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Problem Set III

Problem 1: For the ring Z[i] of Gaussian numbers show the following:
(a) If p(a+ib) = a* +b* then (Z[i], ) is a Euclidean domain.
(b) A prime p € Z is reducible in Z[i] if and only if it is a sum of two squares.

(c) Factorize 210 into irreducible elements over Z[i].

Work: For (a) we observe that ¢(zy) = ¢(z)p(y) because we know this already about
the absolute value on C. For the division algorithm let z,y € Z[i] be given, then we
have x/y =: z € C. Both real and imaginary part of z have distance < 0.5 to an
integer (just by rounding), and hence we find u € Z[i] with ¢(z —u) < 0.5 +0.52 = 0.5.
Defining r = z — u we have z/y = u + r and hence z = uy + ry where obviously
o(ry) = o(r)p(y) < 0.5¢(y) < ¢(y) since y # 0. This completes the proof of the statements
under (a).

(b) By the multiplicativity of the ¢-function we observe that units in Z[i] must be of ¢-
value 1, and this means they are one of 1,4, —i, —1. If now p is a primein Z and p = a?+4b?
for a,b € Z, then a,b are both nonzero, which clearly leads to p = (a+ib)(a—ib) and hence
we have a (proper) factorization for p. Indeed, observe that ¢(a £ib) > 2 these factors are
definitely non-units. On the other hand, if p is a prime in Z which is a non-prime in Z][i]
then there is a proper factorization p = xy. p(z) > 1< p(y) and p* = ¢(p) = p(z)e(y) .
But this implies p = ¢(x) (and also p = ¢(y)) and the latter is clearly the sum of two
squares.

(c) We first factorize over Z and obtain 210 =7-3-5-2. Among these the only Gaussian
non-primes are 5 and 2, as 5= (2414)(2—1¢) and 2 = (1 +1)(1 —4). For this reason we
end up with the factorization

210 = 7-(2+1)-(2—)-3- (1+14)- (1 —14).



Problem 2: Show that for an integer polynomial f € Z[z] a factorization over Z induces
a factorization over Z/pZ for all primes p € N which do not divide lc(f). Deduce an
irreducibility criterion from this.

Work: For notation purposes we agree on v : Z — Z,, z + z standing for the natural
epimorphism; furthermore we extend this epimorphism coordinatewise to Z[x] — Z,[z].
We then observe that if p is a prime that does not divide the leading coefficient of f € Z[x]
then deg(f) = deg(f), and every factorization of f = gh with g,h being of positive
degree induces a factorization f = gh with factors of positive degree. For this reason we
conclude that if f is irreducible, then f will be irreducible. The criterion should therefore

be formulated as follows:

If f € Z[z] is a polynomial, and p € Z a prime such that p does not divide
the leading coefficient of f then the irreducibility of f € Zp[z] implies the
irreducibility of f.

Problem 3: Let F' be a field and denote by D the formal derivative on F[z]. Show that
D satisfies the sum-rule, the product rule and the chain rule.

Work: For the sum rule we (may) assume that f,g € Flz] are given by f=>"" fiz' and
g=>1",gz". Then we can write

n

D(f+g) = DZ(fi"‘gi)wi = Zi(fi+9i)33i_1
=0 =1

= Z ifit z”: igiz™' = Df + Dg.
i=1

i=1

For the product rule we first show the claim for polynomials of the form f = az™ for some
m € N. So, we obtain

D(fg) = D(awngﬂi) = Dzagixim
=0 =0

n n
= E a(i4+m)gz ™™ = ama™ ! E gix' + ax™ g gtz !
i=0 i=0 i=1

= (Df)g+ f(Dyg),

as required. This result combined with the sum rule then shows the product rule in general.
In particular we obtain F -linearity of the derivative, meaning D(af) =aDf for a € F'.

Finally, for the chain rule we do a similar reduction: we assume f = x™ and work with
general g. Then D(f o g) = D(g™) which by successive application of the product rule
(induction) can be seen to be the same as mg™ ' Dg, for all m € N. From here we get the
general result again via the sum rule.

Problem 4: Show that Q(v/2,v3) = {a +bv2 + ¢vV/3 +dV6 | a,b,c,d € Q}. What is
the degree of of this extension over Q. Compute the multiplicative inverse of each nonzero



element in @(\/5, \/3) and represent it as a linear combination in with respect to the basis
{1,v2,v3,V6}.

Work: To begin with, the set S := {a +bv2 + cv/3+dV6 | a,b,c,d € Q} certainly forms a
subring of R, and to make it a field, we only have to show that it contains the multiplicative
inverse of each of its elements. We write a+bv2+4cv/3+dvV6 = :17+y\/§ where © = a+by/2
and y = ¢+ dv/2. The inverse of x + yv/3 is given by

1 z—y3
x+y\/§ 5752—392’

where 22 —3y? = a?+2b*> —3c? —6d>42v/2(ab—3cd) . Setting Z := a—by/2 and 7 := c—d/2
we obtain similarly 72 — 372 = a® + 2b* — 3¢® — 6d*> — 2v/2(ab — 3cd) , and hence

(2 — 3y (7 - 37%) = (a® +2b* — 3¢® — 6d*)* — 8(ab — 3cd)* € Q.
For this reason we finally have

1 _ (x — yv/3)(T* — 377)
r+yVv3 (22 = 3y?)(T° - 3%

which is obviously an element of S. Thus we see that S is a field extension of Q that
contains v/2 and \/g, and therefore Q(\/i, \/5) C S. On the other hand every field
extension of Q that contains V2 and v/3 must also contain /6 and hence it must contain
S . For this reason it is clear that S C Q(\/ﬁ, \/3) which proves equality.

As to the degree of this extension we have [Q(v/2): Q] = 2 and [Q(v/2,v/3) : Q(v/2)] = 2
provided % —3 does not already split over Q(v/2). Then [Q(v/2,V3) : Q] = 4 as required.
In fact if 22 — 3 splits over Q(\/ﬁ) then we would have v3 = a + bv/2 with a,b € Q.
This immediately leads to 3 = a? + 2b* + 2v/2ab which in turn implies V2 to be a rational
number unless one of a or b is zero. If a = 0 then we have 3 = 2b? which finally leads to a
contradiction to irrationality of v/3, and assuming b = 0 we come to the same conclusion.
Hence we have a degree 4 extension.

You are encouraged to collaborate in preparing solutions, however, please submit individual
write-ups.



