c) Compute the “exact” value Itrue =
∫ 1

−1 f(x) dx up to very many digits (use
premade libraries or whatever comes into your mind), and compare the results

In ≈
∫ 1

−1 f(x) dx obtained by an n-point quadrature rule with Itrue. Plot the
error (maybe using a log-plot or something similar, as in the 1st Exercise round).

CHALLENGE

Haven’t tried. Only if someone asks...
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