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1 Notation

The notes have been written during a couple of years, and hence the notation
might change from one section to another. However, I will list the main notation,
and I will also try to homogenise the notation.

The domain Ω ⊂ IRd is most often assumed to be a polygonal (d = 2)
or polyhedral domain (d = 3). The finite partitioning Ch consists of trian-
gles/tetrahedron or quadrilaterals/hexahedrons. An element is denoted by K
and an edge/face by E. With Pk(K) we denote the polynomials of degree k on
K. For K a quadrilateral/hexahedron we use the polynomial space Qk defined
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as follows. Let K̂ be the reference element, i.e. K̂ = [0, 1]d and let FK be the
bi/tri-linear mapping from K̂ onto K. On K̂ we define

Qk(K̂) = { v | v(x̂1, x̂2) =

k∑
i=0

k∑
j=0

aij x̂
i
1x̂
j
2, aij ∈ IR }. (1.1)

for d = 2, and

Qk(K̂) = { v | v(x̂1, x̂2, x̂3) =

k∑
i=0

k∑
j=0

k∑
l=0

aijlx̂
i
1x̂
j
2x̂
l
3, aijl ∈ IR }. (1.2)

for d = 3. Using these, we define

Qk(K̂) = { v | v(x) = v̂(F−1
K (x)) v̂ ∈ Qk(K̂) }. (1.3)

In finite element analysis we encounter statements as: there exist a constant
C > 0, indepent of the mesh size h and the solution u, such that A ≤ CB.
Statement like this we will often write as A . B. Likewise, a statement, there
exists C1, C2 > 0 such that ..., is written as A . B . D.

For Sobolev space we use the following notation for the norms: ‖·‖0,D for
the L2(D) - norm, and ‖·‖k,D, |·|k,D for the H1(D) norm and seminorm. The
subscript D is dropped when D = Ω.

2 Interpolation of non smooth functions.
A posteriori error analysis

2.1 The Clément interpolation operator

We denote
H1
D(Ω) = { v ∈ H1(Ω) | v|ΓD

= 0 } (2.1)

and
V 1
h = { v ∈ H1

D(Ω) | v|K∈ P1(K) ∀K ∈ Ch }. (2.2)

Denote the vertices of the elements (i.e. the nodes used in V 1
h ) by xj , j =

1, 2, . . . , N , and let
hj = max

xj∈K∈Ch
hK . (2.3)

By ωj we denote the set (draw figure to see what I mean)

ωj = { x ∈ Ω | ‖x− xj‖ ≤ hj }. (2.4)

By ω̃K we denote
ω̃K = ∪{ωj |xj ∈ K }. (2.5)
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If xj 6∈ ΓD we by Pjv denote the value of the L2-projection of v ∈ L2(ωj) onto
P0(ωj) (=the constant functions on ωj), i.e.

Pjv =
1

meas(ωj)

∫
ωj

v(x) dx. (2.6)

When xj ∈ ΓD we let Pjv = 0.
Denote by ϕj , j = 1, 2, , . . . , N , the basis functions of V 1

h (the Courant hat
functions). A simple Clément interpolation operator Ih : H1

D(Ω)→ V 1
h can now

be defined as

Ihv =

N∑
i=1

Pjv ϕj . (2.7)

It holds

Theorem 2.1. It holds( ∑
K∈Ch

{h−2
K ||v − Ihv||

2
0,K+h−1

K ||v − Ihv||
2
0,∂K}

)1/2

. |v|1. (2.8)

The steps of the Proof : First the Bramble-Hilbert technique gives

||v − Pjv||0,K. hK |v|1,ωj (2.9)

and
||v − Pjv||0,∂K. h1/2

K |v|1,ωj , (2.10)

for K ⊂ ωj . Let x1, x2, x3 be the nodes of K. It holds
∑3
j=1 ϕj = 1. Hence, we

can write

(v − Ihv)|K =

3∑
j=1

vϕj −
3∑
j=1

(Pjv)ϕj =

3∑
j=1

(v − Pjv)ϕj (2.11)

Using the triangle inequality we have

‖v − Ihv‖0,K≤
3∑
j=1

‖(v − Pjv)ϕj‖0,K . (2.12)

Next, since |ϕj |≤ 1, we have

‖(v − Pjv)ϕj‖0,K≤ ‖v − Pjv‖0,K .

We thus have

‖v − Ihv‖0,K≤
3∑
j=1

‖v − Pjv‖0,K . (2.13)

Hence, from (2.9) it follows it follows that

||v − Ihv||0,K. hK |v|1,ω̃K
. (2.14)
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Using this and the scaled trace inequality (equation (2.17) below) we have

||v − Ihv||0,∂K. h1/2
K |v|1,ω̃K

. (2.15)

The asserted estimate then follows by adding the above estimates and noting
that there exists C1, C2 such that∑

K∈Ch

∫
K

w2 dx .
∑
K∈Ch

∫
ω̃K

w2 dx .
∑
K∈Ch

∫
K

w2 dx. � (2.16)

Lemma 2.1. For v ∈ H1(K) it holds

‖v‖20,∂K. (h−1
K ‖v‖

2
0,K+hK‖∇v‖20,K). (2.17)

Exercise 2.1. Prove this result in one dimension.

Exercise 2.2. Show by scaling that the result follows from the corresponding
inequality on the reference element.

2.2 A posteriori error analysis

We will treat the Poisson problem; find u ∈ H1(Ω) such that

−∆u = f in Ω,

u = 0 on ΓD,

∂u

∂n
= g on ΓN , ΓD ∪ ΓN = ∂Ω.

(2.18)

The variational form and the FE method are

(∇u,∇v) = (f, v) + 〈g, v〉ΓN
∀v ∈ H1

D(Ω), (2.19)

and
(∇uh,∇v) = (f, v) + 〈g, v〉ΓN

∀v ∈ Vh, (2.20)

respectively.
Next, we define the error indicators. By E we denote an edge/face of an

element in the mesh. The ”jump” in the normal derivative (flux) on an edge in
the interior of the domain we denote by

J
∂v

∂nE
K =

∂v

∂nK
+

∂v

∂nK′
, (2.21)

with E = ∂K ∩ ∂K ′, K, K ′ ∈ Ch. The local indicators are

ηK = hK‖∆uh + f‖0,K (2.22)

for K ∈ Ch,

ηE,Ω = h
1/2
E ‖J

∂v

∂nE
K‖0,E (2.23)
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for an edge/face in Ω,1 and

ηE,N = h
1/2
E ‖

∂v

∂n
− g‖0,E (2.24)

for E ⊂ ΓN . The error indicator is then defined as

η2 =
∑
K∈Ch

η2
K +

∑
E⊂Ω

(ηE,Ω)2 +
∑
E⊂ΓN

(ηE,N )2. (2.25)

The a posteriori estimate is the following.

Theorem 2.2. It holds
‖∇u−∇uh‖0. η. (2.26)

Proof. Let us use the shorthand notation e = u − uh. Let Ihe be the Clément
interpolant to e. By the Galerkin orthogonality it holds (∇e,∇Ihe) = 0. Hence
we obtain

‖∇e‖20 = (∇e,∇e) = (∇e,∇(e− Ihe))
= (∇u,∇(e− Ihe))− (∇uh,∇(e− Ihe))
= (f, e− Ihe) + 〈g, e− Ihe〉ΓN

− (∇uh,∇(e− Ihe))

=
∑
K∈Ch

(f, e− Ihe)K −
∑
K∈Ch

(∇uh,∇(e− Ihe))K + 〈g, e− Ihe〉ΓN

=
∑
K∈Ch

(f, e− Ihe)K +
∑
K∈Ch

(∆uh, e− Ihe)K

+ 〈g, e− Ihe〉ΓN
−
∑
K∈Ch

〈∇uh · nK , e− Ihe〉∂K .

(2.27)
For the two first terms we use Schwarz inequality for inner products, Cauchy’s
inequality for sums, and the Clément interpolation estimate∑

K∈Ch

(f, e− Ihe)K +
∑
K∈Ch

(∆uh, e− Ihe)K

=
∑
K∈Ch

(∆uh + f, e− Ihe)K ≤
∑
K∈Ch

‖∆uh + f‖0,K‖e− Ihe‖0,K

=
∑
K∈Ch

hK‖∆uh + f‖0,K ·h−1
K ‖e− Ihe‖0,K

≤
∑
K∈Ch

hK‖∆uh + f‖0,K ·h−1
K ‖e− Ihe‖0,K

≤
( ∑
K∈Ch

h2
K‖∆uh + f‖20,K

)1/2( ∑
K∈Ch

h−2
K ‖e− Ihe‖

2
0,K

)1/2

. η‖∇e‖0.

(2.28)

1As usual Ω is assumed to be open and that means that E is an interior edge/face.
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In the same way, rearranging terms and choosing the directions for the normals,
we get

〈g, e− Ihe〉ΓN
−
∑
K∈Ch

〈∇uh · nK , e− Ihe〉∂K

=
∑
E⊂Ω

〈J ∂uh
∂nE

K, e− Ihe〉E +
∑
E⊂ΓN

〈g −∇uh · nE , e− Ihe〉E

≤
∑
E⊂Ω

‖J ∂uh
∂nE

K‖0,E ‖e− Ihe‖0,E+
∑
E⊂ΓN

‖g −∇uh · nE‖0,E‖e− Ihe‖0,E

≤
( ∑
E⊂Ω

hE‖J
∂uh
∂nE

K‖20,E
)1/2( ∑

E⊂Ω

h−1
E ‖e− Ihe‖

2
0,E

)1/2

+
( ∑
E⊂ΓN

hE‖g −∇uh · nE‖20,E
)1/2( ∑

E⊂ΓN

h−1
E ‖e− Ihe‖

2
0,E

)1/2

. η‖∇e‖0.
(2.29)

Combining the above estimates proves the claim.

Exercise 2.3. Consider the problem with a diffusion coefficient: find u ∈ H1(Ω)
such that

−div (k∇u) = f in Ω,

u = 0 on ΓD,

k
∂u

∂n
= g on ΓN , ΓD ∪ ΓN = ∂Ω.

(2.30)

How is the error estimator now defined?

We introduce fh and gh as piecewise polynomial interpolants to f and g,
respectively. The efficiency of the error indicators are given by the following
theorem. By bK we denote the ”bubble function” on K, i.e. the function in
Pd+1(K) ∩H1

0 (K) taking the value one at the midpoint.

Theorem 2.3. For every v ∈ Vh it holds

hK‖∆v + f‖0,K. ‖∇u−∇v‖0,K+hK‖f − fh‖0,K ∀K ∈ Ch. (2.31)

Proof. Define w by w|K= bK(∆v + fh), w = 0 in Ω \K. By scaling we have

‖∆v + fh‖0,K . ‖b1/2K (∆v + fh)‖0,K .

Then we have

‖∆v + fh‖20,K . ‖b
1/2
K (∆v + fh)‖20,K

= (∆v + fh, w)K = (∆v + f, w)K + (fh − f, w)K
= (∇(u− v),∇w)K + (fh − f, w)K
≤ ‖∇(u− v)‖0,K‖∇w‖0,K + ‖fh − f‖0,K‖w‖0,K
. (h−1

K ‖∇(u− v)‖0,K + ‖fh − f‖0,K)‖w‖0,K

(2.32)
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For an edge E, we denote ωE the union of the elements in Ch that contain
E. We have:

Theorem 2.4. For every v ∈ Vh it holds

h
1/2
E ‖J

∂v

∂nE
K‖0,E. ‖∇u−∇v‖0,ωE

+
∑
K⊂ωE

hK‖f − fh‖0,K ∀E ⊂ Ω. (2.33)

Proof. For a function w, with suppw = ωE , it holds

(∇(u− v),∇w)ωE
=
∑
K⊂ωE

(∇(u− v),∇w)K

=
∑
K⊂ωE

(
(f, w)K − (∇v,∇w)K)

)
=
∑
K⊂ωE

(
(f, w)K + (∆v, w)K)

)
− 〈J ∂v

∂nE
K, w〉E .

(2.34)

To define w, we proceed as follows. First, we extend J ∂v
∂nE

K to the whole of ωE ,

so that the extension E(J ∂v
∂nE

K) is constant in the direction perpendicular to E.
Now let bE be the edge/face bubble function vanishing on ∂ωE and attaining
the value one at the midpoint of E. We then let

w = bEE(J
∂v

∂nE
K). (2.35)

Again, by scaling it holds

‖J ∂v

∂nE
K‖20,E. ‖b

1/2
E J

∂v

∂nE
K‖20,E= 〈J ∂v

∂nE
K, w〉E . (2.36)

Combining with (2.34) yields

‖J ∂v

∂nE
K‖20,E≤ ‖∇(u− v)‖0,ωE

‖∇w‖0,ωE
+
∑
K⊂ωE

‖f + ∆v‖0,E‖w‖0,K (2.37)

By scaling it holds

‖∇w‖0,K . h−1
K ‖w‖0,K . h

−1/2
K ‖w‖0,E . h−1/2

K ‖J ∂v

∂nE
K‖0,E . (2.38)

Combining the estimates above conclude the proof.

Theorem 2.5. For v ∈ Vh it holds

h
1/2
E ‖

∂v

∂n
− g‖0,E. ‖∇u−∇v‖0,ωE

+h
1/2
E ‖g − gh‖0,E . (2.39)
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Exercise 2.4. Show by the scaling argument that it holds∫
K

|v|2 dx .
∫
K

bK |v|2 dx ∀v ∈ Pk(K).

Exercise 2.5. Assume that ΓN = ∅, and that the regularity estimate

‖u‖2 . ‖f‖0 (2.40)

holds. Using the Nitsche trick and the Lagrange interpolation operator to show
that

‖u− uh‖0 .
( ∑
K∈Ch

h4
K‖∆uh + f‖20,K+

∑
E⊂Ω

h3
E‖J

∂uh
∂nE

K‖20,E
)1/2

. (2.41)

Exercise 2.6. Prove Theorem 2.5.

3 Equations of continuum mechanics

In this section we will give a short review of the basic equations of continuum
mechanics. In The Feynman Lectures on Physics, Vol. II
(http://www.feynmanlectures.caltech.edu) there is a crash-course in elasticity
and fluid flow (Chapters 38-41).

3.1 The Cauchy-Navier equations of elasticity

Let Ω ⊂ R3 be the original domain occupied by a body loaded by the volume load
f and the traction g along the boundary part ΓN . Along the complementary
part ΓD = ∂Ω \ ΓN the body is assumed fixed, i.e. denoting the displacement
by u : Ω→ R3, we assume that u = 0 on ΓD.

The strain ε(u) related to the displacement field is

ε(u) =
1

2
(∇u+ (∇u)T ). (3.1)

The Cauchy stress tensor is denoted by σ = {σij}, i, j = 1, 2, 3. The force
equilibrium equations are

divσ + f = 0 (3.2)

and the moment equilibrium is σ = σT , i.e. the stress tensor is symmetric.
Here div is the vector valued divergence operating on tensors:

(divσ)i =

3∑
j=1

∂σij
∂xj

, i = 1, 2, 3. (3.3)

The traction boundary condition is

σn = g on ΓN (3.4)
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The stress is a linear function of the strain (Hooke’s law), viz.

σ = σ(u) = Cε(u). (3.5)

The strain-stress relationship has to be positively definite, i.e.

τ : Cτ & |τ |2. (3.6)

Here the : is the inner product between two tensors, i.e.

τ : θ =

3∑
i,j=1

τij θij , (3.7)

and the norm is defied as
|τ |2= τ : τ . (3.8)

For an isotropic material this stress-strain relationship is

σ = 2µ ε(u) + λ divuI, (3.9)

where µ, λ are the Lamé parameters, I is the identity tensor and div is the
scalar valued divergence operator applied to vectors.

Note that I : ε(v) = div v = tr (ε(v)), with ”tr” denoting the trace of a
tensor.

The Lamé parameters are related to the Young modulus E and Poisson
ration ν by

µ =
E

2(1 + ν)
, λ =

Eν

2(1 + ν)(1− 2ν)
. (3.10)

For these parameters it holds E > 0 and 0 ≤ ν < 1/2 and hence µ, λ > 0. Note
also that µ = G, the shear modulus.

In the inversion of the strain–stress relaionship it is better to use E and ν.

ε(u) =
1 + ν

E
σ − ν

E
tr(σ) I. (3.11)

For stating the variational problem generalising the boundary value problem
we first note that for a symmetric tensor τ and a vector v it holds∫

Ω

div τ · v dx =

∫
∂Ω

τn ds−
∫

Ω

τ : ε(v) dx. (3.12)

Note that I : ε(v) = div v = tr (ε(v)), with ”tr” denoting the trace of a
tensor.

The variational formulation is then: find u ∈H1
D(Ω) such that∫

Ω

σ(u) : ε(v) dx =

∫
Ω

f · v dx+

∫
ΓN

g · v ds ∀v ∈H1
D(Ω), (3.13)

with
H1
D(Ω) = {v ∈ [H1(Ω)]d |v|ΓD

= 0 }. (3.14)
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The problem is coercive in H1
D(Ω) due to (3.6) and the Korn inequality∫

Ω

|ε(v)|2 dx &
∫

Ω

|∇v|2 dx (3.15)

(and Poincaré). The finite element is: find uh ∈ Vh ⊂H1
D(Ω) such that∫

Ω

σ(uh) : ε(v) dx =

∫
Ω

f · v dx+

∫
ΓN

g · v ds ∀v ∈ Vh. (3.16)

Remark 3.1. The differential equation we obtain from (3.2) and (3.9) is

−div (2µ ε(u) + λ divuI) = f , (3.17)

which can be written (the Navier equations)

−(µ∆u+ (µ+ λ)∇(divu)) = f . (3.18)

There is, however, a danger in this. If we try to derive the variational form
from this, we easily end up with wrong (unphyscal)boundary conditions. (This
error is quite common among mathematicians, cf. [10].)

Theorem 3.1. The strain vanish if an and only if the displacement is a in-
finitesimal rigid body motion,

ε(v) = 0 ⇔ v(x) = a+ b× x for some a, b. (3.19)

Exercise 3.1. Prove this result.

Theorem 3.2. (Korn’s inequality.) Assume that meas(ΓD) > 0. Then it holds

‖ε(v)‖0 & ‖∇v‖0 ∀v ∈H1
D(Ω) (3.20)

Exercise 3.2. Prove the Korn inequality in case that ΓD = ∂Ω. (Assume a
smooth function and integrate by parts a couple of time.)

3.2 The Navier-Stokes equations in fluid mechanics

Now u denotes the fluid velocity in the domain Ω ⊂ R3. The pressure is denoted
by p and then the the stress-velocity relationship is

σ = 2µε(u)− pI, (3.21)

where

ε(u) =
1

2
(∇u+∇uT ) (3.22)

is the rate of strain. Newton’s law gives the equation of motion

ρ(
∂u

∂t
+ (u · ∇)u) = divσ + f . (3.23)
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In addition, we have the condition that the fluid is incompressible

divu = 0. (3.24)

Eliminating the stress leads to the equation

ρ(
∂u

∂t
+ (u · ∇)u) = 2µAu−∇p+ f , (3.25)

with
Au = div ε(u). (3.26)

Using the incompressibility condition, we get the Navier-Stokes equations in
the form they usually are presented:

ρ(
∂u

∂t
+ (u · ∇)u) = µ∆u−∇p+ f ,

divu = 0.
(3.27)

Remark 3.2. Again, if one tries to derive the physically correct variational
form from the above equations, one easily makes a big mistake, cf. [9].

Exercise 3.3. Carry out the manipulations leading to (3.18) and (3.27).

4 The Stokes problem

4.1 The uniqueness of the continuous and discrete prob-
lems

In analysing and discretising the Navier-Stokes problem there are two problems.
First, to treat the nonlinear term ∂u

∂t + (u ·∇)u. Second, how should the incom-
pressibility condition divu = 0 be treated. In this course we will consider only
the second, and we will treat the following scaled Stokes equations

−Au+∇p = f ,

divu = 0, in Ω.
(4.1)

For the stability, the worst case are Dirichlet conditions along the whole bound-
ary, and we will assume that, i.e.

u|∂Ω= 0.

Let us prove:

Theorem 4.1. The Stokes problem has an, up to an additive constant pressure,
unique solution.
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Proof. By linearity one has show that if f = 0, then u = 0 and p = Const. The
equation

−Au+∇p = 0 (4.2)

we multiply with u, integrate over Ω, and integrate by parts

0 =

∫
Ω

(−Au+∇p) · u dx =

∫
Ω

|ε(u)|2 dx−
∫

Ω

p divu dx. (4.3)

Due to the incompressibility condition divu = 0, we obtain∫
Ω

|ε(u)|2 dx = 0. (4.4)

Hence, Theorem 3.1 and the boundary condition imply that the velocity vanish.
From this it follows that

∇p = 0 (4.5)

and the pressure is a constant.

The variational form is obtained in the same way. The solution u is in
H1

0 (Ω) and the pressure in L2(Ω). The mathematically correct way to have a
unique pressure is to assume that the pressure has the average value zero∫

Ω

p dx = 0. (4.6)

Hence it is in

L2
0(Ω) = { q ∈ L2(Ω) |

∫
Ω

q dx = 0 }.

The variational form is: find u ∈H1
0 (Ω) and p ∈ L2

0(Ω) such that

(ε(u), ε(v))− (p,div v) = (f ,v) ∀v ∈H1
0 (Ω),

(divu, q) = 0 ∀q ∈ L2
0(Ω).

(4.7)

To show the uniqueness we assume f = 0, choose v = u, q = p, and add the
equations giving

(ε(u), ε(u)) = 0,

which again leads to u = 0. What remain is the condition

(p,div v) = 0 ∀v ∈H1
0 (Ω). (4.8)

Assuming a smooth solution and integrating by parts gives

(∇p,v) = 0 ∀v ∈H1
0 (Ω). (4.9)

Now we can,e.g., choose v = bΩ∇p, with a weight function with bΩ(x) > 0, x ∈
Ω, and bΩ|∂Ω= 0. This gives ∫

Ω

bΩ|∇p|2 dx = 0.
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This leads to
∇p = 0,

which together with the condition (4.6) leads to p = 0.
The finite element method is easily formulated: find uh ∈ Vh ⊂H1

0 (Ω) and
ph ∈ Ph ⊂ L2

0(Ω) such that

(ε(uh), ε(v))− (ph,div v) = (f ,v) ∀v ∈ Vh,
(divu, q) = 0 ∀q ∈ Ph.

(4.10)

Now repeating the same arguments we see that the velocity is always unique,
and that the the uniqueness of the pressure is given by the following theorem.

Theorem 4.2. The solution of the discrete Stokes problem (4.10) is unique if
and only if the FE spaces satisfy the following condition

(q,div v) = 0 ∀v ∈ Vh ⇒ q = Const. (4.11)

That this is not always the case is seen from some simple examples. Note that
the basis functions for the pressure can be either discontinuous or continuous.

Example 4.1. Probably the first choice for a FE method, would be to use
continuous piecewise linear functions for all velocity components and for the
pressure, viz.

Vh = {v ∈H1
0 (Ω) |v|K∈ [P1(K)]dK ∈ Ch },

Ph = { q ∈ L2
0(Ω) ∩ C(Ω) | q|K∈ P1(K)K ∈ Ch },

(4.12)

where Ch is the partitioning into triangles/tetrahedrons. This choice is easily
seen to give a non-unique solution. Let Ω be a square which is partitioned into
triangles as in the figure below. Let pc be the pressure taking the nodal values
0 and 1 as in the figure. For this non-zero pressure it holds

(pc,div v) = 0 ∀v ∈ Vh. (4.13)

A second example is with discontinuous pressure.

Example 4.2. We let Ch a partitioning of a two-dimensional domain into
quadrilaterals. The FE spaces are

Vh = {v ∈H1
0 (Ω) |v|K∈ [Q1(K)]2K ∈ Ch },

Ph = { q ∈ L2
0(Ω) | q|K∈ P0(K)K ∈ Ch }.

(4.14)

For a square partitioned into equal squares the checkerboard function ±1 satis-
fies the equation (4.13).

Example 4.3. The next method is the ”MINI” [1] element special designed to
yield a unique solution. The pressure space is continuous piecewise linears

Ph = { q ∈ L2
0(Ω) ∩ C(Ω) | q|K∈ P1(K)K ∈ Ch }. (4.15)
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In the velocity space the piecewise linears are augmented with the ”bubble
functions” bK in each element and for all components. Let B(K) = Pd+1(K) ∩
H1

0 (K) and define

Vh = {v ∈H1
0 (Ω) |v|K∈ [P1(K)⊕B(K)]dK ∈ Ch }. (4.16)

Let us now check the crucial condition.

(q,div v) = 0 ∀v ∈ Vh ⇒ q = Const.? (4.17)

Let K ∈ Ch be arbitrary, and choose now v so that v = 0 in Ω \ K and
v|K= bK∇q|K . We get

0 = (q,div v) = (q,div v)K = −(∇q,v)K =

∫
K

bK |∇q|2 dx, (4.18)

from which we obtain
q|K= constant in K. (4.19)

Since q is continuous, it is the same constant in the whole domain. The condition
for a unique solution is valid.

Example 4.4. The next example is with a discontinuous pressure. We use a
triangulation of the two-dimensional domain. The FE spaces are

Vh = {v ∈H1
0 (Ω) |v|K∈ [P2(K)]2K ∈ Ch },

Ph = { q ∈ L2
0(Ω) | q|K∈ P0(K)K ∈ Ch }.

(4.20)

Let K and K ′ be two adjacent elements with E as the common edge. We choose
v so that it vanish in Ω \ (K ∪K ′). Let qK and qK′ be the constant values of q
in K and K ′. Then the criteria to check is

0 = (q,div v) = (q,div v)K∪K′ = (qK − qK′)

∫
E

v · nK ds. (4.21)

We can now choose v so that
∫
E
v · nK ds 6= 0, and the conclusion is that

qK = qK′ . (4.22)

We then repeat the same argument for each edge in the mesh, and conclude
that the pressure is a global constant.

Example 4.5. (Crouzeix & Raviart [6]) This example is given by the choice

Vh = {v ∈H1
0 (Ω) |v|K∈ [P2(K)⊕B(K)]2K ∈ Ch }.

Ph = { q ∈ L2
0(Ω) | q|K∈ P1(K)K ∈ Ch }.

(4.23)

The uniqueness for this follows from the previous examples.
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Figure 1: The spurious pressure modes. Top: the Q1 − P0 element. Bottom:
Continuous piecewise linears
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The final example is the so-called Taylor–Hood method for which the proof
of uniqueness is more tricky.

Example 4.6.

Vh = {v ∈H1
0 (Ω) |v|K∈ [P2(K)]2K ∈ Ch },

Ph = { q ∈ L2
0(Ω) ∩ C(Ω) | q|K∈ P1(K)K ∈ Ch }.

(4.24)

To prove the local uniqueness we have to a patch, ”macroelement”, of three
elements, see the figure below. In the proof we use the quadrature formula
taking the average of the function at the three midpoints of the triangle times
the area. It is easily checked that this is exact for all polynomials of degree
two. Now, let us consider M = K1 ∪K2 ∪K3. We choose v so that is it vanish
outside of K1 ∪ K2. Let t12 be the unit tangent on the common edge. The
two remaining degrees of freedom, the velocity at the midpoint x02, we choose
so that the component in the tangential direction t(x02 equals one, and the
orthogonal component vanish. For q ∈ Ph ∇q · (x0x2) is continuous along the
common edge ∂K1 ∩ ∂K2. Using the quadrature rule the condition for uniques
gives

0 = (div v, q) = −(v,∇q)K1∪K2
=

1

3
(area(K1)+area(K2))∇q(x02) ·t12, (4.25)

and hence it holds
∇q(x02) · t12 = 0. (4.26)

That means that
q(x0) = q(x2). (4.27)

Repeting the same argument for the elements K2 and K3 shows that

q(x0) = q(x3). (4.28)

Hence, q vanish in K2. Next, we test with functions whose only non-vanishing
degrees of freedom are the normal components at x12 and x23, respectively.
This leads to the conclusion that q is a constant in K1 ∪K2 ∪K3.

4.2 Stokes as a constrained optimisation problem

Most often an elliptic problem can be posed as a minimisation problem and the
Euler-Lagrange equations are the weak formulation.

The Stokes problem is a prototype of a constraint minimisation problem:
the solution u ∈H1

0 (Ω) is obtained as

min
v∈H1

0 (Ω)

1

2
‖ε(v)‖20 − (f ,v) (4.29)

subject to
div v = 0. (4.30)
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Figure 2: The quadrature rule exact for P2(K). Bottom: The macroelement.

To solve this we define the Lagrangian L : H1
0 (Ω)× L2

0(Ω)→ IR by

L(v, q) =
1

2
‖ε(v)‖20 − (q,div v)− (f ,v). (4.31)

The variation with respect to the vector variable gives the first equation

(ε(u), ε(v))− (p,div v) = (f ,v) ∀v ∈H1
0 (Ω), (4.32)

and the variation of the scaler gives the weak form of the incompressibility
condition

(divu, q) = 0 ∀q ∈ L2
0(Ω). (4.33)

We see that the physical meaning of the pressure is the Lagrange multiplier
enforcing the incompressibility. What we have done requires of course some
applied functional analysis. However, for the discretisation it is elementary.

Hence, let us turn to that. Let {wi}Ni=1, and {φi}Mi=1, be the basis functions
for Vh and Ph, respectively. With

uh =

N∑
j=1

ujwj , ph =

M∑
k=1

pkφk, (4.34)
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and testing with the basis functions gives

N∑
j=1

(ε(wi), ε(wj))uj −
M∑
k=1

(φk,divwi)pk = (f ,wi), i = 1, . . . , N,

N∑
j=1

(divwj , φl)uj = 0, l = 1, . . . ,M.

(4.35)

Let U = (u1, . . . , uN )T and P = (p1, . . . , pM ) and define the matrices A, and
B, and the load F = (F1, . . . FN ), by

Aij = (ε(wi), ε(wj)), Bik = −(φk,divwi), Fi = (f ,wi). (4.36)

Then the discrete system is then(
A B
BT 0

)(
U
P

)
=

(
F
0

)
. (4.37)

Note that A is symmetric and positively definite.
We see that this is an example of a quadratic optimisation problem: find U

which minimises the object function

1

2
V TAV − FTV (4.38)

subject to the linear constraint

BTV = G. (4.39)

The Lagrangian is (Q is the multiplier)

L(V,Q) =
1

2
V TAV − FTV −QT (BTV −G). (4.40)

The optimality conditions are then(
A B
BT 0

)(
U
P

)
=

(
F
G

)
. (4.41)

Exercise 4.1. Show that this system has a unique solution if, and only if,
N(B) = {0}, or equvalently R(BT ) = IRM , with N and R denoting the nullspace
and range.

4.3 Theory of saddle point problems

4.3.1 The Lax-Milgram-Nirenberg Lemma

Theorem 4.3. Let H be a Hilbert space with inner product (·, ·)H and norm
‖·‖H . Suppose that the bilinear form B : H × H → IR satisfies the following
conditions.
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• Continuity: there is a positive constant C such that

|B(W,V )| ≤ C‖W‖H‖V ‖H ∀W,V ∈ H. (4.42)

• The ”inf-sup” condition: there is a positive constant α such that

sup
V ∈H,V 6=0

B(W,V )

‖V ‖H
≥ α‖W‖H ∀W ∈ H. (4.43)

• The condition
sup
W∈H

B(W,V ) 6= 0 ∀V ∈ H. (4.44)

Then the variational problem: find U ∈ H such that

B(U, V ) = F (V ) ∀V ∈ H, (4.45)

has a unique solution depending continuously on the data:

‖U‖H ≤ α−1‖F‖′H , (4.46)

where ‖·‖′H is the dual norm

‖F‖′H = sup
V ∈H

F (V )

‖V ‖H
. (4.47)

Proof. ( [2], [7]) Step 1). For every W ∈ H

ΦW (V ) = B(W,V ) (4.48)

defines a continuous linear functional onH. By the Riesz representation theorem
there is Z ∈ H such that

ΦW (V ) = (Z, V )H . (4.49)

Hence, we have a linear mapping A : H → H , Z = A(W ), such that

(A(W ), V )H = B(W,V ) ∀W,V ∈ H. (4.50)

From the continuity condition it follows that A is bounded:

‖A‖≤ C. (4.51)

2). The mapping A is bounded from below and R(A) is closed: We have

‖A(W )‖H = sup
V ∈H, ‖V ‖H=1

(A(W ), V )H = sup
V ∈H, ‖V ‖H=1

B(W,V )H ≥ α‖W‖H .

(4.52)
Let A(Wn) be a Cauchy-sequence. From above we have

‖A(Wn)−A(Wm)‖H ≥ α‖Wn −Wm‖H , (4.53)
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and hence Wn is also Cauchy, converging to (say) W ∈ H. Since A is bounded
we have A(Wn)→ A(W ) which shows that R(A) is closed.

3). R(A) = H. If not, there exists V0 6= 0 such that

(A(W ), V0)H = 0 ∀W ∈ H. (4.54)

This is equivalent with
B(W,V0) = 0 ∀W ∈ H (4.55)

which contradicts the third condition assumed of B.
4). Next we apply the Riesz representation theorem to the right hand side

as well: there exits G ∈ H such that

F (V ) = (G,V )H . (4.56)

The variational problem is now equivalent to

(A(U), V )H = (G,V )H (4.57)

i.e.
A(U) = G (4.58)

with solution
U = A−1(G). (4.59)

5). From the inf-sup condition we now finally have

α‖U‖H ≤ sup
V ∈H,V 6=0

B(U, V )

‖V ‖H
= sup
V ∈H,V 6=0

F (V )

‖V ‖H
= ‖F‖′H , (4.60)

which also shows the uniqueness.

4.3.2 Finite Element Discretization

Choose a subspace Hh ⊂ H and solve Uh ∈ Hh from

B(Uh, V ) = F (V ) ∀V ∈ Hh. (4.61)

We then have the analog to Cea’s lemma.

Theorem 4.4. Suppose that the following discrete ”inf-sup” condition is valid:
there is a constant γ > 0 such that

sup
V ∈Hh, V 6=0

B(W,V )

‖V ‖H
≥ γ‖W‖H ∀W ∈ Hh. (4.62)

Then it holds

‖U − Uh‖H ≤ (1 +
C

γ
) inf
Z∈Hh

‖U − Z‖H , (4.63)

where C is the constant in the continuity condition.
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Proof. 1). Testing with v ∈ Hh in the the continuous problem and subtracting
from the discrete formulation gives

B(U − Uh, V ) = 0 ∀V ∈ Hh. (4.64)

2). Let Z ∈ Hh be arbitrary. Choosing W = Uh − Z in the inf-sup then gives

γ‖Uh − Z‖H ≤ sup
V ∈Hh, V 6=0

B(Uh − Z, V )

‖V ‖H
= sup
V ∈Hh, V 6=0

B(U − Z, V )

‖V ‖H
≤ C‖U − Z‖H ,

(4.65)

i.e.

‖Uh − Z‖H ≤
C

γ
‖U − Z‖H . (4.66)

The claim now follows from the triangle inequality (and ”taking the inf”).

Remark 4.1. Alternative ways of posing the stability condition are

• There exist a positive constant γ such that

inf
W∈Hh

sup
V ∈Hh

B(W,V )

‖V ‖H‖W‖H
≥ γ. (4.67)

• There exist a positive constant γ such that for every W ∈ Hh there is
V ∈ Hh such that

B(W,V ) ≥ γ‖W‖2H , and ‖V ‖H = ‖W‖H . (4.68)

• There exist a positive constant C such that for every W ∈ Hh there is
V ∈ Hh such that

B(W,V ) = ‖W‖2H , and ‖V ‖H ≤ C‖W‖H . (4.69)

4.4 Application to the Stokes problem

4.4.1 The Babuska-Brezzi splitting for Stokes problem

For the Stokes equations we define H := H1
0 (Ω)N × L2

0(Ω), with the norm

‖(v, q)‖2H := ‖v‖21+‖q‖20, (4.70)

and the bilinear form

B((v, q), (z, r)) := (∇v,∇z)− (div z, q)− (div v, r). (4.71)

The dual space is now H ′ = H−1(Ω)n × L2
0(Ω).

The inf-sup is now:

sup
(z,r)∈H

B((v, q), (z, r))

‖(z, r)‖H
≥ α‖(v, q)‖H ∀(v, q) ∈ H. (4.72)
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The Babuska-Brezzi theory for mixed (or saddle point) problems says that this
is a consequence of the two conditions.

The Babuska-Brezzi conditions.

• The ellipticity: There is a constant C1 such that

(∇v,∇v) ≥ C1‖v‖21 ∀v ∈ H1
0 (Ω)n. (4.73)

• The LBB (Ladyshenskaya-Babuska-Brezzi) condition: there is a positive
constant C2 such that

sup
v∈H1

0 (Ω)n

(div v, q)

‖v‖1
≥ C2‖q‖0 ∀q ∈ L2

0(Ω). (4.74)

The first estimate above is simply the Poincaré inequality.
In order to keep track of the influence of the LBB constant it will be conve-

nient to work with the norm ‖∇v‖0 for v ∈ H1
0 (Ω)n. The LBB we then write

as: there is a positive constant β such that

sup
w∈H1

0 (Ω)n

(divw, q)

‖∇w‖0
≥ β‖q‖0 ∀q ∈ L2

0(Ω). (4.75)

Then we perform the analysis with the ”triple-bar” norm:

|‖(v, q)‖|2H := ‖∇v‖20+β2‖q‖20. (4.76)

We also use the standard trick, the ”arithmetic-geometric-mean inequality”
(AGM):

|ab| ≤ ε

2
a2 +

1

2ε
b2, a, b ∈ IR, ε > 0. (4.77)

or more precisely

−|ab| ≥ −ε
2
a2 − 1

2ε
b2, a, b ∈ IR, ε > 0. (4.78)

Let’s now build the inf-sup for B from the ellipticity and the LBB.

Proof. 1). Let (v, q) ∈ H be arbitrary. We first have

B((v, q), (v,−q)) = (∇v,∇v)− (div v, q) + (div v, q) = ‖∇v‖20. (4.79)

2). The LBB condition reformulated is: there is w ∈ H1
0 (Ω)n such that

(divw, q) ≥ β‖q‖20 and ‖∇w‖0 = ‖q‖0. (4.80)
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Using this, Schwartz and the AGM (with ε = β) gives

B((v, q), (−w, 0)) = −(∇v,∇w) + (divw, q)

≥ −(∇v,∇w) + β‖q‖20
≥ −‖∇v‖0‖∇w‖0 + β‖q‖20

≥ − 1

2β
‖∇v‖20 −

β

2
‖∇w‖20 + β‖q‖20

= − 1

2β
‖∇v‖20 +

β

2
‖q‖20.

3). For δ > 0 we then have

B((v, q), (v − δw,−q)
= B((v, q), (v,−q)) + δ B((v, q), (−w, 0)

≥
(

1− δ

2β

)
‖∇v‖20 +

δβ

2
‖q‖20

=
1

2
‖∇v‖20 +

β2

2
‖q‖20 =

1

2
|‖(v, q)‖|2H .

when choosing δ = β.
4). For z = v − δw = v − βw and r = −q we thus have

B((v, q), (z, r)) ≥ 1

2
|‖(v, q)‖|2H (4.81)

and (AGM again)

|‖(z, r)‖|H≤
(
‖∇(v − βw)‖0 + β‖q‖0

)
≤
(
‖∇v‖0 + β‖∇w‖0 + β‖q‖0

)
=
(
‖∇v‖0 + 2β‖q‖0

)
≤ 2
(
‖∇v‖0 + β‖q‖0

)
≤ 2
√

2|‖(v, q)‖|H .

5). Combining gives (if I calculated the constants right)

sup
(z,r)∈H

B((v, q), (z, r))

|‖(z, r)‖|H
≥
√

2

8
|‖(v, q)‖|H ∀(v, q) ∈ H. (4.82)

Since ‖·‖H and |‖·‖|H are equivalent the claim is proved.

4.5 The Babuska-Brezzi condition for the FEM

We discretize Stokes: find (uh, ph) ∈ Vh × Ph =: Hh ⊂ H such that

B((uh, ph), (v, q)) = (f ,v) ∀(v, q) ∈ Hh. (4.83)

The discrete inf-sup follows from the ellipticity condition and the discrete
LBB condition. From Cea’s lemma we get the following result.
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Theorem 4.5. Suppose that the discrete spaces satisfy the condition: there is
a constant β > 0, independent of h, such that

sup
w∈Vh

(divw, q)

‖∇w‖0
≥ β‖q‖0 ∀q ∈ Ph. (4.84)

Then there is a constant C > 0, independent of h, such that

‖u− uh‖1 + ‖p− ph‖0 ≤ C{ inf
v∈vh

‖u− v‖1 + inf
q∈Ph

‖p− q‖0}. (4.85)

The purpose of using the triple-bar norm above was to trace the influence
of the LBB constant. When we redo it for the discrete problem we get the
estimates:

‖u− uh‖1 ≤ Cβ−1{ inf
v∈Vh

‖u− v‖1 + inf
q∈Ph

‖p− q‖0}. (4.86)

and
‖p− ph‖0 ≤ Cβ−2{ inf

v∈Vh

‖u− v‖1 + inf
q∈Ph

‖p− q‖0}. (4.87)

These hold also in cases when β > 0 depends on the mesh length h (e.g. the
Q1–P0) and then shows that the accuracy is degenerated for unstable methods.

4.6 Verifying the stability condition

It has turned out that the proof of the Stokes inf-sup condition is easiest by
first proving the corresponding condition with a mesh dependent norm for the
pressure. In the the FE subspace Ph we define

‖q‖2h =
∑
K∈Ch

h2
K‖∇q‖20,K +

∑
E⊂Ω

hE‖JqK‖20,E , q ∈ Ph. (4.88)

The modified stability condition is

sup
v∈Vh

(div v, q)

‖v‖1
& ‖q‖h q ∈ Ph. (4.89)

The reason why this is advantageous is that it can be proved locally.
The following result is called the Pitkäranta–Verfürt trick [11,17].

Theorem 4.6. Suppose that the FE subspaces satisfy the stability condition
(4.89). Then the condition (4.84) is valid.

Proof. Let q ∈ Ph be arbitrary. By the continuous stability condition (4.74)
there exists v ∈H1

0 (Ω) such that

(div v, q) ≥ C1‖q‖0‖v‖1. (4.90)
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Let Ihv ∈ Vh be the Clément interpolant to v. We first write

(div Ihv, q) = (div v, q)− (div (v − Ihv), q). (4.91)

By element by element integration by parts and using the Cauchy and Schwarz
inequalities we get

|(div (v − Ihv), q)|= |
∑
K∈Ch

(div (v − Ihv), q)K |

= |−
∑
K∈Ch

(v − Ihv,∇q)K +
∑
E⊂Ω

〈(v − Ihv) · nE , JqK〉E |

.
( ∑
K∈Ch

h−2
K ‖v − Ihv‖

2
0,K +

∑
E⊂Ω

h−1
E ‖(v − Ihv) · nE‖20,E

)1/2

‖q‖h.

(4.92)

Hence, Theorem 2.1 yields

|(div (v − Ihv), q)|≤ C2‖v‖1‖q‖h. (4.93)

Combining (4.90), (4.91), and (4.93) yields

(div Ihv, q) ≥ (C1‖q‖0 − C2‖q‖h)‖v‖1. (4.94)

If now C1‖q‖0 − C2‖q‖h < 0, the assertion is proved.
In the other case, we use the fact that C3‖Ihv‖1 ≤ ‖v‖1 to obtain

(div Ihv, q)

‖Ihv‖1
≥ C3(C1‖q‖0 − C2‖q‖h), (4.95)

that is

sup
v∈Vh

(div v, q)

‖v‖1
≥ C ′1‖q‖0 − C ′2‖q‖h. (4.96)

The stability in the mesh dependent norm is

sup
v∈Vh

(div v, q)

‖v‖1
≥ C ′3‖q‖h q ∈ Ph. (4.97)

Taking a convex compination of these estimates, with 0 < t < 1, gives

sup
v∈Vh

(div v, q)

‖v‖1
= t sup

v∈Vh

(div v, q)

‖v‖1
+ (1− t) sup

v∈Vh

(div v, q)

‖v‖1
≥ (t(C ′3 + C ′2)− C ′2)‖q‖h + (1− t)C ′1‖q‖0.

(4.98)

Choosing 1 > t >
C′

2

C′
2+C′

3
, proves the claim.
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Next, let us prove the stability for the methods considered before.

The MINI element.

Vh = {v ∈H1
0 (Ω) |v|K∈ [P1(K)⊕B(K)]dK ∈ Ch },

Ph = { q ∈ L2
0(Ω) ∩ C(Ω) | q|K∈ P1(K)K ∈ Ch }.

(4.99)

Let q ∈ Ph be given. v ∈ Vh we define as v|K= −h2
KbK∇q|K for each K ∈ Ch.

This gives

(div v, q) = −(v,∇q) =
∑
K∈Ch

h2
K‖b

1/2
K ∇q‖

2
0,K

&
∑
K∈Ch

h2
K‖∇q‖20,K & ‖q‖2h.

(4.100)

On the element K it holds

‖∇v‖0,K . h−1
K ‖v‖0,K . hK‖bK∇q‖0,K . hK‖∇q‖0,K . (4.101)

Hence, we have
‖v‖1 . ‖∇v‖0 . ‖q‖h, (4.102)

and the stability is proved.

The lowest order Crouzeix–Raviart element

Vh = {v ∈H1
0 (Ω) |v|K∈ [P2(K)]2K ∈ Ch },

Ph = { q ∈ L2
0(Ω) | q|K∈ P0(K)K ∈ Ch }.

(4.103)

For q ∈ Ph we define v by v|E= hKbEJqK|E . This gives

(div v, q) =
∑
E⊂Ω

〈v · nE , JqK〉E =
∑
E⊂Ω

hE

∫
E

bE |JqK|2 ds ≈ ‖q‖2h, (4.104)

and by the inverse inequality and scaling gives

‖v‖1 . ‖q‖h. (4.105)

The second lowest order Crouzeix–Raviart element

Vh = {v ∈H1
0 (Ω) |v|K∈ [P2(K)⊕B(K)]2K ∈ Ch }.

Ph = { q ∈ L2
0(Ω) | q|K∈ P1(K)K ∈ Ch }.

(4.106)

We now ”glue together” the estimates from the previous examples. To this
end q ∈ Ph we split in the piecewise constant component and its orthogonal
component q = q̄ + q̂, with

q̄|K=

∫
K
q dx∫

K
dx

. (4.107)
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From the lowest order CR, we know that there exists v̄ ∈ Vh such that

(div v̄, q̄) = ‖q̄‖20 and C‖v̄‖1 ≤ ‖q̄‖0. (4.108)

By using the bubbles we have v̂ ∈ Vh such that (we can use the same constant
here)

(div v̂, q̄) = ‖q̂‖20 and C‖v̂‖1 ≤ ‖q̂‖0. (4.109)

It also holds that
(div v̂, q̄) = 0. (4.110)

Let δ > 0, and estimate using the AGM (with γ)and (4.108)

(div (v̂ + δv̄), q) = (div (v̂ + δv̄), q̄ + q̂)

= (div v̂, q̂) + δ(div v̄, q̄) + δ(div v̄, q̂)

= ‖q̂‖20 + δ‖q̄‖20 + δ(div v̄, q̂)

≥ ‖q̂‖20 + δ‖q̄‖20 − δ‖v̄‖1‖q̂‖0

≥ ‖q̂‖20 + δ‖q̄‖20 −
δγ

2
‖v̄‖21 −

δ

2γ
‖q̂‖20

≥ (1− δ

2γ
)‖q̂‖20 + δ(1− γ

2C2
)‖q̄‖20.

(4.111)

Hence, choosing first γ such that 1 − γ
2C2 > 0 and then δ so that 1 − δ

2γ > 0,
gives

(div (v̂ + δv̄), q) & (‖q̄‖2h + ‖q̂‖20) & ‖q‖20. (4.112)

Since
‖v̂ + δv̄‖1 . ‖q‖0, (4.113)

the assertion is proved.
The above examples show the technique to prove the stability for those

elements for which it can be done element by element. For the methods where
this cannot be done it looks more complicated. For the Taylor–Hood method
it seems pretty difficult to explicitly construct the stability. It can, however, be
proved [15] that if one can prove the local uniqueness on a patch of elements, and
this independently of the geometrical shape of the element, then the stability is
valid.

Let us end this section by giving a list of known stable combinations.

Triangular and tetrahedral Taylor–Hood
The finite element partitioning Ch consist of triangles (d = 2) or tetrahedrons

(d = 3) and k ≥ 1.

Vh = {v ∈H1
0 (Ω) |v|K∈ [Pk+1(K)]dK ∈ Ch },

Ph = { q ∈ L2
0(Ω) ∩ C(Ω) | q|K∈ Pk(K)K ∈ Ch }.

(4.114)

The proofs are given in [3, 5, 12,14,17] for the 2D problems and [4, 13] in 3D.

Quadrilateral and hexahedral Taylor–Hood
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For discontinuous pressure we have seen that the lowest order Crouzeix-
Raviart elements need both internal and edge/face bubbles. The lowes order
methods in this family are the following.

The finite element partitioning Ch consist of quadrilateral (d = 2) or hexa-
hedral (d = 3) and k ≥ 1.

Vh = {v ∈H1
0 (Ω) |v|K∈ [Qk+1(K)]dK ∈ Ch },

Ph = { q ∈ L2
0(Ω) ∩ C(Ω) | q|K∈ Qk(K)K ∈ Ch }.

(4.115)

The proofs are given in [3,12,14] for the 2D problems and [13] for k = 1 in 3D.

The lowest order method with linear velocities is the MINI element.

Exercise 4.2. Construct the MINI element for quadrilaterals.

The Fortin element [8]
Ch consists of triangles/tetrahedrons. Denote an edge and face bubble func-

tion by bE and the edge/face bubble subspace as

S(K) = span{bEnE , E ⊂ ∂K }. (4.116)

Vh = {v ∈H1
0 (Ω) |v|K∈ [P1(K)]d ⊕ S(K)K ∈ Ch },

Ph = { q ∈ L2
0(Ω) | q|K∈ P0(K)K ∈ Ch }.

(4.117)

Qk+1 − Pk -discontinuous
The finite element partitioning Ch consist of quadrilateral (d = 2) or hexa-

hedral (d = 3) and k ≥ 1.

Vh = {v ∈H1
0 (Ω) |v|K∈ [Qk+1(K)]dK ∈ Ch },

Ph = { q ∈ L2
0(Ω) | q|K∈ Pk(K)K ∈ Ch }.

(4.118)

The stability is easily verified [8, 12,16].

4.6.1 A posteriori estimate

In the preceding section we assumed homogeneous Dirichlet boundary conditions
as these are the ”worst case” when studuing stability. In ths section we will
assume more general boundary conditions and also a non-vanishing loading in
the second equation, i.e. the problem: find (u, p) such that

−Au+∇p = f in Ω, (4.119)

divu = g in Ω, (4.120)

u = 0 on ΓD, (4.121)

(ε(u)− pI)n = t on ΓN . (4.122)
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With
F(v, q) = (f ,v) + 〈t,v〉ΓN

− (g, q), (4.123)

the variational formulation is: Find (u, p) ∈H1
D(Ω)× L2(Ω) such that

B(u, p;v, q) = F(v, q) ∀(v, q) ∈H1
D(Ω)× L2(Ω). (4.124)

The finite element method is then. find (uh, ph) ∈ Vh × Ph such that

Bh(uh, ph;v, q) = F(v, q) ∀(v, q) ∈ Vh × Ph. (4.125)

The local error indicators are

η2
K = h2

K‖Auh −∇ph + f‖20,K+‖divuh − g‖20,K (4.126)

and

η2
E =

{
hE‖[[(ε(uh)− phI)n]]‖20,E , when E ⊂ Ω,

hE‖(ε(uh)− phI)n− t‖20,E , when E ⊂ ΓN .
(4.127)

By Eh we denote the collection of edges/faces in Ω and on ΓN . The global error
estimator is then defined as

η2 =
∑
K∈Ch

η2
K +

∑
E∈Eh

η2
E . (4.128)

The upper bound is given by the following theorem.

Theorem 4.7. It holds

(‖u− uh‖1+‖p− ph‖0) . η. (4.129)

Proof. By the stability of the continuous problem there exists (v, q) ∈H1
D(Ω)×

L2(Ω) with
‖v‖1+‖q‖0= 1 (4.130)

and
‖u− uh‖1+‖p− ph‖0. B(u− uh, p− ph;v, q). (4.131)

Let Ihv ∈ Vh be the Clément interpolant (Lemma 2.1) of v for which we recall
the estimate

(
∑
K∈Ch

h−2
K ‖v − Ihv‖

2
0,K+

∑
E∈Eh

h−1
E ‖v − Ihv‖

2
0,E)

1/2 . ‖v‖1. 1. (4.132)

Choosing the pair (v, q) = (Ihv, 0) in the finite element formulation (4.125), we
get

B(u− uh, p− ph, Ihv, 0) = 0. (4.133)

Subtracting this from the right hand side in (4.176), we obtain

B(u− uh, p− ph;v, q) = B(u− uh, p− ph;v − Ihv, q). (4.134)
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Next, we have

B(u− uh, p− ph;v − Ihv, q) = B(u, p;v − Ihv, q)− B(uh, ph;v − Ihv, q)
= (f ,v − Ihv) + 〈t,v − Ihv〉ΓN

− (g, q)− B(uh, ph;v − Ihv, q)
= (f ,v − Ihv) + 〈t,v − Ihv〉ΓN

− (ε(uh), ε(v − Ihv)) + (div (v − Ihv), ph)

+ (divuh − g, q).
(4.135)

The terms are estimated as follows.

(divuh − g, q) ≤ ‖divu− g‖0‖q‖0 = ‖divu− g‖0 . η. (4.136)

Integrating by parts gives

−(ε(uh), ε(v − Ihv))− (div (v − Ihv), ph)

=
∑
K∈Ch

(Auh −∇ph,v − Ihv)K

−
∑
E⊂Ω

〈[[(ε(uh)− phI)n]],v − Ihv〉E

−
∑
E⊂ΓN

〈(ε(uh)− phI)n,v − Ihv〉E .

(4.137)

Hence, we get

(f ,v − Ihv) + 〈t,v − Ihv〉ΓN
− (ε(uh), ε(v − Ihv))− (div (v − Ihv), ph)

=
∑
K∈Ch

(Auh −∇ph + f ,v − Ihv)K −
∑
E⊂Ω

〈[[(ε(uh)− phI)n]],v − Ihv〉E

−
∑
E⊂ΓN

〈(ε(uh)− phI)n− t,v − Ihv〉E

≤
∑
K∈Ch

‖Auh −∇ph + f‖0,K‖v − Ihv‖0,K +
∑
E⊂Ω

‖[[(ε(uh)− phI)n]]‖0,K‖v − Ihv‖0,E∑
E⊂ΓN

‖(ε(uh)− phI)n− t‖0,K‖v − Ihv‖0,E

≤ η (
∑
K∈Ch

h−2
K ‖v − Ihv‖

2
0,K+

∑
E∈Eh

h−1
E ‖v − Ihv‖

2
0,E)

1/2 . η ‖v‖1. η.

(4.138)
The assertion now follows by combining the above estimates.

We define oscK(f) by

oscK(f) = hK‖f − fh‖0,K , (4.139)

where fh ∈ Vh is the interpolant of f . Similarly, we define

oscE(t) = h
1/2
E ‖t− th‖0,E , (4.140)
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with th ∈ Vh|ΓN
being the interpolant . The global oscillation terms are defined

through

osc(f)2 =
∑
K∈Ch

oscK(f)2 and osc(t)2 =
∑
E⊂ΓN

oscE(t)2. (4.141)

The efficiency is obtained exactly in the same way as for the model Poisson
problem.

Theorem 4.8. For all (v, q) ∈ Vh × Ph it holds:

hK‖Av−∇q+f‖0,K. ‖ε(u−v)‖0,K+‖p−q‖0,K+oscK(f) ∀K ∈ Ch. (4.142)

For E in the interior of Ω

h
1/2
E ‖[[(ε(v)−qI)n]]‖0,E . ‖ε(u−v)‖0,ωE

+‖p−q‖0,ωE
+
∑
K⊂ωE

oscK(f) (4.143)

and for E ⊂ ΓN

h
1/2
E ‖(ε(v)− qI)n− t‖0,E .‖ε(u− v)‖0,ωE

+‖p− q‖0,ωE

+
∑
K⊂ωE

oscK(f) + oscE(t).
(4.144)

Exercise 4.3. Prove this lemma.

From the local bounds, the global bound follows

η . (‖u− uh‖1+‖p− ph‖0) + osc(f) + osc(t). (4.145)

4.7 Stabilised methods

In this section we will study stabilisation by which it is possible to design meth-
ods for which a stability condition for the subspaces can be avoided. To this
end, we first recall the Stokes problem

−Au+∇p = f in Ω, (4.146)

divu = 0 in Ω, (4.147)

u = 0 on ΓD, (4.148)

(ε(u)− pI)n = 0 on ΓN , (4.149)

where Au = div ε(u), define the (big) bilinear and linear forms

B(w, r;v, q) = (ε(w), ε(v))− (div v, r)− (divw, q), F(v, q) = (f ,v),

and recall the variational formulation for the continuous problem: Find (u, p) ∈
H1
D(Ω)× L2(Ω) such that

B(u, p;v, q) = F(v, q) ∀(v, q) ∈H1
D(Ω)× L2(Ω).
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Next, we define the following terms

Sh(w, r;v, q) =
∑
K∈Ch

h2
K(−Aw +∇r,−Av +∇q)K , (4.150)

Lh(v, q) =
∑
K∈Ch

h2
K(f ,−Av +∇q)K , (4.151)

for a FE function pairs (w, r), (v, q) ∈ Vh × Ph, and then the forms

Bh(w, r;v, q) = B(w, r;v, q)− αSh(w, r;v, q) (4.152)

and
Fh(v, q) = F(v, q)− αLh(v, q), (4.153)

where α is a positive constant less than a fixed constant CI to be specified below.
The stabilised finite element method reads as follows: Find (uh, ph) ∈ Vh × Ph
such that

Bh(uh, ph;v, q) = Fh(v, q) ∀(v, q) ∈ Vh × Ph. (4.154)

Before explaining the added value of this modification, let us show that it
at least does not do any harm. The formulation is consistent:

Theorem 4.9. Suppose that f ∈ L2(Ω). Then the finite element method
(4.154) is consistent, in the sense that the exact solution (u, p) ∈H1

D(Ω)×L2(Ω)
to (4.124) satisfies the discrete variational form

Bh(u, p;v, q) = Fh(v, q) ∀(v, q) ∈ Vh × Ph. (4.155)

Proof. The differential equation (4.146) has to be interpreted in the sense of
distributions. However, with the assumption f ∈ L2(Ω) the sum −Au+∇p is
in L2(Ω) and hence both Sh(u, p;v, q) and Lh(v, q) are well defined and equal.
Hence, it holds

Sh(u, p;v, q) = Lh(v, q) ∀(v, q) ∈ Vh × Ph, (4.156)

from which the claim follow.

Let us turn to the stability of the method. The constant CI is given from
the following inequality (which follows from the standard inverse inequality)

CI
∑
K∈Ch

h2
K‖Av‖20,K≤ ‖ε(v)‖20. (4.157)

Next, we turn to the stability. Assume that 0 < α < CI . Then it holds

Bh(w, r;w,−r) = ‖ε(w)‖20−α
∑
K∈Ch

h2
K‖Aw‖20,K+α

∑
K∈Ch

h2
K‖∇r‖20,K

≥ (1− α

CI
)‖ε(w)‖20+α

∑
K∈Ch

h2
K‖∇r‖20,K (4.158)

& (‖ε(w)‖20+
∑
K∈Ch

h2
K‖∇r‖20,K).
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The conclusion is that we have the stability (in the mesh dependent norm)
for continuous pressures. For discontinuous pressures we have stability for all
components except the piecewise constant component. The stability for this
must hence be obtained from the original bilinear form. More precisely, for a
discontinuous pressure we denote the piecewise constants by

P 0
h = { q ∈ L2(Ω) | q|K∈ P0(K) ∀K ∈ Ch }, (4.159)

and we have to assume that the following discrete stability inequality is valid.

sup
v∈Vh

(div v, q)

‖v‖1
& ‖q‖0 ∀q ∈ P 0

h . (4.160)

Theorem 4.10. Suppose that one of the following conditions is valid:

(i) Ph ⊂ C0(Ω),

(ii) the stability inequality (4.160) is valid.

For 0 < α < CI it then holds

sup
(v,q)∈Vh×Ph

Bh(w, r;v, q)

‖v‖1+‖q‖0
& (‖w‖1+‖r‖0) ∀(w, r) ∈ Vh × Ph. (4.161)

For the proof of the stability we need the following result.

Lemma 4.1. Under the assumptions of Theorem 4.10, it holds that

sup
v∈Vh

(div v, q)

‖v‖1
≥
(
C1‖q‖0−C2(

∑
K∈Ch

h2
K‖∇q‖20,K)

1/2
)
∀q ∈ Ph. (4.162)

Proof. For continuous pressures

‖q‖2h =
∑
K∈Ch

h2
K‖∇q‖20,K +

∑
E⊂Ω

hE‖JqK‖20,E =
∑
K∈Ch

h2
K‖∇q‖20,K ,

and thus the estimate follows from Theorem 4.6, see equation (4.96). For a
discontinuous pressure q ∈ Ph we write

q = Πhq + (I −Πh)q, (4.163)

where Πh : L2(Ω)→ P 0
h is the L2-projection. Observe that

‖q‖20 = ‖Πhq‖20 + ‖(I −Πh)q‖20, ⇒ ‖Πhq‖0≥ ‖q‖0−‖(I −Πh)q‖0,

and recall the interpolation estimate

‖(I −Πh)q‖0 ≤ C3(
∑
K∈Ch

h2
K‖∇q‖20,K)

1/2
. (4.164)
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Now, estimate (4.160) implies that there exists a constant C4 > 0 and v ∈ Vh,
with ‖v‖1= 1, such that

(div v,Πhq) ≥ C4 ‖Πhq‖0 ∀q ∈ Ph .

Therefore,

(div v, q) = (div v,Πhq) + (div v, (I −Πh)q) ≥ C4 ‖Πhq‖0−‖v‖1‖(I −Πh)q‖0
≥ C4‖q‖0−C5(

∑
K∈Ch

h2
K‖∇q‖20,K)

1/2
,

and the assertion is proved.

Proof of Theorem 4.10. For any given (v, q) ∈ Vh×Ph, let v̂ ∈ Vh be a function
for which the supremum is attained in the stability estimate (4.162) and assume
that ‖v̂‖1= ‖q‖0. We thus obtain, using the inverse inequality (4.157) and the
norm equivalence ‖ε(v)‖0≈ ‖v‖1, that

Bh(v, q;−v̂, 0) = −(ε(v), ε(v̂)) + (div v̂, q)− α
∑
K∈Ch

h2
K(−Av +∇q,Av̂)K

≥ −‖ε(v)‖0‖ε(v̂)‖0+‖v̂‖1
(
C1‖q‖0−C2(

∑
K∈Ch

h2
K‖∇q‖20,K)

1/2
)

+ α
∑
K∈Ch

h2
K(Av,Av̂)K − α

∑
K∈Ch

h2
K(∇q,Av̂)K

≥ −‖ε(v)‖0‖ε(v̂)‖0+C1‖q‖20−C2(
∑
K∈Ch

h2
K‖∇q‖20,K)

1/2‖q‖0

− αC−1
I ‖ε(v)‖0‖ε(v̂)‖0−αC1/2

I (
∑
K∈Ch

h2
K‖∇q‖20,K)

1/2‖ε(v̂)‖0

≥ −C3‖ε(v)‖0‖q‖0+C1‖q‖20−C4(
∑
K∈Ch

h2
K‖∇q‖20,K)

1/2‖q‖0

≥ C4‖q‖20−C5‖ε(v)‖20−C6

∑
K∈Ch

h2
K‖∇q‖20,K .

On the other hand, we already proved that for 0 < α < CI , it holds that

Bh(v, q;v,−q) ≥ C7

(
‖ε(v)‖20+

∑
K∈Ch

h2
K‖∇q‖20,K

)
.

Therefore,

Bh(v, q;v − δv̂,−q) = Bh(v, q;v,−q) + δBh(v, q;−v̂, 0)

≥ (C7 − δC5) ‖ε(v)‖20+δ C4‖q‖20+(C7 − δC6)
∑
K∈Ch

h2
K‖∇q‖20,K .

Thus, choosing 0 < δ < min{C7/C5, C7/C6}, and defining w = v − δ v̂, r = −q,
we conclude that

Bh(v, q;w, r) & ‖ε(v)‖20+‖q‖20 .
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Moreover,
‖ε(w)‖0+‖r‖0. ‖ε(v)‖0+‖q‖0,

which proves the assertion.

From the stability and the consistency the a priori estimate follows.

Theorem 4.11. It holds

‖u− uh‖1+‖p− ph‖0. inf
v∈Vh

‖u− v‖1+ inf
q∈Ph

‖p− q‖0+osc(f). (4.165)

Proof. Let (v, q) ∈ Vh×Ph be arbitrary. By the stability estimate (4.161) there
exists (w, r) ∈ Vh × Ph with

‖w‖1+‖r‖0= 1 (4.166)

and
‖uh − v‖1+‖ph − q‖0. Bh(uh − v, ph − q;w, r). (4.167)

Using (4.154), (4.153), (4.124) and (4.152) yields

Bh(uh − v, ph − q;w, r) = Bh(uh, ph,w, r)− Bh(v, q;w, r)

= Fh(w, r)− Bh(v, q;w, r)

= F(w, r)− αLh(w, r)− Bh(v, q;w, r) (4.168)

= B(u, p;w, r)− αLh(w, r)− Bh(v, q;w, r)

= B(u, p;w, r)− αLh(w, r)− B(v, q;w, r) + αSh(v, q;w, r)

= B(u− v, p− q;w, r) + α(Sh(v, q;w, r)− Lh(w, r)).

From the boundedness of the bilinear form B and the normalization (4.166), we
have

B(u− v, p− q;w, r) . (‖u− v‖1+‖p− q‖0). (4.169)

From the definitions (4.150) and (4.151) we have

Sh(v, q;w, r)− Lh(w, r) =
∑
K∈Ch

h2
K(−Av +∇q − f ,−Aw +∇r)K . (4.170)

The Cauchy–Schwarz inequality then yields

|Sh(v, q;w, r)− Lh(w, r)|

≤
( ∑
K∈Ch

h2
K‖−Av +∇q − f‖20,K

)1/2( ∑
K∈Ch

h2
K‖−Aw +∇r‖20,K

)1/2

.

By local inverse inequalities we have( ∑
K∈Ch

h2
K‖−Aw +∇r‖20,K

)1/2

≤
(

2
∑
K∈Ch

h2
K(‖Aw‖20,K+‖∇r‖20,K)

)1/2

. (‖w‖1+‖r‖0).
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Hence, (4.142) gives

|Sh(v, q;w, r)− Lh(w, r)| .
( ∑
K∈Ch

h2
K‖−Av +∇q − f‖20,K

)1/2

. (‖u− v‖1+‖p− q‖0+osc(f)).

The assertion now follows from (4.167), (4.168), (4.169) and (4.171).

We finish the section by the a posteriori analysis.
For the a posteriori estimates we define the local estimators

η2
K = h2

K‖Auh −∇ph + f‖20,K+‖divuh − g‖20,K (4.171)

and

η2
E =

{
hE‖[[(ε(uh)− phI)n]]‖20,E , when E ⊂ Ω,

hE‖(ε(uh)− phI)n− t‖20,E , when E ⊂ ΓN .
(4.172)

By Eh we denote the collection of edges/faces in Ω and on ΓN . The global error
estimator is then defined as

η2 =
∑
K∈Ch

η2
K +

∑
E∈Eh

η2
E . (4.173)

Taking (v, q) = (uh, ph) in Theorem4.8 yields a local lower bound for the error.
Now we will prove the following upper bound.

Theorem 4.12. It holds

(‖u− uh‖1+‖p− ph‖0) . η. (4.174)

Proof. From the stability of the continuous problem, it follows that, for any
(u− uh, p− ph) ∈H1

D(Ω)× L2(Ω), there exists (v, q) ∈H1
D(Ω)× L2(Ω), such

that
‖v‖1+‖q‖0= 1 (4.175)

and
‖u− uh‖1+‖p− ph‖0. B(u− uh, p− ph;v, q). (4.176)

Let Ihv ∈ Vh be the Clément interpolant of v for which we have the estimates

(
∑
K∈Ch

h−2
K ‖v − Ihv‖

2
0,K+

∑
E∈Eh

h−1
E ‖v − Ihv‖

2
0,E)

1/2 . ‖v‖1. 1,

‖Ihv‖1. ‖v‖1 .

Choosing the pair (v, q) = (Ihv, 0) in the finite element formulation (4.125) and
the consistency equation (4.155), we get

Bh(u− uh, p− ph, Ihv, 0) = 0. (4.177)
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Subtracting this from the right hand side in (4.176), and using the definition of
Bh, we obtain

B(u− uh, p− ph;v, q) = B(u− uh, p− ph;v, q)− Bh(u− uh, p− ph, Ihv, 0)

= B(u− uh, p− ph;v − Ihv, q)− αSh(u− uh, p− ph; Ihv, 0).

The first term above is estimated exactly as in Theorem 4.7 using element by
element integration by parts and the interpolation estimate (2.1). This results
in

B(u− uh, p− ph;v − Ihv, q) . η. (4.178)

Recalling definition (4.150), equation (4.146), and using an inverse inequality
together with estimate (2.1), we then get

|Sh(u− uh, p−ph; Ihv, 0)| = |
∑
K∈Ch

h2
K(−Au+∇p+Auh −∇ph,−A(Ihv))K |

≤ (
∑
K∈Ch

h2
K‖f +Auh −∇ph‖0,K)

1/2
(
∑
K∈Ch

h2
K‖A(Ihv)‖0,K)

1/2

. η‖Ihv‖1. η‖v‖1. η.

The assertion now follows by combining the above estimates.
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