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reading material

¢ Nick Littlestone, “Learning Quickly When Irrelevant
Attributes Abound — A New Linear-threshold Algorithm.”
Machine Learning, 1987



overview

e mistake-bound model
— basic results, the HALVING algorithm
— connections to information theory

— the WINNOW algorithm



recap — PAC learning

o S={(X1.¥4),....(Xm, ¥m) } where x is sampled from D,
and y = c(x) labeled by the target concept ¢ : X — Y that

we want to learn

 the learner observes sample set S and outputs hypothesis

h: X — Y for predicting the label of unseen data points
drawn from D.

e the error of the learner is defined as the probability that
the learner does not predict the correct label on a random

data point sampled from D

errorp(h) = Pry.p[h(X) # c(X)]



online learning

e assumption in PAC learning:
— error is measured on a fixed distribution

— same distribution used to learn the hypothesis

¢ what if we do not want to make this assumption ?

— cannot make claims about predicting future results
e can we say anything interesting ?

mistake bounds and regret bounds



mistake-bound model

view learning as an iterative process

in each iteration

— algorithm is given x
— predicts h(x)

— told the true label c¢(x), and if made a mistake

no assumptions about order of examples or distribution

objective: bound the total number of mistakes



mistake-bound model

e definition: algorithm A learns concept class C with mistake
bound M if A makes at most M mistakes on any sequence
of examples consistent with some ¢ € C

e note: we can no longer talk about total number of
examples required to learn a hypothesis

— maybe we see the same examples over again
and learn nothing new

— but this is OK if do not make mistakes

e want mistake bound poly(n, s), where n is size of example
and s is size of smallest consistent ¢ € C



mistake-bound model

e definition: a concept class C is learnable in the MB model
if there exists an algorithm A whose mistake bound and
running time per iteration is poly(n, s)



example : boolean disjunctions

e consider n boolean variables xq,..., Xy

concept class: boolean monotone disjunctions
- ed., C(X) = X1 VX3V XqV Xg
— Nno negations

can we learn target concept with at most n mistakes ?

online learning algorithm:

start with h(x) = x;1 V xo V...V X,

invariant: {variables in ¢} C {variables in h}

mistake on positive example: do nothing

mistake on negative example: remove x;’s set to 1

analysis: invariant is maintained

for each mistake we remove at least one variable:
— we cannot remove more than n variables



example : boolean disjunctions

¢ the online learning algorithm makes at most n mistakes
e any algorithm can be forced to make at least n mistakes
10 ... 0 +or—
o1 ...0 +or —

0 0 ... 1 + or —



MB model properties

e an algorithm A is conservative if it only changes its state
when it makes a mistake

e claim: if C is learnable by a deterministic algorithm with
mistake bound M, then it is learnable by a conservative
algorithm with mistake bound

e why ?



MB learnability implies PAC learnability

e consider online learning algorithm A with mistake bound M
e transformation:

— run (conservative) A until it produces a hypothesis h
that survives at least (1/¢)In(M/d) examples

 Pr[fooled by a given “bad” hypothesis] < o /M
 Pr[fooled by any “bad” hypothesis] < o
e total number of examples seen is at most (M/¢€) In(M/J)

for details see [Kearns et al., 1987]

see also homework question



what if we had unbounded computational power ?

e consider the HALVING algorithm
— an analogue of binary search

e maintain the version space: the set of all concepts that are
consistent with all examples seen so far

e more formally

— CONSISTENT = {c € C s.t. ¢ consistent with previous
examples }

— for instance x and concept class C:
£o(C,x) = {ceC|c(x)=0}
&(Cx)={cec|c(x) =1}



HALVING algorithm

e CONSISTENT =C

e upon seen instance x

if |£{(CONSISTENT, X)| > |£,(CONSISTENT, x)|
predict 1

if |£{(CONSISTENT, X)| < |£,(CONSISTENT, X)|
predict O

if correct label is 1
CONSISTENT = £,(CONSISTENT, X)

if correct label is 0
CONSISTENT = £,(CONSISTENT, X)



HALVING algorithm

e theorem: the number of mistakes of the HALVING
algorithm is bounded by log [C|



what if we had unbounded computational power ?

e what if we had a prior p over concepts of C ?
— weight the vote according to p
— make at most log(1/p.) mistakes,

where c is the target concept

e what if ¢ was really chosen accordingto p ?
— expected number of mistakes < ). pclog(1/pc)
the entropy of the distribution p



the WINNOW algorithm

online learning of monotone boolean disjunctions

— mistake bound: n

can we do better ?

assume that disjunction contains at most k literals

—-eg,cx)=x,V...Vx, fork<<n

well-motivated assumption: in many applications only a
small number of variables is relevant



Wi n n ow [ win-oh ] sHowira )

EXAMPLES | WORD ORIGIN SEE MORE SYNONYMS FOR winnow ON THESAURUS.COM

verb (used with object)
1 to free (grain) from the lighter particles of chaff, dirt, etc., especially by throwing it into the air and
allowing the wind or a forced current of air to blow away impurities.

2 to drive or blow (chaff, dirt, etc.) away by fanning.



the WINNOW algorithm

e the algorithm is applicable to learning binary functions
c:{0,1}" — {0, 1} that are linearly separable

— i.e., there is a hyperplane that separates positive

from negative instances

e e.g., monotone disjunction ¢(x) = xy V X3V X4 \V Xg
is linearly separable

— why ? consider hyperplane

X1+X3+X4+X9:1/2



the WINNOW algorithm

e maintain weights wy. ..., w, associated with variables
X1 g0 o ,Xn
e initially wy = ... = w, =1

e use parameters ¢ and «
e to predict label of instance (x, ..., x,) use the rule:
— if >, wix; > 0 predict 1
— if >, wix; < 0 predict 0
e weights wy, ..., w, are updated when algorithm makes a
mistake

— weights update is controlled by parameter o



WINNOW'’s response to mistakes

learner’s correct update response
prediction response action name
1 0 w; =0if x; =1 elimination
w; unchanged if x; =0 step
0 ’ w; = aw;if x; =1 promotion

w; unchanged if x; = 0 step




WINNOW’s performance

e theorem: assume that the target concept is a k-literal
monotone disjunction c(xq,...,x,) = X, V...V X,
If WINNOW is run with v > 1 and €/ > 1/« then for any
sequence of instances the total number of mistakes will
be bounded by

ak(log, 0 +1) +

S



WINNOW’s performance

mistake bound:

ak(log,, 0 +1) + g

if = nand v = 2, bound is 2k(log, n+1) + 1

if @ = n/c, bound is aklog, n+ «

if 0 =n/2and o =2, boundis 2klog, n+ 2



analysis of the WINNOW algorithm

e theorem: assume that the target concept is a k-literal
monotone disjunction c(xq,..., x,) = X, V...V X,
If WINNOW is run with v > 1 and ¢ > 1/« then for any
sequence of instances the total number of mistakes will
be bounded by
ak(log, 0+ 1)+ 5

S

e proof



analysis of the WINNOW algorithm

lemma 1: let p be the number of promotion steps;
let e be the number of elimination steps; then:

e§g+(oz—1)p

proof

initially >~ w; = n

each promotion increases the sum by at most (v — 1)6
— because promotion happens when >, w;x; < 0

each elimination decreases the sum by at least ¢/

since the sum is never negative we have

0<) wi<n+0a—1)p-0Oe



analysis of the WINNOW algorithm

e lemma 2: w; < o, forall i

proof
e since ¢/ > 1/c the condition initially holds
« weight w; is increased only if >, w;x; < 0 and x; = 1
— thus, before promotion w; < ¢/

— thus, after promotion w; < a0/



analysis of the WINNOW algorithm

e lemma 3: after p promotion steps and an arbitrary number
of elimination steps there exists some / s.t., log, w; > p/k

proof
e let R = {x,.....x; } and consider [[,_ 5 w;
e C(xq,...,x5) =0ifand only if x; = 0 forall x; € R
e elimination occurs when c(x4,...,x,) =0

— elimination lefts | [, 5 w; unchanged
e promotion occurs when c(xy, ..., x,) =

— promotion increases [ [,. 5 w; by at least <
» after p promotion steps [[;.g w; > o

e by PHP, there exists some / s.t., log,, w; > p/k



analysis of the WINNOW algorithm

proof of theorem

number of mistakes is equal to p + e

by lemmas 3 and 2, there exists some / s.t.,
p/k <log, w; <log,, 0 + 1

or
p < k(log,, 0 +1) (1)

by lemma 1

e§Q+(a—1)p§g

7 + (e —1)k(log, 0 +1) (2)

e (1)+(2) gives the result



analysis of the WINNOW algorithm

e lower bound: the number of mistakes required to learn a

k-literal monotone disjunction is at least §(1 +log, %)



summary of the course

e introduction to PAC learning model

e Occam’s razor

e agnostic learning

e VC dimension

e weak and strong learning, and boosting

e learning in the presence of noise: statistical query learning
e submodular optimization and applications

e online learning: mistake-bound models



some topics we did not manage to cover

¢ Rademacher complexity and covering numbers
¢ online learning: regret bounds

e randomized weighted majority algorithm
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