Standardization, biobricks and chassis CHEM-E8125

WHAT IS A BIOSENSOR?

- An analytical device, used for the detection of a chemical substance
- The bioreceptor interacts with a specific analyte of interest to produce an effect measurable by the transducer
- Can detect very low concentrations of substances such as drugs, toxins or explosives

WHAT IS A BIOBRICK?

- A DNA part in a standard format with a function that can be quantified
- Building blocks for biosensors
- The Registry of Standard Biological Parts

WHAT KIND OF SENSOR WE WANT?

- A metal detecting biosensor (E. coli) that detects heavy metals
- Promoters inducible by metal ions
- Expresses fluorescent proteins RFP, GFP and blue chromoprotein in the presence of these metal ions

Heavy metals

- Our biosensor detects lead, cadmium and mercury and produces chromoproteins in response.
- Why are heavy metals bad?

- Lead is toxic mainly because it preferentially replaces other metals (e.g., zinc, calcium and iron) in biochemical reactions in living organisms
 e.g. it displaces calcium in the reactions that transmit electrical impulses in the brain. This can have fatal consequences for the organism.
- Mercury accumulates to kidneys and brains in the human body and affects especially to the nervous system. Exposure to mercury can happen by inhaling mercury contaminated air, orally or it can even absorb through the skin.

- Mercury can affect brain function in various ways (like sensory impairment), it causes acrodynia, Hunter-Russell syndrome, Minamata disease and damages the kidneys
- Cadmium binds to red blood cells in body and accumulates to kidneys and enlarges individual risk for kidney diseases. Cadmium is also a known carcinogen.

• It is suspected that cadmium replaces zinc in some enzymes due to their chemical similarity.

Biosensor design

Under constitutive promoter only single mRNA produced, proteins separated by self-cleaving T2A peptides (BBa_K1993019).

Double terminator (BBa_B0015) used to ensure ending of the transcription.

RFC[10] compatible plasmid construction.

Heavy metal detection via **chromoproteins**

Plasmid construct

- pSB1C3 plasmid backbone
- Chloramphenicol resistance
- The replication origin is a pUC19-derived pMB1
- High copy number (100-300 per cell)

Parts used
in plasmid
assembly

pSB1C3 BBa_J23100 BBa_1721001 BBa_M36245 BBa_K346002 BBa_1721002 BBa M36244 BBa_K1420004 BBa E1010 BBa_K1789003 BBa_K864401 BBa_B0034 BBa_K1993019

BBa_B0015

Name

piastiliu backbone with prenx, sullix,
chloramphenicol resistance gene and pUC19- derived pMB1 replication of origin pSB1C3
constitutive promoter family member
lead + protein inducible promoter
PCad Promoter
PmerT promoter (mercury-responsive)
Lead Binding Protein
CadC Transcription Factor
merR family transcriptional regulator protein
engineered mutant of red fluorescent protein
GFP1
aeBlue blue chromoprotein
Ribosomal Binding Site
T2A cleaveage site

Double Terminator

Description

plasmid backbone with prefix suffix.

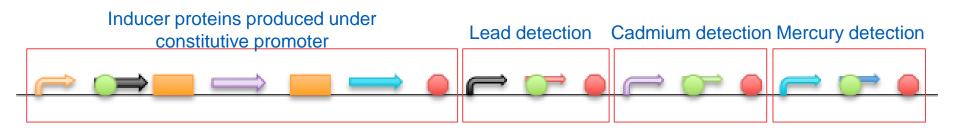
Length

2070

35 94

399

706

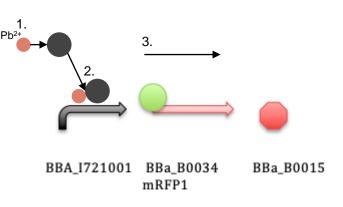

474

699

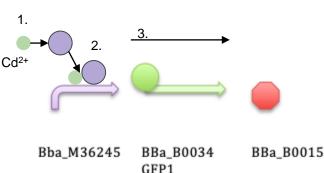
18-22

Gene circuit construction

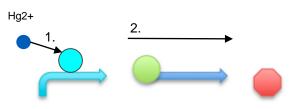
Constitutive


Under a single constitutive promoter, three different proteins (lead binding protein, CadC, merR) are produced.

T2A peptides cleave the proteins apart from each other after translation of mRNA.


Lead detection

- 1) Lead ion (Pb²⁺) and lead binding protein produced under the constitutive promoter form a dimer.
- 1) Dimer binds to the lead inducible promoter and derepresses it.
- 1) Translation of the RFP protein sequence is initiated.

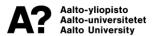

Cadmium detection

- 1. Cadmium ion (Cd²⁺) and cadmium transcription factor (CadC) produced under the constitutive promoter form a dimer.
- 1. Dimer binds to the CadC inducible promoter and derepresses it.
- 1. Translation of the GFP protein sequence is initiated.

Mercury detection

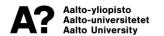
BBa_K346002 BBa_B0034 BBa_B0015 BBa_K864401 aeBlue blue chromoprotein

- 1. Under the constitutive promoter produced merR forms a homodimer and binds to the mercury inducible promoter. When mercury ion (Hg²⁺) is present, it binds to the homodimer.
- 1. Metallated MerR homodimer causes a realignment of the promoter after which translation of the blue chromoprotein sequence is initiated.



Logic Gates

Const. promoter	RFP	GFP	aeBlue
0	0	0	0
1	1	1	1


AND: The output of an AND gate is true when all its inputs are true ie. all ions are present.

Logic Gates

lon Const. promoter	Pb ²⁺	Cd ²⁺	Hb ²⁺	Fluorescent protein produced
0	0	0	0	0
1	1	0	0	RFP
1	1	1	0	RFP, GFP
1	1	0	1	RFP, aeBlue

OR: The output of an OR gate is true when at least one of its inputs is true ie. one or more ion is present.

References

- Amaro F, Turkewitz AP, Martín-González A, Gutiérrez JC. Whole-cell biosensors for detection of heavy metal ions in environmental samples based on metallothionein promoters from Tetrahymena thermophila. Microb Biotechnol. 2011;4(4):513-22.
- Verma, Neelam & Singh, Minni. (2005). Biosensors for heavy metals. Biometals: an international journal on the role of metal ions in biology, biochemistry, and medicine. 18. 121-9. 10.1007/s10534-004-5787-3.
- http://parts.igem.org

Thank You!