Prof. Dr. Marcus Greferath

Dept. of Mathematics and Systems Analysis
School of Sciences
Aalto University
Spring 2019

MS-E1997: Abstract Algebra II Problem Set III

Problem 1: For the ring $\mathbb{Z}[i]$ of Gaussian numbers show the following:
(a) If $\varphi(a+i b)=a^{2}+b^{2}$ then $(\mathbb{Z}[i], \varphi)$ is a Euclidean domain.
(b) A prime $p \in \mathbb{Z}$ is reducible in $\mathbb{Z}[i]$ if and only if it is a sum of two squares.
(c) Factorize 210 into irreducible elements over $\mathbb{Z}[i]$.

Work: For (a) we observe that $\varphi(x y)=\varphi(x) \varphi(y)$ because we know this already about the absolute value on \mathbb{C}. For the division algorithm let $x, y \in \mathbb{Z}[i]$ be given, then we have $x / y=: z \in \mathbb{C}$. Both real and imaginary part of z have distance ≤ 0.5 to an integer (just by rounding), and hence we find $u \in \mathbb{Z}[i]$ with $\varphi(z-u) \leq 0.5^{2}+0.5^{2}=0.5$. Defining $r=z-u$ we have $x / y=u+r$ and hence $x=u y+r y$ where obviously $\varphi(r y)=\varphi(r) \varphi(y) \leq 0.5 \varphi(y)<\varphi(y)$ since $y \neq 0$. This completes the proof of the statements under (a).
(b) By the multiplicativity of the φ-function we observe that units in $\mathbb{Z}[i]$ must be of φ value 1 , and this means they are one of $1, i,-i,-1$. If now p is a prime in \mathbb{Z} and $p=a^{2}+b^{2}$ for $a, b \in \mathbb{Z}$, then a, b are both nonzero, which clearly leads to $p=(a+i b)(a-i b)$ and hence we have a (proper) factorization for p. Indeed, observe that $\varphi(a \pm i b) \geq 2$ these factors are definitely non-units. On the other hand, if p is a prime in \mathbb{Z} which is a non-prime in $\mathbb{Z}[i]$ then there is a proper factorization $p=x y . \varphi(x)>1<\varphi(y)$ and $p^{2}=\varphi(p)=\varphi(x) \varphi(y)$. But this implies $p=\varphi(x)$ (and also $p=\varphi(y)$) and the latter is clearly the sum of two squares.
(c) We first factorize over \mathbb{Z} and obtain $210=7 \cdot 3 \cdot 5 \cdot 2$. Among these the only Gaussian non-primes are 5 and 2 , as $5=(2+i)(2-i)$ and $2=(1+i)(1-i)$. For this reason we end up with the factorization

$$
210=7 \cdot(2+i) \cdot(2-i) \cdot 3 \cdot(1+i) \cdot(1-i)
$$

Problem 2: Show that for an integer polynomial $f \in \mathbb{Z}[x]$ a factorization over \mathbb{Z} induces a factorization over $\mathbb{Z} / p \mathbb{Z}$ for all primes $p \in \mathbb{N}$ which do not divide $\operatorname{lc}(f)$. Deduce an irreducibility criterion from this.
Work: For notation purposes we agree on $\nu: \mathbb{Z} \longrightarrow \mathbb{Z}_{p}, z \mapsto \bar{z}$ standing for the natural epimorphism; furthermore we extend this epimorphism coordinatewise to $\mathbb{Z}[x] \longrightarrow \mathbb{Z}_{p}[x]$. We then observe that if p is a prime that does not divide the leading coefficient of $f \in \mathbb{Z}[x]$ then $\operatorname{deg}(\bar{f})=\operatorname{deg}(f)$, and every factorization of $f=g h$ with g, h being of positive degree induces a factorization $\bar{f}=\bar{g} \bar{h}$ with factors of positive degree. For this reason we conclude that if \bar{f} is irreducible, then f will be irreducible. The criterion should therefore be formulated as follows:

If $f \in \mathbb{Z}[x]$ is a polynomial, and $p \in \mathbb{Z}$ a prime such that p does not divide the leading coefficient of f then the irreducibility of $\bar{f} \in \mathbb{Z}_{p}[x]$ implies the irreducibility of f.

Problem 3: Let F be a field and denote by D the formal derivative on $F[x]$. Show that D satisfies the sum-rule, the product rule and the chain rule.
Work: For the sum rule we (may) assume that $f, g \in F[x]$ are given by $f=\sum_{i=0}^{n} f_{i} x^{i}$ and $g=\sum_{i=0}^{n} g_{i} x^{i}$. Then we can write

$$
\begin{aligned}
D(f+g) & =D \sum_{i=0}^{n}\left(f_{i}+g_{i}\right) x^{i}=\sum_{i=1}^{n} i\left(f_{i}+g_{i}\right) x^{i-1} \\
& =\sum_{i=1}^{n} i f_{i} x^{i-1}+\sum_{i=1}^{n} i g_{i} x^{i-1}=D f+D g
\end{aligned}
$$

For the product rule we first show the claim for polynomials of the form $f=a x^{m}$ for some $m \in \mathbb{N}$. So, we obtain

$$
\begin{aligned}
D(f g) & =D\left(a x^{m} \sum_{i=0}^{n} g_{i} x^{i}\right)=D \sum_{i=0}^{n} a g_{i} x^{i+m} \\
& =\sum_{i=0}^{n} a(i+m) g_{i} x^{i+m-1}=a m x^{m-1} \sum_{i=0}^{n} g_{i} x^{i}+a x^{m} \sum_{i=1}^{n} g_{i} i x^{i-1} \\
& =(D f) g+f(D g),
\end{aligned}
$$

as required. This result combined with the sum rule then shows the product rule in general. In particular we obtain F-linearity of the derivative, meaning $D(a f)=a D f$ for $a \in F$. Finally, for the chain rule we do a similar reduction: we assume $f=x^{m}$ and work with general g. Then $D(f \circ g)=D\left(g^{m}\right)$ which by successive application of the product rule (induction) can be seen to be the same as $m g^{m-1} D g$, for all $m \in \mathbb{N}$. From here we get the general result again via the sum rule.

Problem 4: Show that $\mathbb{Q}(\sqrt{2}, \sqrt{3})=\{a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6} \mid a, b, c, d \in \mathbb{Q}\}$. What is the degree of of this extension over \mathbb{Q}. Compute the multiplicative inverse of each nonzero
element in $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ and represent it as a linear combination in with respect to the basis $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$.
Work: To begin with, the set $S:=\{a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6} \mid a, b, c, d \in \mathbb{Q}\}$ certainly forms a subring of \mathbb{R}, and to make it a field, we only have to show that it contains the multiplicative inverse of each of its elements. We write $a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}=x+y \sqrt{3}$ where $x=a+b \sqrt{2}$ and $y=c+d \sqrt{2}$. The inverse of $x+y \sqrt{3}$ is given by

$$
\frac{1}{x+y \sqrt{3}}=\frac{x-y \sqrt{3}}{x^{2}-3 y^{2}},
$$

where $x^{2}-3 y^{2}=a^{2}+2 b^{2}-3 c^{2}-6 d^{2}+2 \sqrt{2}(a b-3 c d)$. Setting $\bar{x}:=a-b \sqrt{2}$ and $\bar{y}:=c-d \sqrt{2}$ we obtain similarly $\bar{x}^{2}-3 \bar{y}^{2}=a^{2}+2 b^{2}-3 c^{2}-6 d^{2}-2 \sqrt{2}(a b-3 c d)$, and hence

$$
\left(x^{2}-3 y^{2}\right)\left(\bar{x}^{2}-3 \bar{y}^{2}\right)=\left(a^{2}+2 b^{2}-3 c^{2}-6 d^{2}\right)^{2}-8(a b-3 c d)^{2} \in \mathbb{Q}
$$

For this reason we finally have

$$
\frac{1}{x+y \sqrt{3}}=\frac{(x-y \sqrt{3})\left(\bar{x}^{2}-3 \bar{y}^{2}\right)}{\left(x^{2}-3 y^{2}\right)\left(\bar{x}^{2}-3 \bar{y}^{2}\right)}
$$

which is obviously an element of S. Thus we see that S is a field extension of \mathbb{Q} that contains $\sqrt{2}$ and $\sqrt{3}$, and therefore $\mathbb{Q}(\sqrt{2}, \sqrt{3}) \subseteq S$. On the other hand every field extension of \mathbb{Q} that contains $\sqrt{2}$ and $\sqrt{3}$ must also contain $\sqrt{6}$ and hence it must contain S. For this reason it is clear that $S \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ which proves equality.
As to the degree of this extension we have $[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2$ and $[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}(\sqrt{2})]=2$ provided $x^{2}-3$ does not already split over $\mathbb{Q}(\sqrt{2})$. Then $[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}]=4$ as required. In fact if $x^{2}-3$ splits over $\mathbb{Q}(\sqrt{2})$ then we would have $\sqrt{3}=a+b \sqrt{2}$ with $a, b \in \mathbb{Q}$. This immediately leads to $3=a^{2}+2 b^{2}+2 \sqrt{2} a b$ which in turn implies $\sqrt{2}$ to be a rational number unless one of a or b is zero. If $a=0$ then we have $3=2 b^{2}$ which finally leads to a contradiction to irrationality of $\sqrt{3}$, and assuming $b=0$ we come to the same conclusion. Hence we have a degree 4 extension.

You are encouraged to collaborate in preparing solutions, however, please submit individual write-ups.

