

CS-E4070 — Computational learning theory Slide set 11 : online learning

Cigdem Aslay and Aris Gionis Aalto University

spring 2019

reading material

 Nick Littlestone, "Learning Quickly When Irrelevant Attributes Abound – A New Linear-threshold Algorithm." Machine Learning, 1987

overview

- mistake-bound model
 - basic results, the HALVING algorithm
 - connections to information theory
 - the WINNOW algorithm

recap — PAC learning

- S = {(x₁, y₁),..., (x_m, y_m)} where x is sampled from D, and y = c(x) labeled by the target concept c : X → Y that we want to learn
- the learner observes sample set *S* and outputs hypothesis
 h : *X* → *Y* for predicting the label of unseen data points drawn from *D*.
- the error of the learner is defined as the probability that the learner does not predict the correct label on a random data point sampled from D

$$error_{\mathcal{D}}(h) = \Pr_{\mathbf{x} \sim \mathcal{D}}[h(\mathbf{x}) \neq c(\mathbf{x})]$$

online learning

- assumption in PAC learning:
 - error is measured on a fixed distribution
 - same distribution used to learn the hypothesis
- what if we do not want to make this assumption?
 - cannot make claims about predicting future results
- can we say anything interesting?

mistake bounds and regret bounds

mistake-bound model

- view learning as an iterative process
- in each iteration
 - algorithm is given x
 - predicts $h(\mathbf{x})$
 - told the true label $c(\mathbf{x})$, and if made a mistake
- no assumptions about order of examples or distribution
- objective: bound the total number of mistakes

mistake-bound model

- definition: algorithm A learns concept class C with mistake bound M if A makes at most M mistakes on any sequence of examples consistent with some c ∈ C
- note: we can no longer talk about total number of examples required to learn a hypothesis
 - maybe we see the same examples over again and learn nothing new
 - but this is OK if do not make mistakes
- want mistake bound poly(n, s), where n is size of example and s is size of smallest consistent c ∈ C

mistake-bound model

 definition: a concept class C is learnable in the MB model if there exists an algorithm A whose mistake bound and running time per iteration is poly(n, s)

example : boolean disjunctions

- consider *n* boolean variables *x*₁,..., *x_n*
- concept class: boolean monotone disjunctions

- e.g.,
$$c(\mathbf{x}) = x_1 \lor x_3 \lor x_4 \lor x_9$$

- no negations
- can we learn target concept with at most n mistakes?
- online learning algorithm:
 - start with $h(\mathbf{x}) = x_1 \lor x_2 \lor \ldots \lor x_n$
 - invariant: {variables in c} \subseteq {variables in h}
 - mistake on positive example: do nothing
 - mistake on negative example: remove x_i's set to 1
- analysis: invariant is maintained
- for each mistake we remove at least one variable:
 - we cannot remove more than *n* variables

example : boolean disjunctions

- the online learning algorithm makes at most n mistakes
- any algorithm can be forced to make at least *n* mistakes

MB model properties

- an algorithm *A* is conservative if it only changes its state when it makes a mistake
- claim: if C is learnable by a deterministic algorithm with mistake bound M, then it is learnable by a conservative algorithm with mistake bound M
- why?

MB learnability implies PAC learnability

- consider online learning algorithm A with mistake bound M
- transformation:
 - run (conservative) *A* until it produces a hypothesis *h* that survives at least $(1/\epsilon) \ln(M/\delta)$ examples
- Pr [fooled by a given "bad" hypothesis] $\leq \delta/M$
- Pr [fooled by any "bad" hypothesis] $\leq \delta$
- total number of examples seen is at most $(M/\epsilon) \ln(M/\delta)$

for details see [Kearns et al., 1987]

see also homework question

what if we had unbounded computational power?

- consider the HALVING algorithm
 - an analogue of binary search
- maintain the version space: the set of all concepts that are consistent with all examples seen so far
- more formally
 - CONSISTENT = { $c \in C$ s.t. c consistent with previous examples }
 - for instance \mathbf{x} and concept class \mathcal{C} :

 $\begin{aligned} \xi_0(\mathcal{C}, \mathbf{x}) &= \{ \mathbf{c} \in \mathcal{C} \mid \mathbf{c}(\mathbf{x}) = \mathbf{0} \} \\ \xi_1(\mathcal{C}, \mathbf{x}) &= \{ \mathbf{c} \in \mathcal{C} \mid \mathbf{c}(\mathbf{x}) = \mathbf{1} \} \end{aligned}$

HALVING algorithm

- CONSISTENT = \mathcal{C}
- upon seen instance x
 - if $|\xi_1(\text{CONSISTENT}, \mathbf{x})| > |\xi_0(\text{CONSISTENT}, \mathbf{x})|$ predict 1
 - $\ \text{if} \ |\xi_1(\text{CONSISTENT}, \mathbf{x})| \leq |\xi_0(\text{CONSISTENT}, \mathbf{x})|$ predict 0
 - if correct label is 1

 $\texttt{CONSISTENT} = \xi_1(\texttt{CONSISTENT}, \mathbf{x})$

if correct label is 0

 $\texttt{CONSISTENT} = \xi_0(\texttt{CONSISTENT}, \mathbf{x})$

HALVING algorithm

 theorem: the number of mistakes of the HALVING algorithm is bounded by log |C|

what if we had unbounded computational power?

- what if we had a prior *p* over concepts of *C* ?
 - weight the vote according to p
 - make at most $log(1/p_c)$ mistakes,

where c is the target concept

- what if c was really chosen according to p ?
 - expected number of mistakes $\leq \sum_{c} p_c \log(1/p_c)$ the entropy of the distribution *p*

the WINNOW algorithm

- online learning of monotone boolean disjunctions
 - mistake bound: n
- can we do better?
- assume that disjunction contains at most k literals

- e.g., $c(\mathbf{x}) = x_{i_1} \vee \ldots \vee x_{i_k}$, for $k \ll n$

 well-motivated assumption: in many applications only a small number of variables is relevant

WINNOW [win-oh] SHOW IPA ()

EXAMPLES | WORD ORIGIN

SEE MORE SYNONYMS FOR winnow ON THESAURUS.COM

verb (used with object)

- 1 to free (grain) from the lighter particles of chaff, dirt, etc., especially by throwing it into the air and allowing the wind or a forced current of air to blow away impurities.
- ² to drive or blow (chaff, dirt, etc.) away by fanning.

the WINNOW algorithm

- the algorithm is applicable to learning binary functions
 c: {0,1}ⁿ → {0,1} that are linearly separable
 - i.e., there is a hyperplane that separates positive from negative instances
- e.g., monotone disjunction $c(\mathbf{x}) = x_1 \lor x_3 \lor x_4 \lor x_9$ is linearly separable
 - why? consider hyperplane

 $x_1 + x_3 + x_4 + x_9 = 1/2$

the WINNOW algorithm

- maintain weights w_1, \ldots, w_n associated with variables x_1, \ldots, x_n
- initially $w_1 = ... = w_n = 1$
- use parameters heta and lpha
- to predict label of instance (x_1, \ldots, x_n) use the rule:
 - if $\sum_i w_i x_i > \theta$ predict 1
 - if $\sum_{i} w_i x_i \leq \theta$ predict 0
- weights w₁,..., w_n are updated when algorithm makes a mistake
 - weights update is controlled by parameter α

WINNOW's response to mistakes

learner's prediction	correct response	update action	response name
1	0	$w_i = 0$ if $x_i = 1$ w_i unchanged if $x_i = 0$	elimination step
0	1	$w_i = \alpha w_i$ if $x_i = 1$ w_i unchanged if $x_i = 0$	promotion step

WINNOW's performance

theorem: assume that the target concept is a *k*-literal monotone disjunction c(x₁,..., x_n) = x_{i₁} ∨ ... ∨ x_{i_k} If WINNOW is run with α > 1 and θ > 1/α, then for any sequence of instances the total number of mistakes will be bounded by

 $\alpha k(\log_{\alpha} \theta + 1) + \frac{n}{\theta}$

WINNOW's performance

mistake bound:

$$\alpha k(\log_{\alpha} \theta + 1) + \frac{n}{\theta}$$

- if $\theta = n$ and $\alpha = 2$, bound is $2k(\log_2 n + 1) + 1$
- if $\theta = n/\alpha$, bound is $\alpha k \log_{\alpha} n + \alpha$
- if $\theta = n/2$ and $\alpha = 2$, bound is $2k \log_2 n + 2$

theorem: assume that the target concept is a *k*-literal monotone disjunction c(x₁,..., x_n) = x_{i1} ∨ ... ∨ x_{ik} If WINNOW is run with α > 1 and θ > 1/α, then for any sequence of instances the total number of mistakes will be bounded by

$$\alpha k(\log_{lpha} heta + 1) + rac{n}{ heta}$$

proof

 lemma 1: let *p* be the number of promotion steps; let *e* be the number of elimination steps; then:

$$oldsymbol{e} \leq rac{oldsymbol{n}}{oldsymbol{ heta}} + (lpha - oldsymbol{1})oldsymbol{
ho}$$

proof

- initially $\sum_i w_i = n$
- each promotion increases the sum by at most (lpha-1) heta
 - because promotion happens when $\sum_{i} w_i x_i \leq \theta$
- each elimination decreases the sum by at least heta
- since the sum is never negative we have

$$0 \leq \sum_{i} w_{i} \leq n + \theta(\alpha - 1)p - \theta e$$

• lemma 2: $w_i \leq \alpha \theta$, for all *i*

proof

- since $\theta > 1/\alpha$ the condition initially holds
- weight w_j is increased only if $\sum_i w_i x_i \le \theta$ and $x_j = 1$
 - thus, before promotion $w_j \leq \theta$
 - thus, after promotion $w_j \leq \alpha \theta$

- lemma 3: after *p* promotion steps and an arbitrary number of elimination steps there exists some *i* s.t., log_α w_i ≥ p/k
 proof
- let $R = \{x_{i_1}, \dots, x_{i_k}\}$ and consider $\prod_{i \in R} w_i$
- $c(x_1, \ldots, x_n) = 0$ if and only if $x_i = 0$ for all $x_i \in R$
- elimination occurs when $c(x_1, \ldots, x_n) = 0$

- elimination lefts $\prod_{i \in R} w_i$ unchanged

• promotion occurs when $c(x_1, \ldots, x_n) = 1$

- promotion increases $\prod_{i \in R} w_i$ by at least α

- after *p* promotion steps $\prod_{i \in R} w_i \ge \alpha^p$
- by PHP, there exists some *i* s.t., $\log_{\alpha} w_i \ge p/k$

proof of theorem

- number of mistakes is equal to p + e
- by lemmas 3 and 2, there exists some *i* s.t.,

 $p/k \leq \log_{lpha} w_i \leq \log_{lpha} \theta + 1$

or

$$\rho \le k(\log_{\alpha} \theta + 1) \tag{1}$$

by lemma 1

$$e \leq \frac{n}{\theta} + (\alpha - 1)p \leq \frac{n}{\theta} + (\alpha - 1)k(\log_{\alpha} \theta + 1)$$
 (2)

• (1)+(2) gives the result

• **lower bound**: the number of mistakes required to learn a *k*-literal monotone disjunction is at least $\frac{k}{8}(1 + \log_2 \frac{n}{k})$

summary of the course

- introduction to PAC learning model
- Occam's razor
- agnostic learning
- VC dimension
- weak and strong learning, and boosting
- learning in the presence of noise: statistical query learning
- submodular optimization and applications
- online learning: mistake-bound models

some topics we did not manage to cover

- Rademacher complexity and covering numbers
- online learning: regret bounds
- randomized weighted majority algorithm

references

Kearns, M., Li, M., Pitt, L., and Valiant, L. G. (1987).
Recent results on boolean concept learning.
In *Proceedings of the Fourth International Workshop on Machine Learning*, pages 337–352. Elsevier.