
CS-E4070 — Computational learning theory

Slide set 10 : submodular functions II

Cigdem Aslay and Aris Gionis

Aalto University

spring 2019

submodular (set) functions

• a ground set U with n elements

• a function f : 2U → R is submodular if satisfies

the “diminishing returns” property:

f (A ∪ {x})− f (A) ≥ f (B ∪ {x})− f (B)

for all A ⊆ B ⊆ U and x ∈ U \ B

submodular function optimization

computational hardness differs w.r.t. the following:

• non-negativity of f : f (A) ≥ 0 for all A ⊆ U

• monotonicity of f : f (A) ≤ f (B) for all A ⊆ B ⊆ U

• symmetry of f : f (A) = f (U \ A) for all A ⊆ U

• constraints : cardinality, knapsack, matroid ...

• objective : maximization or minimization

submodular function maximization

monotone submodular functions

• unconstrained case: trivial

• constrained case: NP-hard but well-approximable

e.g.,MAX-k -COVER

monotone submodular function maximization

cardinality constraints

• find S ⊆ U subject to |S| ≤ k that maximizes f (S)

• MAX k -COVER is a special case

• greedy gives (1− 1/e) approximation

[Nemhauser et al., 1978]

• no better approximation unless P=NP

monotone submodular function maximization

cardinality constraints

1. S ← ∅

2. while |S| < k

3. i ← arg maxj f (S ∪ {j})− f (S)

4. S ← S ∪ {i}

5. return S

monotone submodular function maximization

analysis of the greedy

• S∗ : the optimal solution

• Sj = {x1, · · · , xj} : the first j elements picked by the greedy

• let f (xj | Sj−1) denote the marginal gain of adding the

j-th element to Sj−1

f (xj | Sj−1) = f (Sj)− f (Sj−1)

• hence

f (S) =
k∑

j=1

f (xj | Sj−1)

monotone submodular function maximization
analysis of the greedy

• claim:

f (xj | Sj−1) ≥
f (S∗)− f (Sj−1)

k

• proof. first we need to state a property of submodular
functions:

– if f is submodular, then the following holds ∀A,B ⊆ U:

f (A) ≤ f (B) +
∑

x∈A\B

f (x | B)−
∑

x∈B\A

f (x | A ∪ B \ {x})

(see Proposition 2.1 in [Nemhauser et al., 1978] for all
similar properties)

monotone submodular function maximization

analysis of the greedy

• proof (cont’d). using this property, we have

f (S∗) ≤ f (Sj−1) +
∑

x∈S∗\Sj−1

f (x | Sj−1)

−
∑

x∈Sj−1\S∗

f (x | S∗ ∪ Sj−1 \ {x})

which further implies (due to monotonicity of f):

f (S∗)− f (Sj−1) ≤
∑

x∈S∗\Sj−1

f (x | Sj−1)

monotone submodular function maximization

analysis of the greedy

• proof (cont’d). using also the fact that ∀x ∈ V \ Sj−1:

f (xj | Sj−1) ≥ f (x | Sj−1)

since otherwise xj wouldn’t be selected by greedy, we
have:

f (S∗)− f (Sj−1) ≤
∑

x∈S∗\Sj−1

f (x | Sj−1)

≤ k · f (xj | Sj−1)

• we have just proved our claim

monotone submodular function maximization

analysis of the greedy

• continuing the analysis of greedy, we have

f (S∗)− f (Sj) ≤ (1− 1/k)j f (S∗) (by induction)

f (S∗)− f (Sk) ≤ (1− 1/k)k f (S∗)

f (Sk) ≥ (1− (1− 1/k)k)f (S∗)

≥
(

1− 1
e

)
f (S∗)

monotone submodular maximization

example - max-sum diversification [Borodin et al., 2012]

• U is a ground set

• d : U × U → R is a metric distance function on U

• f : 2U → R is a submodular function

• we want to find S ⊆ U such that

φ(S) = f (S) + λ
∑

u,v∈S d(u, v) is maximized and

|S| ≤ k

monotone submodular maximization

example - max-sum diversification [Borodin et al., 2012]

• consider S ⊆ U and x ∈ U \ S

• define the following types of marginal gain

dx (S) =
∑

v∈S d(x , v)

fx (S) = f (S ∪ {x})− f (S)

φx (S) = 1
2 fx (S) + λdx (S)

• greedy algorithm on marginal gain φx (S) gives
factor 2 approximation

monotone submodular function maximization

combinatorial constraints

• matroids: abstract notion of feasibility

• a matroid M = (U,F) is a set system where U is the
ground set and F is family of independent (feasible)
subsets of U satisfying the following axioms:

– if A ∈ F and B ⊆ A then B ∈ F (downward closure)

– if A,B ∈ F and |B| < |A| then ∃x ∈ A \ B

– such that B ∪ {x} ∈ F (augmentation)

monotone submodular function maximization

combinatorial constraints

• uniform matroid: A ⊆ U is independent if |A| ≤ k

• partition matroid: U is partitioned in ` different non-empty
disjoint subsets

U =
⋃̀
i=1

Ui and Ui ∩ Uj = ∅,∀i , j : i 6= j

– cardinality constraint ki on each partition Ui ,∀i ∈ [1, `]

– A ⊆ U is independent if

A ∩ Ui ≤ ki ,∀i ∈ [1, k]

monotone submodular function maximization

combinatorial constraints

• graphic matroid: given a graph G = (V ,E), define the

edge set E as the ground set

• then an edge set A ⊆ E is independent if the edge-induced

graph GA = (VA,EA) does not contain any cycle

• F contains all forests and trees naturally

monotone submodular function maximization

combinatorial constraints

• given submodular monotone f : 2U → R+ and

matroid constraint M = (U,F)

max{f (A) : A ∈ F}

• greedy gives (1/2) approximation

• in general, greedy gives 1/(1 + p) approximation when

there are p matroid constraints
[Fisher et al., 1978]

monotone submodular function maximization

combinatorial constraints

1. A← ∅

2. while ∃x ∈ U : A ∪ {x} ∈ F

3. x∗ ← arg max
A∪{x}∈F

f (A ∪ {x})− f (A)

4. A← A ∪ {x∗}

5. U ← U \ {x∗}

6. return A

submodular function maximization

non-monotone submodular functions

• unconstrained case: NP-hard but well-approximable

e.g., MAX-CUT

• constrained case: NP-hard but well-approximable

e.g., document summarization [Lin et al., 2009]

non-monotone submodular maximization

unconstrained case

• first constant-factor approximations for non-negative
submodular functions by [Feige et al., 2011]

• simple algorithms: randomized / deterministic,
non-adaptive / adaptive

• 1/2 approx for symmetric functions

• 2/5 = 0.4 approx for the non-negative functions

• lower bound: better than 1/2 approx requires exponential
number of value queries

non-monotone submodular maximization
unconstrained case [Feige et al., 2011]

• pick a random set

1/4 for non-negative function (on expectation)

1/2 for symmetric function (on expectation)

• local search

– initialize S to best singleton

– S = local optimum (add or delete elements)

– return the best of S and U \ S

1/3 approx for non-negative function

1/2 for non-negative symmetric function
• (proofs in submodularity slides - part I)

non-monotone submodular maximization

example - document summarization [Lin et al., 2009]

• U is a ground set

• w : U × U → R≥0 is a similarity function

• f : 2U → R is a submodular function

• we want to find S ⊆ U such that

f (S) =
∑

i∈U\S

∑
j∈S

w(i , j)− λ
∑

i,j∈S:i 6=j

w(i , j)

is maximized and |S| ≤ k

submodular function minimization

• unconstrained case: polynomial-time

e.g. MIN-CUT

• constrained case: NP-hard and (mostly) hard to

approximate

e.g., set cover

concave or convex

• argument for concavity: behavior looks more like concavity

i.e., discrete derivative

f (A ∪ {x})− f (A)

is non-increasing in x

• argument for convexity: minimization problem seems to

benefit more from submodularity (polynomial-time

unconstrained minimization)

set functions are pseudo-Boolean functions

• any set A ⊆ U can be represented as a binary vector

• the characteristic vector of a set A is given by 1A ∈ {0,1}U

where ∀u ∈ U

1A(u) =

{
1 if u ∈ A
0 otherwise

• we will use f : {0,1}U → R and f : 2U → R interchangeably

the Lovász extension

• given f : {0,1}U → R, its Lovász extension is the function

f L : [0,1]U → R defined as

f L(x) =
n∑

i=0

αi f (Ai)

where ∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = U is a chain such that

x =
∑n

i=1 αi1Ai , and∑n
i=1 αi = 1, αi ≥ 0

key result of Lovász
[Lovász, 1983]

• an input to f is one of the 2n corners of the n-dimensional

unit hypercube

• x =
∑n

i=1 αi1Ai is an interpolation of the certain vertices of

this hypercube

• f L(x) is the corresponding interpolation of f at sets

corresponding to each hypercube vertex

• since f L is restricted to [0,1], f L attains its minimum at the

corners

• f (A) is submodular iff its continuous extension f L(x) is
convex

min
A⊆U

f (A) = min
x

f L(x)

the Lovász extension

an equivalent definition

• sample a threshold θ ∈ [0,1] uniformly at random

• given sampled θ define the set

Aθ(x) = {i : xi > θ}

• then Lovász extension f L of f can be defined from

f L(x) = E[f (Aθ(x))]

entropy and mutual information

• entropy of a discrete random variable X

H(X) = −
∑

x

Pr (x) log Pr (x)

• entropy of X conditioned on Y

H(X | Y) = −
∑
x ,y

Pr (x , y) log
Pr (x , y)

Pr (y)

entropy and mutual information

• mutual information of X and Y: measure of their mutual

dependence

I(X ; Y) = H(X)− H(X | Y)

= H(Y)− H(Y | X)

= H(X ,Y)− H(X | Y)− H(Y | X)

• if X and Y are statistically independent then I(X ; Y) = 0

entropy and mutual information

• given n random variables U = {Xi}i∈[1,n], define

f (A) = H(XA)

to be the joint entropy of the variables indexed by A.

• then f is submodular

entropy and mutual information

• suppose that A ⊆ B, Xe ∈ U, then

f (A ∪ {Xe})− f (A) = H(XA,Xe)− H(XA)

= H(Xe | XA) “information never hurts"
≥ H(Xe | XB)

• information never hurts: conditioning on data never

increases uncertainty

• mutual information is also submodular

I(A) = f (A) + f (U \ A)− f (U)

variable selection in classification / regression

• let Y be a random variable we want to predict based on

at most n observed measurement variables

XU = {X1, · · · ,Xn}

• it might be too costly to use n variables

• goal: choose a subset A ⊆ U variables of size at most k

such that predictions based on Pr(y | xA) retain accuracy

variable selection in classification / regression

• define f : 2U → R as the mutual information function

• f (A) = I(Y ; XA) measures how well variables in A can

predict Y

• this means that we want to find A such that

f (A) is maximized

• same reasoning directly applicable to sensor coverage

and pattern recognition problems

active learning and semi-supervised learning

• given training data DU = {(xi , yi)}i∈U of (x , y) pairs

• often getting y is time-consuming, expensive, and error

prone (e.g., Amazon Turk)

• batch active learning: choose a subset A ⊂ U of size k

to acquire the labels {yi}i∈A

• adaptive active learning: choose a policy where the

decision to select yi is based on previously

chosen labels {y1, · · · , yi−1}, for i = {2, · · · , k}

active learning and semi-supervised learning

• goal: choose a subset of k training instances for labeling

• consider the following objective

Ψ(A) = min
B⊆U\A

Γ(B)

|B|

where

Γ(B) = If (B; U \ B) = f (B) + f (U \ B)− f (U)

is an arbitrary symmetric submodular function

active learning and semi-supervised learning

feature-based learning

• instances represented as feature vectors (what we have

been assuming so far)

Γ(B) = If (B; U \ B) = f (B) + f (U \ B)− f (U)

• Γ(B): mutual information between B and U \ B

active learning and semi-supervised learning

graph-based learning learning

• sometimes graph representation is more useful than

feature vector representation to exploit relations between

instances, e.g., classification of web pages: edge weights

can incorporate information about hyperlinks

• feature vector representation can be transformed into

graph representation (e.g., by using a Gaussian kernel to

compute weights between instances)

active learning and semi-supervised learning

graph-based learning learning

• smoothness assumption: the labels vary smoothly w.r.t.
the underlying graph: ∑

i,j

Wij |yi − yj |

is small for given weights {Wij}(i,j)∈E

Γ(B) = If (B; U \ B) = f (B) + f (U \ B)− f (U)

• Γ(B): graph cut value between B and U \ B

active learning and semi-supervised learning

• goal: choose a subset of k training instances for labeling

• consider the following objective [Guillory and Bilmes, 2009]

Ψ(A) = min
B⊆U\A

Γ(B)

|B|

• small Ψ(A) means an adversary can separate away many

(large |B|) combinatorially independent (small Γ(B)) points

from A

• small Γ(B): low information dependence between B and
U \ B

• this suggests choosing A such that Ψ(A) is maximized

active learning and semi-supervised learning

• choose k = 2 instances for labeling

active learning and semi-supervised learning

• which one is better?
A1:

or A2:

active learning and semi-supervised learning

• Ψ(A1) = 1/8

• Ψ(A2) = 1

active learning and semi-supervised learning

semi-supervised learning

• once we have {yi}i∈A, infer the remaining labels {yi}i∈U\A

• form a labeling y′ ∈ {0,1}U such that y′A = yA, i.e., y′

agrees with the known labels yA

• Γ(B) measures label smoothness, i.e., how much

information dependence between labels in B and

complement U \ B

i.e., graph case: label change should be across small cuts

active learning and semi-supervised learning

semi-supervised learning

• let A+ denote instances with obtained positive labels

• let L = U \ A denote the instances with missing labels

• we want to choose L+ ⊆ L for assigning positive labels

such that Γ(L+ ∪ A+) is minimized

active learning and semi-supervised learning

semi-supervised learning

• this is submodular minimization on the function

g : 2L → R+ where for L+ ∈ U \ A

g(L+) = Γ(L+ ∪ A+)

• in graph representation case, this is the standard min-cut

approach to semi-supervised learning by
[Blum and Chawla, 2001]

learning submodular functions

probably mostly approximately correct (PMAC) learning
[Balcan and Harvey, 2011]

• sample S = {(A1, f (A1)), · · · , (Am, f (Am))}

• learner sees Ai ’s sampled i.i.d. from distribution D on 2U

and produces a hypothesis h

• goal: with probability at least 1− δ over the choice of
random sample S ∼ Dm:

PrA∼D(h(A) ≤ f (A) ≤ αh(A)) ≥ 1− ε

• approximation ratio α ≥ 1 allows for multiplicative error

• PAC model is special case with α = 1

learning submodular functions

probably mostly approximately correct (PMAC) learning

• upper bound: there exists an algorithm for PMAC-learning

the class of submodular functions with an approximation

factor α = O(n1/2)

• lower bound: no algorithm can PMAC-learn the class of

submodular functions with an approximation factor

α = O(n1/3)

references

Balcan, M.-F. and Harvey, N. J. (2011).
Learning submodular functions.
In Proceedings of the forty-third annual ACM symposium
on Theory of computing, pages 793–802. ACM.

Blum, A. and Chawla, S. (2001).
Learning from labeled and unlabeled data using graph
mincuts.
In Proceedings of the Eighteenth International Conference
on Machine Learning, pages 19–26. Morgan Kaufmann
Publishers Inc.

Borodin, A., Lee, H. C., and Ye, Y. (2012).
Max-sum diversification, monotone submodular functions
and dynamic updates.
In Proceedings of the 31st symposium on Principles of
Database Systems, pages 155–166. ACM.

references (cont.)

Feige, U., Mirrokni, V. S., and Vondrak, J. (2011).
Maximizing non-monotone submodular functions.
SIAM Journal on Computing, 40(4):1133–1153.

Fisher, M. L., Nemhauser, G. L., and Wolsey, L. A. (1978).
An analysis of approximations for maximizing submodular
set functions ii.
In Polyhedral combinatorics.

Guillory, A. and Bilmes, J. A. (2009).
Label selection on graphs.
In Advances in Neural Information Processing Systems,
pages 691–699.

references (cont.)

Lin, H., Bilmes, J., and Xie, S. (2009).
Graph-based submodular selection for extractive
summarization.
In 2009 IEEE Workshop on Automatic Speech Recognition
& Understanding, pages 381–386. IEEE.

Lovász, L. (1983).
Submodular functions and convexity.
In Mathematical Programming The State of the Art, pages
235–257. Springer.

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. (1978).
An analysis of approximations for maximizing submodular
set functions I.
Mathematical Programming, 14(1):265–294.

