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submodular (set) functions

• a ground set U with n elements

• a function f : 2U → R is submodular if satisfies

the “diminishing returns” property:

f (A ∪ {x})− f (A) ≥ f (B ∪ {x})− f (B)

for all A ⊆ B ⊆ U and x ∈ U \ B



submodular function optimization

computational hardness differs w.r.t. the following:

• non-negativity of f : f (A) ≥ 0 for all A ⊆ U

• monotonicity of f : f (A) ≤ f (B) for all A ⊆ B ⊆ U

• symmetry of f : f (A) = f (U \ A) for all A ⊆ U

• constraints : cardinality, knapsack, matroid ...

• objective : maximization or minimization



submodular function maximization

monotone submodular functions

• unconstrained case: trivial

• constrained case: NP-hard but well-approximable

e.g.,MAX-k -COVER



monotone submodular function maximization

cardinality constraints

• find S ⊆ U subject to |S| ≤ k that maximizes f (S)

• MAX k -COVER is a special case

• greedy gives (1− 1/e) approximation

[Nemhauser et al., 1978]

• no better approximation unless P=NP



monotone submodular function maximization

cardinality constraints

1. S ← ∅

2. while |S| < k

3. i ← arg maxj f (S ∪ {j})− f (S)

4. S ← S ∪ {i}

5. return S



monotone submodular function maximization

analysis of the greedy

• S∗ : the optimal solution

• Sj = {x1, · · · , xj} : the first j elements picked by the greedy

• let f (xj | Sj−1) denote the marginal gain of adding the

j-th element to Sj−1

f (xj | Sj−1) = f (Sj)− f (Sj−1)

• hence

f (S) =
k∑

j=1

f (xj | Sj−1)



monotone submodular function maximization
analysis of the greedy

• claim:

f (xj | Sj−1) ≥
f (S∗)− f (Sj−1)

k

• proof. first we need to state a property of submodular
functions:

– if f is submodular, then the following holds ∀A,B ⊆ U:

f (A) ≤ f (B) +
∑

x∈A\B

f (x | B)−
∑

x∈B\A

f (x | A ∪ B \ {x})

(see Proposition 2.1 in [Nemhauser et al., 1978] for all
similar properties)



monotone submodular function maximization

analysis of the greedy

• proof (cont’d). using this property, we have

f (S∗) ≤ f (Sj−1) +
∑

x∈S∗\Sj−1

f (x | Sj−1)

−
∑

x∈Sj−1\S∗

f (x | S∗ ∪ Sj−1 \ {x})

which further implies (due to monotonicity of f ):

f (S∗)− f (Sj−1) ≤
∑

x∈S∗\Sj−1

f (x | Sj−1)



monotone submodular function maximization

analysis of the greedy

• proof (cont’d). using also the fact that ∀x ∈ V \ Sj−1:

f (xj | Sj−1) ≥ f (x | Sj−1)

since otherwise xj wouldn’t be selected by greedy, we
have:

f (S∗)− f (Sj−1) ≤
∑

x∈S∗\Sj−1

f (x | Sj−1)

≤ k · f (xj | Sj−1)

• we have just proved our claim



monotone submodular function maximization

analysis of the greedy

• continuing the analysis of greedy, we have

f (S∗)− f (Sj) ≤ (1− 1/k)j f (S∗) (by induction)

f (S∗)− f (Sk ) ≤ (1− 1/k)k f (S∗)

f (Sk ) ≥ (1− (1− 1/k)k )f (S∗)

≥
(

1− 1
e

)
f (S∗)



monotone submodular maximization

example - max-sum diversification [Borodin et al., 2012]

• U is a ground set

• d : U × U → R is a metric distance function on U

• f : 2U → R is a submodular function

• we want to find S ⊆ U such that

φ(S) = f (S) + λ
∑

u,v∈S d(u, v) is maximized and

|S| ≤ k



monotone submodular maximization

example - max-sum diversification [Borodin et al., 2012]

• consider S ⊆ U and x ∈ U \ S

• define the following types of marginal gain

dx (S) =
∑

v∈S d(x , v)

fx (S) = f (S ∪ {x})− f (S)

φx (S) = 1
2 fx (S) + λdx (S)

• greedy algorithm on marginal gain φx (S) gives
factor 2 approximation



monotone submodular function maximization

combinatorial constraints

• matroids: abstract notion of feasibility

• a matroid M = (U,F) is a set system where U is the
ground set and F is family of independent (feasible)
subsets of U satisfying the following axioms:

– if A ∈ F and B ⊆ A then B ∈ F (downward closure)

– if A,B ∈ F and |B| < |A| then ∃x ∈ A \ B

– such that B ∪ {x} ∈ F (augmentation)



monotone submodular function maximization

combinatorial constraints

• uniform matroid: A ⊆ U is independent if |A| ≤ k

• partition matroid: U is partitioned in ` different non-empty
disjoint subsets

U =
⋃̀
i=1

Ui and Ui ∩ Uj = ∅,∀i , j : i 6= j

– cardinality constraint ki on each partition Ui ,∀i ∈ [1, `]

– A ⊆ U is independent if

A ∩ Ui ≤ ki ,∀i ∈ [1, k ]



monotone submodular function maximization

combinatorial constraints

• graphic matroid: given a graph G = (V ,E), define the

edge set E as the ground set

• then an edge set A ⊆ E is independent if the edge-induced

graph GA = (VA,EA) does not contain any cycle

• F contains all forests and trees naturally



monotone submodular function maximization

combinatorial constraints

• given submodular monotone f : 2U → R+ and

matroid constraint M = (U,F)

max{f (A) : A ∈ F}

• greedy gives (1/2) approximation

• in general, greedy gives 1/(1 + p) approximation when

there are p matroid constraints
[Fisher et al., 1978]



monotone submodular function maximization

combinatorial constraints

1. A← ∅

2. while ∃x ∈ U : A ∪ {x} ∈ F

3. x∗ ← arg max
A∪{x}∈F

f (A ∪ {x})− f (A)

4. A← A ∪ {x∗}

5. U ← U \ {x∗}

6. return A



submodular function maximization

non-monotone submodular functions

• unconstrained case: NP-hard but well-approximable

e.g., MAX-CUT

• constrained case: NP-hard but well-approximable

e.g., document summarization [Lin et al., 2009]



non-monotone submodular maximization

unconstrained case

• first constant-factor approximations for non-negative
submodular functions by [Feige et al., 2011]

• simple algorithms: randomized / deterministic,
non-adaptive / adaptive

• 1/2 approx for symmetric functions

• 2/5 = 0.4 approx for the non-negative functions

• lower bound: better than 1/2 approx requires exponential
number of value queries



non-monotone submodular maximization
unconstrained case [Feige et al., 2011]

• pick a random set

1/4 for non-negative function (on expectation)

1/2 for symmetric function (on expectation)

• local search

– initialize S to best singleton

– S = local optimum (add or delete elements)

– return the best of S and U \ S

1/3 approx for non-negative function

1/2 for non-negative symmetric function
• (proofs in submodularity slides - part I)



non-monotone submodular maximization

example - document summarization [Lin et al., 2009]

• U is a ground set

• w : U × U → R≥0 is a similarity function

• f : 2U → R is a submodular function

• we want to find S ⊆ U such that

f (S) =
∑

i∈U\S

∑
j∈S

w(i , j)− λ
∑

i,j∈S:i 6=j

w(i , j)

is maximized and |S| ≤ k



submodular function minimization

• unconstrained case: polynomial-time

e.g. MIN-CUT

• constrained case: NP-hard and (mostly) hard to

approximate

e.g., set cover



concave or convex

• argument for concavity: behavior looks more like concavity

i.e., discrete derivative

f (A ∪ {x})− f (A)

is non-increasing in x

• argument for convexity: minimization problem seems to

benefit more from submodularity (polynomial-time

unconstrained minimization)



set functions are pseudo-Boolean functions

• any set A ⊆ U can be represented as a binary vector

• the characteristic vector of a set A is given by 1A ∈ {0,1}U

where ∀u ∈ U

1A(u) =

{
1 if u ∈ A
0 otherwise

• we will use f : {0,1}U → R and f : 2U → R interchangeably



the Lovász extension

• given f : {0,1}U → R, its Lovász extension is the function

f L : [0,1]U → R defined as

f L(x) =
n∑

i=0

αi f (Ai)

where ∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = U is a chain such that

x =
∑n

i=1 αi1Ai , and∑n
i=1 αi = 1, αi ≥ 0



key result of Lovász
[Lovász, 1983]

• an input to f is one of the 2n corners of the n-dimensional

unit hypercube

• x =
∑n

i=1 αi1Ai is an interpolation of the certain vertices of

this hypercube

• f L(x) is the corresponding interpolation of f at sets

corresponding to each hypercube vertex

• since f L is restricted to [0,1], f L attains its minimum at the

corners

• f (A) is submodular iff its continuous extension f L(x) is
convex

min
A⊆U

f (A) = min
x

f L(x)



the Lovász extension

an equivalent definition

• sample a threshold θ ∈ [0,1] uniformly at random

• given sampled θ define the set

Aθ(x) = {i : xi > θ}

• then Lovász extension f L of f can be defined from

f L(x) = E[f (Aθ(x))]



entropy and mutual information

• entropy of a discrete random variable X

H(X ) = −
∑

x

Pr (x) log Pr (x)

• entropy of X conditioned on Y

H(X | Y ) = −
∑
x ,y

Pr (x , y) log
Pr (x , y)

Pr (y)



entropy and mutual information

• mutual information of X and Y: measure of their mutual

dependence

I(X ; Y ) = H(X )− H(X | Y )

= H(Y )− H(Y | X )

= H(X ,Y )− H(X | Y )− H(Y | X )

• if X and Y are statistically independent then I(X ; Y ) = 0



entropy and mutual information

• given n random variables U = {Xi}i∈[1,n], define

f (A) = H(XA)

to be the joint entropy of the variables indexed by A.

• then f is submodular



entropy and mutual information

• suppose that A ⊆ B, Xe ∈ U, then

f (A ∪ {Xe})− f (A) = H(XA,Xe)− H(XA)

= H(Xe | XA) “information never hurts"
≥ H(Xe | XB)

• information never hurts: conditioning on data never

increases uncertainty

• mutual information is also submodular

I(A) = f (A) + f (U \ A)− f (U)



variable selection in classification / regression

• let Y be a random variable we want to predict based on

at most n observed measurement variables

XU = {X1, · · · ,Xn}

• it might be too costly to use n variables

• goal: choose a subset A ⊆ U variables of size at most k

such that predictions based on Pr(y | xA) retain accuracy



variable selection in classification / regression

• define f : 2U → R as the mutual information function

• f (A) = I(Y ; XA) measures how well variables in A can

predict Y

• this means that we want to find A such that

f (A) is maximized

• same reasoning directly applicable to sensor coverage

and pattern recognition problems



active learning and semi-supervised learning

• given training data DU = {(xi , yi)}i∈U of (x , y) pairs

• often getting y is time-consuming, expensive, and error

prone (e.g., Amazon Turk)

• batch active learning: choose a subset A ⊂ U of size k

to acquire the labels {yi}i∈A

• adaptive active learning: choose a policy where the

decision to select yi is based on previously

chosen labels {y1, · · · , yi−1}, for i = {2, · · · , k}



active learning and semi-supervised learning

• goal: choose a subset of k training instances for labeling

• consider the following objective

Ψ(A) = min
B⊆U\A

Γ(B)

|B|

where

Γ(B) = If (B; U \ B) = f (B) + f (U \ B)− f (U)

is an arbitrary symmetric submodular function



active learning and semi-supervised learning

feature-based learning

• instances represented as feature vectors (what we have

been assuming so far)

Γ(B) = If (B; U \ B) = f (B) + f (U \ B)− f (U)

• Γ(B): mutual information between B and U \ B



active learning and semi-supervised learning

graph-based learning learning

• sometimes graph representation is more useful than

feature vector representation to exploit relations between

instances, e.g., classification of web pages: edge weights

can incorporate information about hyperlinks

• feature vector representation can be transformed into

graph representation (e.g., by using a Gaussian kernel to

compute weights between instances)



active learning and semi-supervised learning

graph-based learning learning

• smoothness assumption: the labels vary smoothly w.r.t.
the underlying graph: ∑

i,j

Wij |yi − yj |

is small for given weights {Wij}(i,j)∈E

Γ(B) = If (B; U \ B) = f (B) + f (U \ B)− f (U)

• Γ(B): graph cut value between B and U \ B



active learning and semi-supervised learning

• goal: choose a subset of k training instances for labeling

• consider the following objective [Guillory and Bilmes, 2009]

Ψ(A) = min
B⊆U\A

Γ(B)

|B|

• small Ψ(A) means an adversary can separate away many

(large |B|) combinatorially independent (small Γ(B)) points

from A

• small Γ(B): low information dependence between B and
U \ B

• this suggests choosing A such that Ψ(A) is maximized



active learning and semi-supervised learning

• choose k = 2 instances for labeling



active learning and semi-supervised learning

• which one is better?
A1:

or A2:



active learning and semi-supervised learning

• Ψ(A1) = 1/8

• Ψ(A2) = 1



active learning and semi-supervised learning

semi-supervised learning

• once we have {yi}i∈A, infer the remaining labels {yi}i∈U\A

• form a labeling y′ ∈ {0,1}U such that y′A = yA, i.e., y′

agrees with the known labels yA

• Γ(B) measures label smoothness, i.e., how much

information dependence between labels in B and

complement U \ B

i.e., graph case: label change should be across small cuts



active learning and semi-supervised learning

semi-supervised learning

• let A+ denote instances with obtained positive labels

• let L = U \ A denote the instances with missing labels

• we want to choose L+ ⊆ L for assigning positive labels

such that Γ(L+ ∪ A+) is minimized



active learning and semi-supervised learning

semi-supervised learning

• this is submodular minimization on the function

g : 2L → R+ where for L+ ∈ U \ A

g(L+) = Γ(L+ ∪ A+)

• in graph representation case, this is the standard min-cut

approach to semi-supervised learning by
[Blum and Chawla, 2001]



learning submodular functions

probably mostly approximately correct (PMAC) learning
[Balcan and Harvey, 2011]

• sample S = {(A1, f (A1)), · · · , (Am, f (Am))}

• learner sees Ai ’s sampled i.i.d. from distribution D on 2U

and produces a hypothesis h

• goal: with probability at least 1− δ over the choice of
random sample S ∼ Dm:

PrA∼D(h(A) ≤ f (A) ≤ αh(A)) ≥ 1− ε

• approximation ratio α ≥ 1 allows for multiplicative error

• PAC model is special case with α = 1



learning submodular functions

probably mostly approximately correct (PMAC) learning

• upper bound: there exists an algorithm for PMAC-learning

the class of submodular functions with an approximation

factor α = O(n1/2)

• lower bound: no algorithm can PMAC-learn the class of

submodular functions with an approximation factor

α = O(n1/3)
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