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Problem Set II

Problem 1:

(a) Consider the action of S3 on itself by conjugation: gx := gxg1 . Describe the orbits of (12) and (123)
under this action. How many orbits are there in total in S3 ? Find the stabilizer of each of the elements
above.

(b) Consider the action of S4 on itself by conjugation: gx := gxg1 . Describe the orbits of (12) , (123) ,
and (12)(34) under this action. How many orbits are there in total in S4 ? Find the stabilizer of each
of the elements above.

Problem 2:

(a) Determine all Sylow subgroups of the symmetric group S3 and of Z/4900Z .

(b) Let G be a group of order 12 . Determine the possible values of s2 and s3 the 2 - and 3 -Sylow
subgroups of G . Show that from s3 = 4 there follows s2 = 1 , and that if s2 = 1 = s3 the group G
is abelian.

(c) Let G be a finite group and H a normal subgroup of G . Show that the p -Sylow subgroups of H are
exactly the intersections of p -Sylow subgroups of G with H .

Work: (a) |S3| = 3! = 6 and hence we expect p -Sylow subgroups for p = 2 and p = 3 . Knowing
s3 | 6 and s3 ≡ 1 (mod 3) the only value for s3 is 1 and the corresponding subgroup is given by
{id, (123), (321)} . The remaining elements of S3 are (12), (13), (23) and these give rise to the 2 -Sylow
subgroups {id, (12)}, {id, (13)} and {id, (23)} . The group Z4900 is abelian, and for this reason s2 = s5 =
s7 = 1 . From the main theorem characterizing finitely generated abelian groups we further know that the
Sylow subgoups are isomorphic to Z4, Z25 , and Z49 , respectively.

(b) s2 ≡ 1 (mod 2) and s2 | 12 yields s2 ∈ {1, 3} and similarly we get s3 ∈ {1, 4} . If s3 = 4 then
these 4 different 3 -Sylow subgroups cover 9 elements of G . The remaining 3 elements together with the
identity fit in exactly one 2 -Sylow subgroup of order 4 , and this proves the claim. If now s2 = 1 = s3
then the corresponding Sylow subgroups U2 and U3 are normal in G and intersect only trivially. This
yields already G = U2U3 where the elements of U2 and U3 commute with each other by 1.17 (e). Both
subgroups U2 and U3 are abelian, because this is trivially true for U3

∼= Z3 and because we can easily
check that a U2 as a 4 -element group must be abelian. From all we get that G is abelian.

(c) If Q is a p -Sylow subgroup of H then by Sylow’ theorems we have a p -Sylow subgroup P of G with
Q ≤ P . Then we have Q := Q ∩H ≤ P ∩H where the latter is a p -subgroup of H . As Q is a maximal
p -subgroup of H we have Q = P ∩H .
Let on the other hand P be a p -Sylow subgroup of G and consider Q := P ∩H . Then Q is a p -subgroup
of H which is contained in a p -Sylow subgroup Q′ of H by Sylow’s first theorem. Applying Sylow’s second
theorem we find g ∈ G such that gQ′g−1 ≤ P , and as H is normal even gQ′g−1 ≤ P ∩H = Q . Hence
|Q′| ≤ |Q| showing that Q is already a Sylow subgroup of H .



Problem 3:

(a) For prime numbers p, q with p ≥ q and arbitrary r ∈ N every group of order prq is solvable.

(b) Every group of order 100 is solvable.

Work: (a) If p = q then the claim is true because every p -group is solvable. Assume therefore p > q , then
we have p -Sylow subgroups of order pr and q -Sylow subgroups of order q in G . We try to prove that
sp = 1 , meaning that we have a unique and normal p -Sylow subgroup Up in G . Then G/Up is solvable
as a q -group and Up is solvable as a p -group which yields G to be solvable according to proposition 1.67.
The possible values of sp are {1, q, p, . . . , pr, pq, . . . , prq} . The assumption that sp ≡ 1 (mod p) reduces
these possibilities to {1, q} and as 2 ≤ q < p , we find that sp = 1 , as claimed.

(b) We expect 2 -Sylow subgroups of order 4 and 5 -Sylow subgroups of order 25 . For s5 we have the
possibilities {1, 2, 4, 5, 10, 20, 25, 50, 100} from which all but the first are removed by the condition s5 ≡ 1
(mod 5) . Hence, we have a unique normal 5 -Sylow subgroup U5 and again G/U5 is solvable because of
being a 2 -group and U5 is solvable because of being a 5 -group. This shows the result again by application
of proposition 1.68.

Problem 4: Let G be a group. For a, b ∈ G define the commutator [a, b] := aba−1b−1 of a and b . For
arbitrary subgroups U, V of G define [U, V ] := 〈[u, v] | u ∈ U, v ∈ V 〉 . Now show the following:

(a) If U, V are normal subgroups of G , then so is [U, V ] .

(b) [G,G] is the smallest normal subgroup of G for which the factor group is abelian.

(c) Setting G(0) := G und G(i) := [G(i−1), G(i−1)] for all i ∈ N , we find that G is solvable if and only if
there exists n ∈ N such that G(n) = {e} .

(d) For n ≥ 5 let U be a subgroup of Sn and N a normal subgroup of U for which U/N is abelian.
Show that if U contains all 3 -cycles of Sn , then also N will contain these.
Hint: If u, v, w, x, y ∈ {1, . . . , n} are distinct elements, then there holds the equation

(u, v, w) = (u, v, x)(w, y, u)(x, v, u)(u, y, w).

(e) Show that this implies that the symmetric group Sn is not solvable for n ≥ 5 .

Work: (a) It is easily verified for an arbitrary subset M of a group G that 〈M〉 is normal in G if
and only if gMg−1 ⊆ 〈M〉 . In the current context M can just be chosen to be the set of commutators
{[u, v] | u ∈ U, v ∈ V } . For each of these commutators we find g[u, v]g−1 = [gug−1, gvg−1] and as U and
V are normal, we now even have gMg−1 ⊆M . This proves the claim.

(b) We have just seen that [G,G] is normal in G . The quotient group G/[G,G] is abelian, since gh =
[g, h]hg for all g, h ∈ G . If now H is a normal subgroup of G with G/H being abelian, then we have
xyH = yxH for all x, y ∈ G which can be equivalently written as [x, y]H = H , for all x, y ∈ G . This
however shows that H contains a generator of [G,G] and hence [G,G] itself.

(c) If this commutator series terminates at {e} then clearly we have a solvable group by definition. If on the
other hand G is solvable, then we have a normal series G = H0 ≥ H1 ≥ . . . ≥ Hn = {1} , and first observe
G = G(0) ⊆ H0 . We show that G(i) ⊆ Hi for all i = 0, . . . , n , by which then commutator series will
then terminate in {1} . This follows by induction considering that G(i+1) = [G(i), G(i)] ⊆ [Hi, Hi] ⊆ Hi+1

because Hi/Hi+1 being abelian implies that [Hi, Hi] ⊆ Hi+1 .

(d) According to the hint every 3 -cycle of Sn is a commutator provided n ≥ 5 (otherwise we have not
enough space, as one could say). If now U contains all 3 -cycles of Sn then also [U,U ] will contain them.
If then N is normal in U with U/N abelian, then [U,U ] ≤ N as we have seen before, and hence N
contains all 3 -cycles. This shows the claim.

(e) If Sn were solvable then we would have a normal series Sn = H0 ≥ H1 ≥ . . . ≥ Hk = {id} for some
k ∈ N . Clearly Sn contains all 3 -cycles of Sn , and using our claim in (d) we inductively see that if
Hi contains all 3 -cycles then Hi+1 must contain those for all i = 0, . . . , k − 1 . This however will finally
contradict the fact that Hk = {id} , and thus shows that Sn cannot be solvable for all n ≥ N .

You are encouraged to collaborate in preparing solutions, however, please submit individual write-ups.


