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submodular (set) functions

e a ground set U with n elements

e afunction 7 : 2V — R is submodular if satisfies

the “diminishing returns” property:
F(AU{x}) — f(A) = f(BU {x}) — f(B)

foral ACBC Uandx e U\ B



submodular function optimization

computational hardness differs w.r.t. the following:
e non-negativity of f: f(A) > 0forall AC U
e monotonicity of f : f(A) < f(B)foral AC BC U
e symmetry of f: f(A) = f(U\ A) forall AC U
e constraints : cardinality, knapsack, matroid ...

e objective : maximization or minimization



submodular function maximization

monotone submodular functions
e unconstrained case: trivial

e constrained case: NP-hard but well-approximable

e.g.,MAX-k-COVER



monotone submodular function maximization

cardinality constraints
e find S C U subject to |S| < k that maximizes f(S)

e MAX k-COVER is a special case
e greedy gives (1 — 1/e) approximation
[Nemhauser et al., 1978]

e no better approximation unless P=NP



monotone submodular function maximization

cardinality constraints

1. S« 0

2. while [S| < k

3. i< argmax;f(SU{j})—f(S)
4 S+ Su{i}

5

. return S



monotone submodular function maximization

analysis of the greedy

e S : the optimal solution
o 5= {x1.---,x} : thefirst j elements picked by the greedy
e let f(x; | S;_1) denote the marginal gain of adding the

J-th element to S; 4
f(x; | Sji-1) = f(S)) — 1(Sj-1)

e hence

k
=> 5181
J=1



monotone submodular function maximization

analysis of the greedy

e claim:
f(S*) — f(5j-1)

k

F(xi | §j-1) =

e proof. first we need to state a property of submodular
functions:

— if f is submodular, then the following holds VA, B C U:

+ > f(x|B) = Y f(x|AUB\{x})

X€A\B XEB\A

(see Proposition 2.1 in [Nemhauser et al., 1978] for all
similar properties)



monotone submodular function maximization

analysis of the greedy

e proof (contd). using this property, we have

f(S)<HS-0)+ Y flx]§-)
X€S*\Sj_4
- Y. fxISTUSLi\{x})

XESj,1\S*

which further implies (due to monotonicity of f):

(8)-fs )< S fx|S)
XES*\S/',1



monotone submodular function maximization

analysis of the greedy

e proof (cont'd). using also the fact that Vx ¢ V' \ S;_:
f(x; | Si—1) > f(x | Sj-1)
since otherwise x; wouldn’t be selected by greedy, we

have:
(S - KS)< Y. flx]|Siy)
XES*\Sj,1
< k-f(xi | S-1)

e we have just proved our claim



monotone submodular function maximization

analysis of the greedy
¢ continuing the analysis of greedy, we have
f(S*) — f(S) < (1 —1/kYf(S*) (by induction)

f(S*) — f(Sk) < (1 —1/k)KF(S¥)

f(Sk) > (1= (1 = 1/Kk))(S)

> <1 - ;) £(S*)



monotone submodular maximization

example - max-sum diversification [Borodin et al., 2012]

U is a ground set

d: Ux U — Risametric distance function on U

f: 2V — Ris a submodular function

we want to find S C U such that
?(S) = f(S) + A>_, ves d(u, v) is maximized and
|S| < k



monotone submodular maximization

example - max-sum diversification [Borodin et al., 2012]

e consider SC Uand x € U\ S

« define the following types of marginal gain
A(S) = Tyes d(x. V)
(S) = f(Su{x}) - £(S)
0x(S) = $1(S) + Ack(8)

e greedy algorithm on marginal gain ¢x(S) gives
factor 2 approximation



monotone submodular function maximization

combinatorial constraints

e matroids: abstract notion of feasibility

e amatroid M = (U, F) is a set system where U is the
ground set and F is family of independent (feasible)
subsets of U satisfying the following axioms:

— ifAe Fand B C Athen B € F (downward closure)
— ifA,Be Fand |B| < |Althendx € A\ B
such that BU {x} € F (augmentation)



monotone submodular function maximization
combinatorial constraints

e uniform matroid: A C U is independent if |A| < k

e partition matroid: U is partitioned in ¢ different non-empty
disjoint subsets

¢
U=JUand UinU=0,vij:i#]
i=1
— cardinality constraint k; on each partition U;, Vi € [1,/]
— A C Uis independent if

AN U < ki, Vie[1,K]



monotone submodular function maximization

combinatorial constraints

e graphic matroid: given a graph G = (V, E), define the
edge set E as the ground set

¢ then an edge set A C E is independent if the edge-induced

graph G4 = (Va, E4) does not contain any cycle

e F contains all forests and trees naturally



monotone submodular function maximization

combinatorial constraints

e given submodular monotone f: 2Y — R, and

matroid constraint M = (U, F)
max{f(A): Ae F}

e greedy gives (1/2) approximation
e in general, greedy gives 1/(1 + p) approximation when

there are p matroid constraints
[Fisher et al., 1978]



monotone submodular function maximization

combinatorial constraints

-t

LA
while Ix € U: AU {x} € F

x* < argmax f(AU {x}) — f(A)
AU{x}eF

A+ AU {x*}
U+ U\ {x*}

return A

w N

o a &



submodular function maximization

non-monotone submodular functions

e unconstrained case: NP-hard but well-approximable

e.g., MAX-CUT

e constrained case: NP-hard but well-approximable

e.g., document summarization [Lin et al., 2009]



non-monotone submodular maximization

unconstrained case
e first constant-factor approximations for non-negative
submodular functions by [Feige et al., 2011]

e simple algorithms: randomized / deterministic,
non-adaptive / adaptive

e 1/2 approx for symmetric functions
e 2/5 = 0.4 approx for the non-negative functions

e lower bound: better than 1/2 approx requires exponential
number of value queries



non-monotone submodular maximization

unconstrained case [Feige et al., 2011]

e pick a random set
1/4 for non-negative function (on expectation)

1/2 for symmetric function (on expectation)

¢ local search
— initialize S to best singleton
— S =local optimum (add or delete elements)
— returnthe bestof Sand U\ S
1/3 approx for non-negative function

1/2 for non-negative symmetric function
¢ (proofs in submodularity slides - part I)



non-monotone submodular maximization

example - document summarization [Lin et al., 2009]

U is a ground set
e w:UxU-— R-gisasimilarity function

f-2V 5 Ris asubmodular function

we want to find S C U such that

(S)= 3 Swiij)-r 3 wii))

icU\S jeS i JES:i#]

is maximized and |S| < k



submodular function minimization

e unconstrained case: polynomial-time

e.g. MIN-CUT

e constrained case: NP-hard and (mostly) hard to
approximate

e.g., set cover



concave or convex

e argument for concavity: behavior looks more like concavity

i.e., discrete derivative
F(AU{x}) — f(A)
is non-increasing in x
e argument for convexity: minimization problem seems to

benefit more from submodularity (polynomial-time

unconstrained minimization)



set functions are pseudo-Boolean functions

e any set A C U can be represented as a binary vector
o the characteristic vector of a set A is given by 15 € {0, 1}V
where Vu € U

ta_ {1 fucA
AT =Y 0 otherwise

o wewilluse f: {0,1}Y — Rand f:2Y — R interchangeably



the Lovasz extension

e given f: {0,1}Y — R, its Lovasz extension is the function

L 10,1]Y — R defined as
n
frx) = aif(A)
i=0
where ) = Ay C Ay C --- C A, = U is a chain such that

x=>",ai1a,and

27:1 05/217(1!‘20



key result of Lovasz
[Lovasz, 1983]

e aninput to f is one of the 2" corners of the n-dimensional
unit hypercube

o x =), a1 is an interpolation of the certain vertices of
this hypercube

o fL(x) is the corresponding interpolation of f at sets
corresponding to each hypercube vertex

« since fl is restricted to [0, 1], /- attains its minimum at the
corners

o f(A) is submodular iff its continuous extension f-(x) is
convex

; — min fL
r;ugnu f(A) = min f=(x)



the Lovasz extension

an equivalent definition
e sample a threshold ¢ < [0, 1] uniformly at random
e given sampled ¢ define the set
Ag(x) = {i : x; > 0}
« then Lovéasz extension f- of f can be defined from

fH(x) = E[f(Ag(x))]



entropy and mutual information

e entropy of a discrete random variable X

Z Pr (x) log Pr (x)
e entropy of X conditioned on Y

HX | Y) == Pr(x,y)log P;ﬁ)((’y})’ )
Xy




entropy and mutual information

e mutual information of X and Y: measure of their mutual

dependence

e if X and Y are statistically independent then /(X; Y) =0



entropy and mutual information

e given nrandom variables U = {X;};c[1 5, define
f(A) = H(Xa)

to be the joint entropy of the variables indexed by A.

e then f is submodular



entropy and mutual information

e suppose that A C B, X, € U, then
f(AU{Xe}) — f(A)

H(Xa, Xe) — H(Xa)
H(Xe | Xa) “information never hurts"
> H(Xe | XB)

e information never hurts: conditioning on data never
increases uncertainty

e mutual information is also submodular

I(A) = f(A) + f(U\ A) — f(U)



variable selection in classification / regression

¢ let Y be a random variable we want to predict based on
at most n observed measurement variables
Xu=A{X1,--, Xn}

e it might be too costly to use n variables

e goal: choose a subset A C U variables of size at most k

such that predictions based on Pr(y | x4) retain accuracy



variable selection in classification / regression

e define f: 2V — R as the mutual information function

o f(A) = I(Y; Xs) measures how well variables in A can
predict Y

e this means that we want to find A such that
f(A) is maximized

e same reasoning directly applicable to sensor coverage

and pattern recognition problems



active learning and semi-supervised learning

given training data Dy = {(x;, i) }icu of (x, y) pairs
often getting y is time-consuming, expensive, and error
prone (e.g., Amazon Turk)

batch active learning: choose a subset A C U of size k
to acquire the labels {y;}ica

adaptive active learning: choose a policy where the
decision to select y; is based on previously

chosen labels {y, -,y ¢}, fori={2,--- Kk}



active learning and semi-supervised learning

e goal: choose a subset of k training instances for labeling

e consider the following objective

_ r(B)
V(A) = BCU\A |B|

where
r(B)=1I{(B;U\ B)=f(B)+f(U\B)—f(U)

is an arbitrary symmetric submodular function



active learning and semi-supervised learning

feature-based learning

e instances represented as feature vectors (what we have

been assuming so far)

[(B) = i(B; U\ B) = f(B) + f(U'\ B) — f(U)

e [(B): mutual information between B and U\ B



active learning and semi-supervised learning

graph-based learning learning

e sometimes graph representation is more useful than
feature vector representation to exploit relations between
instances, e.g., classification of web pages: edge weights

can incorporate information about hyperlinks

e feature vector representation can be transformed into
graph representation (e.g., by using a Gaussian kernel to

compute weights between instances)



active learning and semi-supervised learning

graph-based learning learning

e smoothness assumption: the labels vary smoothly w.r.t.
the underlying graph:

> Wlyi - yjl
i
is small for given weights { W;} ;) c £

r(B) = (B U\ B) = f(B) + f(U'\ B) — f(U)

e [(B): graph cut value between Band U \ B



active learning and semi-supervised learning

e goal: choose a subset of k training instances for labeling
e consider the following objective [Guillory and Bilmes, 2009]

_ r(B)
v(A) = BrgnUr\]A B

e small V(A) means an adversary can separate away many
(large |B|) combinatorially independent (small I'(B)) points
from A

e small I'(B): low information dependence between B and
U\B

e this suggests choosing A such that W(A) is maximized



active learning and semi-supervised learning

e choose k = 2 instances for labeling

OXLO—Oo
®



active learning and semi-supervised learning

e which one is better?
A1 .

or As:




active learning and semi-supervised learning

® lU(A1 :1/8

L \U(Ag) = 1

52



active learning and semi-supervised learning

semi-supervised learning

e once we have {);}ca, infer the remaining labels {y;};cu\ 4

o form alabelingy’  {0,1}Y suchthaty', =y, i.e., ¥
agrees with the known labels y ,

e [(B) measures label smoothness, i.e., how much
information dependence between labels in B and
complement U \ B

i.e., graph case: label change should be across small cuts



active learning and semi-supervised learning

semi-supervised learning

e let A" denote instances with obtained positive labels
e let L = U\ Adenote the instances with missing labels

e we want to choose L™ C L for assigning positive labels

such that I(L* U A™) is minimized



active learning and semi-supervised learning

semi-supervised learning
e this is submodular minimization on the function
g:2t - R, wherefor Lt ¢ U\ A
g(L") =T (LT UAT)
e in graph representation case, this is the standard min-cut

approach to semi-supervised learning by
[Blum and Chawla, 2001]



learning submodular functions

probably mostly approximately correct (PMAC) learning
[Balcan and Harvey, 2011]

® Sample S= {(A1 ) f(A1))/ ) (Am7 f(Am))}
learner sees A;’s sampled i.i.d. from distribution D on 2V

and produces a hypothesis h

goal: with probability at least 1 — ¢ over the choice of
random sample S ~ D"":

Pra.p(h(A) < f(A) < ah(A)) > 1 — ¢

approximation ratio o > 1 allows for multiplicative error

PAC model is special case with o = 1



learning submodular functions

probably mostly approximately correct (PMAC) learning

e upper bound: there exists an algorithm for PMAC-learning
the class of submodular functions with an approximation
factor o = O(n'/?)

e lower bound: no algorithm can PMAC-learn the class of
submodular functions with an approximation factor
a=0(n'/3)
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