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reading material

• Nick Littlestone, “Learning Quickly When Irrelevant
Attributes Abound – A New Linear-threshold Algorithm.”
Machine Learning, 1987



overview

• mistake-bound model

– basic results, the HALVING algorithm

– connections to information theory

– the WINNOW algorithm



recap — PAC learning

• S = {(x1, y1), . . . , (xm, ym)} where x is sampled from D,

and y = c(x) labeled by the target concept c : X → Y that

we want to learn

• the learner observes sample set S and outputs hypothesis

h : X → Y for predicting the label of unseen data points
drawn from D.

• the error of the learner is defined as the probability that

the learner does not predict the correct label on a random

data point sampled from D

errorD(h) = Prx∼D[h(x) 6= c(x)]



online learning

• assumption in PAC learning:

– error is measured on a fixed distribution

– same distribution used to learn the hypothesis

• what if we do not want to make this assumption ?

– cannot make claims about predicting future results

• can we say anything interesting ?

– mistake bounds and regret bounds



mistake-bound model

• view learning as an iterative process

• in each iteration

– algorithm is given x

– predicts h(x)

– told the true label c(x), and if made a mistake

• no assumptions about order of examples or distribution

• objective: bound the total number of mistakes



mistake-bound model

• definition: algorithm A learns concept class C with mistake
bound M if A makes at most M mistakes on any sequence
of examples consistent with some c ∈ C

• note: we can no longer talk about total number of
examples required to learn a hypothesis

– maybe we see the same examples over again
– and learn nothing new

– but this is OK if do not make mistakes

• want mistake bound poly(n, s), where n is size of example
and s is size of smallest consistent c ∈ C



mistake-bound model

• definition: a concept class C is learnable in the MB model
if there exists an algorithm A whose mistake bound and
running time per iteration is poly(n, s)



example : boolean disjunctions
• consider n boolean variables x1, . . . , xn

• concept class: boolean monotone disjunctions

– e.g., c(x) = x1 ∨ x3 ∨ x4 ∨ x9

– no negations

• can we learn target concept with at most n mistakes ?

• online learning algorithm:

– start with h(x) = x1 ∨ x2 ∨ . . . ∨ xn

– invariant: {variables in c} ⊆ {variables in h}
– mistake on positive example: do nothing

– mistake on negative example: remove xi ’s set to 1

• analysis: invariant is maintained

• for each mistake we remove at least one variable:

– we cannot remove more than n variables



example : boolean disjunctions

• the online learning algorithm makes at most n mistakes

• any algorithm can be forced to make at least n mistakes

1 0 . . . 0 + or −
0 1 . . . 0 + or −
...

...
...

...
0 0 . . . 1 + or −



MB model properties

• an algorithm A is conservative if it only changes its state
when it makes a mistake

• claim: if C is learnable by a deterministic algorithm with
mistake bound M, then it is learnable by a conservative
algorithm with mistake bound M

• why ?



MB learnability implies PAC learnability

• consider online learning algorithm A with mistake bound M

• transformation:

– run (conservative) A until it produces a hypothesis h
– that survives at least (1/ε) ln(M/δ) examples

• Pr [ fooled by a given “bad” hypothesis ] ≤ δ/M

• Pr [ fooled by any “bad” hypothesis ] ≤ δ

• total number of examples seen is at most (M/ε) ln(M/δ)

for details see [Kearns et al., 1987]

see also homework question



what if we had unbounded computational power ?

• consider the HALVING algorithm

– an analogue of binary search

• maintain the version space: the set of all concepts that are
consistent with all examples seen so far

• more formally

– CONSISTENT = {c ∈ C s.t. c consistent with previous
– examples }

– for instance x and concept class C:

– ξ0(C,x) = {c ∈ C | c(x) = 0}

– ξ1(C,x) = {c ∈ C | c(x) = 1}



HALVING algorithm

• CONSISTENT = C

• upon seen instance x

– if |ξ1(CONSISTENT,x)| > |ξ0(CONSISTENT,x)|
– predict 1

– if |ξ1(CONSISTENT,x)| ≤ |ξ0(CONSISTENT,x)|
– predict 0

– if correct label is 1
– CONSISTENT = ξ1(CONSISTENT,x)

– if correct label is 0
– CONSISTENT = ξ0(CONSISTENT,x)



HALVING algorithm

• theorem: the number of mistakes of the HALVING

algorithm is bounded by log |C|



what if we had unbounded computational power ?

• what if we had a prior p over concepts of C ?

– weight the vote according to p

– make at most log(1/pc) mistakes,

– where c is the target concept

• what if c was really chosen according to p ?

– expected number of mistakes ≤
∑

c pc log(1/pc)

– the entropy of the distribution p



the WINNOW algorithm

• online learning of monotone boolean disjunctions

– mistake bound: n

• can we do better ?

• assume that disjunction contains at most k literals

– e.g., c(x) = xi1 ∨ . . . ∨ xik , for k << n

• well-motivated assumption: in many applications only a
small number of variables is relevant





the WINNOW algorithm

• the algorithm is applicable to learning binary functions
c : {0,1}n → {0,1} that are linearly separable

– i.e., there is a hyperplane that separates positive

– from negative instances

• e.g., monotone disjunction c(x) = x1 ∨ x3 ∨ x4 ∨ x9

is linearly separable

– why ? consider hyperplane

x1 + x3 + x4 + x9 = 1/2



the WINNOW algorithm

• maintain weights w1, . . . ,wn associated with variables
x1, . . . , xn

• initially w1 = . . . = wn = 1

• use parameters θ and α

• to predict label of instance (x1, . . . , xn) use the rule:

– if
∑

i wixi > θ predict 1

– if
∑

i wixi ≤ θ predict 0

• weights w1, . . . ,wn are updated when algorithm makes a
mistake

– weights update is controlled by parameter α



WINNOW’s response to mistakes

learner’s correct update response
prediction response action name

1 0
wi = 0 if xi = 1 elimination
wi unchanged if xi = 0 step

0 1
wi = αwi if xi = 1 promotion
wi unchanged if xi = 0 step



WINNOW’s performance

• theorem: assume that the target concept is a k -literal
monotone disjunction c(x1, . . . , xn) = xi1 ∨ . . . ∨ xik

If WINNOW is run with α > 1 and θ > 1/α, then for any
sequence of instances the total number of mistakes will
be bounded by

αk(logα θ + 1) +
n
θ



WINNOW’s performance

• mistake bound:

αk(logα θ + 1) +
n
θ

• if θ = n and α = 2, bound is 2k(log2 n + 1) + 1

• if θ = n/α, bound is αk logα n +α

• if θ = n/2 and α = 2, bound is 2k log2 n + 2



analysis of the WINNOW algorithm

• theorem: assume that the target concept is a k -literal
monotone disjunction c(x1, . . . , xn) = xi1 ∨ . . . ∨ xik

If WINNOW is run with α > 1 and θ > 1/α, then for any
sequence of instances the total number of mistakes will
be bounded by

αk(logα θ + 1) +
n
θ

• proof



analysis of the WINNOW algorithm
• lemma 1: let p be the number of promotion steps;

let e be the number of elimination steps; then:

e ≤ n
θ
+ (α− 1)p

proof

• initially
∑

i wi = n

• each promotion increases the sum by at most (α− 1)θ

– because promotion happens when
∑

i wixi ≤ θ
• each elimination decreases the sum by at least θ

• since the sum is never negative we have

0 ≤
∑

i

wi ≤ n + θ(α− 1)p − θe



analysis of the WINNOW algorithm

• lemma 2: wi ≤ αθ, for all i

proof

• since θ > 1/α the condition initially holds

• weight wj is increased only if
∑

i wixi ≤ θ and xj = 1

– thus, before promotion wj ≤ θ

– thus, after promotion wj ≤ αθ



analysis of the WINNOW algorithm

• lemma 3: after p promotion steps and an arbitrary number
of elimination steps there exists some i s.t., logα wi ≥ p/k

proof

• let R = {xi1 , . . . , xik} and consider
∏

i∈R wi

• c(x1, . . . , xn) = 0 if and only if xi = 0 for all xi ∈ R

• elimination occurs when c(x1, . . . , xn) = 0

– elimination lefts
∏

i∈R wi unchanged

• promotion occurs when c(x1, . . . , xn) = 1

– promotion increases
∏

i∈R wi by at least α

• after p promotion steps
∏

i∈R wi ≥ αp

• by PHP, there exists some i s.t., logα wi ≥ p/k



analysis of the WINNOW algorithm

proof of theorem

• number of mistakes is equal to p + e

• by lemmas 3 and 2, there exists some i s.t.,

p/k ≤ logα wi ≤ logα θ + 1

or
p ≤ k(logα θ + 1) (1)

• by lemma 1

e ≤ n
θ
+ (α− 1)p ≤ n

θ
+ (α− 1)k(logα θ + 1) (2)

• (1)+(2) gives the result



analysis of the WINNOW algorithm

• lower bound: the number of mistakes required to learn a
k -literal monotone disjunction is at least k

8 (1 + log2
n
k )



summary of the course

• introduction to PAC learning model

• Occam’s razor

• agnostic learning

• VC dimension

• weak and strong learning, and boosting

• learning in the presence of noise: statistical query learning

• submodular optimization and applications

• online learning: mistake-bound models



some topics we did not manage to cover

• Rademacher complexity and covering numbers

• online learning: regret bounds

• randomized weighted majority algorithm
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