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MS-E1997: Abstract Algebra II

Problem Set III

Problem 1: For the ring Z[i] of Gaussian numbers show the following:

(a) If ϕ(a+ ib) = a2 + b2 then (Z[i], ϕ) is a Euclidean domain.

(b) A prime p ∈ Z is reducible in Z[i] if and only if it is a sum of two squares.

(c) Factorize 210 into irreducible elements over Z[i] .

Work: For (a) we observe that ϕ(xy) = ϕ(x)ϕ(y) because we know this already about
the absolute value on C . For the division algorithm let x, y ∈ Z[i] be given, then we
have x/y =: z ∈ C . Both real and imaginary part of z have distance ≤ 0.5 to an
integer (just by rounding), and hence we find u ∈ Z[i] with ϕ(z − u) ≤ 0.52 + 0.52 = 0.5 .
Defining r = z − u we have x/y = u + r and hence x = uy + ry where obviously
ϕ(ry) = ϕ(r)ϕ(y) ≤ 0.5ϕ(y) < ϕ(y) since y 6= 0 . This completes the proof of the statements
under (a).

(b) By the multiplicativity of the ϕ -function we observe that units in Z[i] must be of ϕ -
value 1 , and this means they are one of 1, i,−i,−1 . If now p is a prime in Z and p = a2+b2

for a, b ∈ Z , then a, b are both nonzero, which clearly leads to p = (a+ib)(a−ib) and hence
we have a (proper) factorization for p . Indeed, observe that ϕ(a± ib) ≥ 2 these factors are
definitely non-units. On the other hand, if p is a prime in Z which is a non-prime in Z[i]
then there is a proper factorization p = xy . ϕ(x) > 1 < ϕ(y) and p2 = ϕ(p) = ϕ(x)ϕ(y) .
But this implies p = ϕ(x) (and also p = ϕ(y) ) and the latter is clearly the sum of two
squares.

(c) We first factorize over Z and obtain 210 = 7 · 3 · 5 · 2 . Among these the only Gaussian
non-primes are 5 and 2 , as 5 = (2 + i)(2 − i) and 2 = (1 + i)(1 − i) . For this reason we
end up with the factorization

210 = 7 · (2 + i) · (2− i) · 3 · (1 + i) · (1− i).



Problem 2: Show that for an integer polynomial f ∈ Z[x] a factorization over Z induces
a factorization over Z/pZ for all primes p ∈ N which do not divide lc(f) . Deduce an
irreducibility criterion from this.

Work: For notation purposes we agree on ν : Z −→ Zp, z 7→ z standing for the natural
epimorphism; furthermore we extend this epimorphism coordinatewise to Z[x] −→ Zp[x] .
We then observe that if p is a prime that does not divide the leading coefficient of f ∈ Z[x]
then deg(f) = deg(f) , and every factorization of f = gh with g, h being of positive
degree induces a factorization f = g h with factors of positive degree. For this reason we
conclude that if f is irreducible, then f will be irreducible. The criterion should therefore
be formulated as follows:

If f ∈ Z[x] is a polynomial, and p ∈ Z a prime such that p does not divide
the leading coefficient of f then the irreducibility of f ∈ Zp[x] implies the
irreducibility of f .

Problem 3: Let F be a field and denote by D the formal derivative on F [x] . Show that
D satisfies the sum-rule, the product rule and the chain rule.

Work: For the sum rule we (may) assume that f, g ∈ F [x] are given by f =
∑n

i=0 fix
i and

g =
∑n

i=0 gix
i . Then we can write

D(f + g) = D
n∑

i=0

(fi + gi)x
i =

n∑
i=1

i(fi + gi)x
i−1

=
n∑

i=1

ifix
i−1 +

n∑
i=1

igix
i−1 = Df +Dg.

For the product rule we first show the claim for polynomials of the form f = a xm for some
m ∈ N . So, we obtain

D(fg) = D(axm
n∑

i=0

gix
i) = D

n∑
i=0

agix
i+m

=
n∑

i=0

a(i+m)gix
i+m−1 = amxm−1

n∑
i=0

gix
i + axm

n∑
i=1

giix
i−1

= (Df)g + f(Dg),

as required. This result combined with the sum rule then shows the product rule in general.
In particular we obtain F -linearity of the derivative, meaning D(af) = aDf for a ∈ F .

Finally, for the chain rule we do a similar reduction: we assume f = xm and work with
general g . Then D(f ◦ g) = D(gm) which by successive application of the product rule
(induction) can be seen to be the same as mgm−1Dg , for all m ∈ N . From here we get the
general result again via the sum rule.

Problem 4: Show that Q(
√

2,
√

3) = {a + b
√

2 + c
√

3 + d
√

6 | a, b, c, d ∈ Q} . What is
the degree of of this extension over Q . Compute the multiplicative inverse of each nonzero



element in Q(
√

2,
√

3) and represent it as a linear combination in with respect to the basis
{1,
√

2,
√

3,
√

6} .

Work: To begin with, the set S := {a+ b
√

2 + c
√

3 + d
√

6 | a, b, c, d ∈ Q} certainly forms a
subring of R , and to make it a field, we only have to show that it contains the multiplicative
inverse of each of its elements. We write a+b

√
2+c
√

3+d
√

6 = x+y
√

3 where x = a+b
√

2
and y = c+ d

√
2 . The inverse of x+ y

√
3 is given by

1

x+ y
√

3
=

x− y
√

3

x2 − 3y2
,

where x2−3y2 = a2+2b2−3c2−6d2+2
√

2(ab−3cd) . Setting x := a−b
√

2 and y := c−d
√

2
we obtain similarly x2 − 3y2 = a2 + 2b2 − 3c2 − 6d2 − 2

√
2(ab− 3cd) , and hence

(x2 − 3y2)(x2 − 3y2) = (a2 + 2b2 − 3c2 − 6d2)2 − 8(ab− 3cd)2 ∈ Q.

For this reason we finally have

1

x+ y
√

3
=

(x− y
√

3)(x2 − 3y2)

(x2 − 3y2)(x2 − 3y2)

which is obviously an element of S . Thus we see that S is a field extension of Q that
contains

√
2 and

√
3 , and therefore Q(

√
2,
√

3) ⊆ S . On the other hand every field
extension of Q that contains

√
2 and

√
3 must also contain

√
6 and hence it must contain

S . For this reason it is clear that S ⊆ Q(
√

2,
√

3) which proves equality.

As to the degree of this extension we have [Q(
√

2) : Q] = 2 and [Q(
√

2,
√

3) : Q(
√

2)] = 2
provided x2−3 does not already split over Q(

√
2) . Then [Q(

√
2,
√

3) : Q] = 4 as required.
In fact if x2 − 3 splits over Q(

√
2) then we would have

√
3 = a + b

√
2 with a, b ∈ Q .

This immediately leads to 3 = a2 + 2b2 + 2
√

2ab which in turn implies
√

2 to be a rational
number unless one of a or b is zero. If a = 0 then we have 3 = 2b2 which finally leads to a
contradiction to irrationality of

√
3 , and assuming b = 0 we come to the same conclusion.

Hence we have a degree 4 extension.

You are encouraged to collaborate in preparing solutions, however, please submit individual
write-ups.


