
CS-E4070 — Computational learning theory

Slide set 11 : online learning

Cigdem Aslay and Aris Gionis

Aalto University

spring 2019

reading material

• Nick Littlestone, “Learning Quickly When Irrelevant
Attributes Abound – A New Linear-threshold Algorithm.”
Machine Learning, 1987

overview

• mistake-bound model

– basic results, the HALVING algorithm

– connections to information theory

– the WINNOW algorithm

recap — PAC learning

• S = {(x1, y1), . . . , (xm, ym)} where x is sampled from D,

and y = c(x) labeled by the target concept c : X → Y that

we want to learn

• the learner observes sample set S and outputs hypothesis

h : X → Y for predicting the label of unseen data points
drawn from D.

• the error of the learner is defined as the probability that

the learner does not predict the correct label on a random

data point sampled from D

errorD(h) = Prx∼D[h(x) 6= c(x)]

online learning

• assumption in PAC learning:

– error is measured on a fixed distribution

– same distribution used to learn the hypothesis

• what if we do not want to make this assumption ?

– cannot make claims about predicting future results

• can we say anything interesting ?

– mistake bounds and regret bounds

mistake-bound model

• view learning as an iterative process

• in each iteration

– algorithm is given x

– predicts h(x)

– told the true label c(x), and if made a mistake

• no assumptions about order of examples or distribution

• objective: bound the total number of mistakes

mistake-bound model

• definition: algorithm A learns concept class C with mistake
bound M if A makes at most M mistakes on any sequence
of examples consistent with some c ∈ C

• note: we can no longer talk about total number of
examples required to learn a hypothesis

– maybe we see the same examples over again
– and learn nothing new

– but this is OK if do not make mistakes

• want mistake bound poly(n, s), where n is size of example
and s is size of smallest consistent c ∈ C

mistake-bound model

• definition: a concept class C is learnable in the MB model
if there exists an algorithm A whose mistake bound and
running time per iteration is poly(n, s)

example : boolean disjunctions
• consider n boolean variables x1, . . . , xn

• concept class: boolean monotone disjunctions

– e.g., c(x) = x1 ∨ x3 ∨ x4 ∨ x9

– no negations

• can we learn target concept with at most n mistakes ?

• online learning algorithm:

– start with h(x) = x1 ∨ x2 ∨ . . . ∨ xn

– invariant: {variables in c} ⊆ {variables in h}
– mistake on positive example: do nothing

– mistake on negative example: remove xi ’s set to 1

• analysis: invariant is maintained

• for each mistake we remove at least one variable:

– we cannot remove more than n variables

example : boolean disjunctions

• the online learning algorithm makes at most n mistakes

• any algorithm can be forced to make at least n mistakes

1 0 . . . 0 + or −
0 1 . . . 0 + or −
...

...
...

...
0 0 . . . 1 + or −

MB model properties

• an algorithm A is conservative if it only changes its state
when it makes a mistake

• claim: if C is learnable by a deterministic algorithm with
mistake bound M, then it is learnable by a conservative
algorithm with mistake bound M

• why ?

MB learnability implies PAC learnability

• consider online learning algorithm A with mistake bound M

• transformation:

– run (conservative) A until it produces a hypothesis h
– that survives at least (1/ε) ln(M/δ) examples

• Pr [fooled by a given “bad” hypothesis] ≤ δ/M

• Pr [fooled by any “bad” hypothesis] ≤ δ

• total number of examples seen is at most (M/ε) ln(M/δ)

for details see [Kearns et al., 1987]

see also homework question

what if we had unbounded computational power ?

• consider the HALVING algorithm

– an analogue of binary search

• maintain the version space: the set of all concepts that are
consistent with all examples seen so far

• more formally

– CONSISTENT = {c ∈ C s.t. c consistent with previous
– examples }

– for instance x and concept class C:

– ξ0(C,x) = {c ∈ C | c(x) = 0}

– ξ1(C,x) = {c ∈ C | c(x) = 1}

HALVING algorithm

• CONSISTENT = C

• upon seen instance x

– if |ξ1(CONSISTENT,x)| > |ξ0(CONSISTENT,x)|
– predict 1

– if |ξ1(CONSISTENT,x)| ≤ |ξ0(CONSISTENT,x)|
– predict 0

– if correct label is 1
– CONSISTENT = ξ1(CONSISTENT,x)

– if correct label is 0
– CONSISTENT = ξ0(CONSISTENT,x)

HALVING algorithm

• theorem: the number of mistakes of the HALVING

algorithm is bounded by log |C|

what if we had unbounded computational power ?

• what if we had a prior p over concepts of C ?

– weight the vote according to p

– make at most log(1/pc) mistakes,

– where c is the target concept

• what if c was really chosen according to p ?

– expected number of mistakes ≤
∑

c pc log(1/pc)

– the entropy of the distribution p

the WINNOW algorithm

• online learning of monotone boolean disjunctions

– mistake bound: n

• can we do better ?

• assume that disjunction contains at most k literals

– e.g., c(x) = xi1 ∨ . . . ∨ xik , for k << n

• well-motivated assumption: in many applications only a
small number of variables is relevant

the WINNOW algorithm

• the algorithm is applicable to learning binary functions
c : {0,1}n → {0,1} that are linearly separable

– i.e., there is a hyperplane that separates positive

– from negative instances

• e.g., monotone disjunction c(x) = x1 ∨ x3 ∨ x4 ∨ x9

is linearly separable

– why ? consider hyperplane

x1 + x3 + x4 + x9 = 1/2

the WINNOW algorithm

• maintain weights w1, . . . ,wn associated with variables
x1, . . . , xn

• initially w1 = . . . = wn = 1

• use parameters θ and α

• to predict label of instance (x1, . . . , xn) use the rule:

– if
∑

i wixi > θ predict 1

– if
∑

i wixi ≤ θ predict 0

• weights w1, . . . ,wn are updated when algorithm makes a
mistake

– weights update is controlled by parameter α

WINNOW’s response to mistakes

learner’s correct update response
prediction response action name

1 0
wi = 0 if xi = 1 elimination
wi unchanged if xi = 0 step

0 1
wi = αwi if xi = 1 promotion
wi unchanged if xi = 0 step

WINNOW’s performance

• theorem: assume that the target concept is a k -literal
monotone disjunction c(x1, . . . , xn) = xi1 ∨ . . . ∨ xik

If WINNOW is run with α > 1 and θ > 1/α, then for any
sequence of instances the total number of mistakes will
be bounded by

αk(logα θ + 1) +
n
θ

WINNOW’s performance

• mistake bound:

αk(logα θ + 1) +
n
θ

• if θ = n and α = 2, bound is 2k(log2 n + 1) + 1

• if θ = n/α, bound is αk logα n +α

• if θ = n/2 and α = 2, bound is 2k log2 n + 2

analysis of the WINNOW algorithm

• theorem: assume that the target concept is a k -literal
monotone disjunction c(x1, . . . , xn) = xi1 ∨ . . . ∨ xik

If WINNOW is run with α > 1 and θ > 1/α, then for any
sequence of instances the total number of mistakes will
be bounded by

αk(logα θ + 1) +
n
θ

• proof

analysis of the WINNOW algorithm
• lemma 1: let p be the number of promotion steps;

let e be the number of elimination steps; then:

e ≤ n
θ
+ (α− 1)p

proof

• initially
∑

i wi = n

• each promotion increases the sum by at most (α− 1)θ

– because promotion happens when
∑

i wixi ≤ θ
• each elimination decreases the sum by at least θ

• since the sum is never negative we have

0 ≤
∑

i

wi ≤ n + θ(α− 1)p − θe

analysis of the WINNOW algorithm

• lemma 2: wi ≤ αθ, for all i

proof

• since θ > 1/α the condition initially holds

• weight wj is increased only if
∑

i wixi ≤ θ and xj = 1

– thus, before promotion wj ≤ θ

– thus, after promotion wj ≤ αθ

analysis of the WINNOW algorithm

• lemma 3: after p promotion steps and an arbitrary number
of elimination steps there exists some i s.t., logα wi ≥ p/k

proof

• let R = {xi1 , . . . , xik} and consider
∏

i∈R wi

• c(x1, . . . , xn) = 0 if and only if xi = 0 for all xi ∈ R

• elimination occurs when c(x1, . . . , xn) = 0

– elimination lefts
∏

i∈R wi unchanged

• promotion occurs when c(x1, . . . , xn) = 1

– promotion increases
∏

i∈R wi by at least α

• after p promotion steps
∏

i∈R wi ≥ αp

• by PHP, there exists some i s.t., logα wi ≥ p/k

analysis of the WINNOW algorithm

proof of theorem

• number of mistakes is equal to p + e

• by lemmas 3 and 2, there exists some i s.t.,

p/k ≤ logα wi ≤ logα θ + 1

or
p ≤ k(logα θ + 1) (1)

• by lemma 1

e ≤ n
θ
+ (α− 1)p ≤ n

θ
+ (α− 1)k(logα θ + 1) (2)

• (1)+(2) gives the result

analysis of the WINNOW algorithm

• lower bound: the number of mistakes required to learn a
k -literal monotone disjunction is at least k

8 (1 + log2
n
k)

summary of the course

• introduction to PAC learning model

• Occam’s razor

• agnostic learning

• VC dimension

• weak and strong learning, and boosting

• learning in the presence of noise: statistical query learning

• submodular optimization and applications

• online learning: mistake-bound models

some topics we did not manage to cover

• Rademacher complexity and covering numbers

• online learning: regret bounds

• randomized weighted majority algorithm

references

Kearns, M., Li, M., Pitt, L., and Valiant, L. G. (1987).
Recent results on boolean concept learning.
In Proceedings of the Fourth International Workshop on
Machine Learning, pages 337–352. Elsevier.

