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Problem Set I1

Problem 1:

(a) Consider the action of S3 on itself by conjugation: gz := gxrg!. Describe the orbits of (12) and (123)
under this action. How many orbits are there in total in S3 ? Find the stabilizer of each of the elements
above.

(b) Consider the action of S, on itself by conjugation: gz := gxg!. Describe the orbits of (12), (123),
and (12)(34) under this action. How many orbits are there in total in Ss ? Find the stabilizer of each
of the elements above.

Problem 2:

(a) Determine all Sylow subgroups of the symmetric group S3 and of Z/49007Z .

(b) Let G be a group of order 12. Determine the possible values of ss and s3 the 2- and 3-Sylow
subgroups of G. Show that from s3 = 4 there follows ss = 1, and that if s =1 = s3 the group G
is abelian.

(¢) Let G be a finite group and H a normal subgroup of G . Show that the p-Sylow subgroups of H are
exactly the intersections of p-Sylow subgroups of G with H .

Work: (a) |S3] = 3! = 6 and hence we expect p-Sylow subgroups for p = 2 and p = 3. Knowing
s3 | 6 and s3 = 1 (mod 3) the only value for s3 is 1 and the corresponding subgroup is given by
{id, (123), (321)} . The remaining elements of S3 are (12),(13),(23) and these give rise to the 2-Sylow
subgroups {id, (12)}, {id, (13)} and {id, (23)}. The group Zasgoo is abelian, and for this reason sy = s5 =
s7 = 1. From the main theorem characterizing finitely generated abelian groups we further know that the
Sylow subgoups are isomorphic to Zg4, Zos , and Zgg , respectively.

(b) s2 =1 (mod 2) and sg | 12 yields sy € {1,3} and similarly we get s3 € {1,4}. If s3 = 4 then
these 4 different 3 -Sylow subgroups cover 9 elements of G. The remaining 3 elements together with the
identity fit in exactly one 2-Sylow subgroup of order 4, and this proves the claim. If now sy = 1 = s3
then the corresponding Sylow subgroups Us and Us are normal in G and intersect only trivially. This
yields already G = UsUsz where the elements of Uy and Us commute with each other by 1.17 (e). Both
subgroups U; and Us are abelian, because this is trivially true for Us = Zs and because we can easily
check that a Uy as a 4-element group must be abelian. From all we get that G is abelian.

(c) If @ is a p-Sylow subgroup of H then by Sylow’ theorems we have a p-Sylow subgroup P of G with
@ < P. Then we have Q := QN H < PN H where the latter is a p-subgroup of H. As @ is a maximal
p-subgroup of H we have Q = PNH .

Let on the other hand P be a p-Sylow subgroup of G and consider @ := PNH . Then @ is a p-subgroup
of H which is contained in a p-Sylow subgroup Q' of H by Sylow’s first theorem. Applying Sylow’s second
theorem we find g € G such that gQ'¢g~* < P, and as H is normal even gQ'g~! < PN H = Q. Hence
|Q'| <|Q| showing that Q is already a Sylow subgroup of H .



Problem 3:

(a) For prime numbers p,q with p > ¢ and arbitrary r € N every group of order p”q is solvable.

(b) Every group of order 100 is solvable.

Work: (a) If p = ¢ then the claim is true because every p-group is solvable. Assume therefore p > ¢, then
we have p-Sylow subgroups of order p” and ¢-Sylow subgroups of order ¢ in G. We try to prove that
sp = 1, meaning that we have a unique and normal p-Sylow subgroup U, in G. Then G/U, is solvable
as a ¢-group and U, is solvable as a p-group which yields G to be solvable according to proposition 1.67.
The possible values of s, are {1,¢,p,...,p",pq,...,p"q}. The assumption that s, =1 (mod p) reduces
these possibilities to {1,¢} and as 2 < ¢ < p, we find that s, =1, as claimed.

(b) We expect 2-Sylow subgroups of order 4 and 5-Sylow subgroups of order 25. For s; we have the
possibilities {1,2,4,5, 10,20, 25,50,100} from which all but the first are removed by the condition s; = 1
(mod 5) . Hence, we have a unique normal 5-Sylow subgroup Us and again G/Us is solvable because of
being a 2-group and Us is solvable because of being a 5 -group. This shows the result again by application
of proposition 1.68.

Problem 4: Let G be a group. For a,b € G define the commutator [a,b] := aba=1b~! of a and b. For
arbitrary subgroups U,V of G define [U,V]:= ([u,v] | u € U,v € V). Now show the following:

(a) If U,V are normal subgroups of G, then sois [U,V].
(b) [G, @] is the smallest normal subgroup of G for which the factor group is abelian.

(c) Setting G(® := G und GO := [GU~D, G(-Y] for all i € N, we find that G is solvable if and only if
there exists n € N such that G(™ = {e}.

(d) For n > 5 let U be a subgroup of S,, and N a normal subgroup of U for which U/N is abelian.
Show that if U contains all 3-cycles of S,,, then also N will contain these.
Hint: If w,v,w,x,y € {1,...,n} are distinct elements, then there holds the equation

(u, v, w) = (u, v, 2)(w, y, u) (@, v,u)(u,y,w).
(e) Show that this implies that the symmetric group S, is not solvable for n > 5.

Work: (a) It is easily verified for an arbitrary subset M of a group G that (M) is normal in G if
and only if gMg=! C (M) . In the current context M can just be chosen to be the set of commutators
{[u,v] | w € U, v € V}. For each of these commutators we find g[u,v]g~' = [gug™!, gvg~!] and as U and
V are normal, we now even have gMg~!' C M . This proves the claim.

(b) We have just seen that [G,G] is normal in G. The quotient group G/[G,G] is abelian, since gh =
[g,hlhg for all g,h € G. If now H is a normal subgroup of G with G/H being abelian, then we have
xyH = yzH for all z,y € G which can be equivalently written as [z,y|H = H, for all z,y € G. This
however shows that H contains a generator of [G,G] and hence [G,G] itself.

(c) If this commutator series terminates at {e} then clearly we have a solvable group by definition. If on the
other hand G is solvable, then we have a normal series G = Hy > Hy; > ... > H, = {1}, and first observe
G =G C Hy. We show that G) C H; for all i = 0,...,n, by which then commutator series will
then terminate in {1} . This follows by induction considering that GU+1) = [G0) GW)] C [H;, H;] € Hyyq
because H;/H;+1 being abelian implies that [H;, H;] C H;41 .

(d) According to the hint every 3-cycle of S, is a commutator provided n > 5 (otherwise we have not
enough space, as one could say). If now U contains all 3-cycles of S,, then also [U,U] will contain them.
If then N is normal in U with U/N abelian, then [U,U] < N as we have seen before, and hence N
contains all 3-cycles. This shows the claim.

(e) If S,, were solvable then we would have a normal series S,, = Hy > H; > ... > Hp = {id} for some
k € N. Clearly S, contains all 3-cycles of S, , and using our claim in (d) we inductively see that if
H; contains all 3-cycles then H;y; must contain those for all ¢ = 0,...,k — 1. This however will finally
contradict the fact that Hj = {id}, and thus shows that S, cannot be solvable for all n > N.

You are encouraged to collaborate in preparing solutions, however, please submit individual write-ups.



