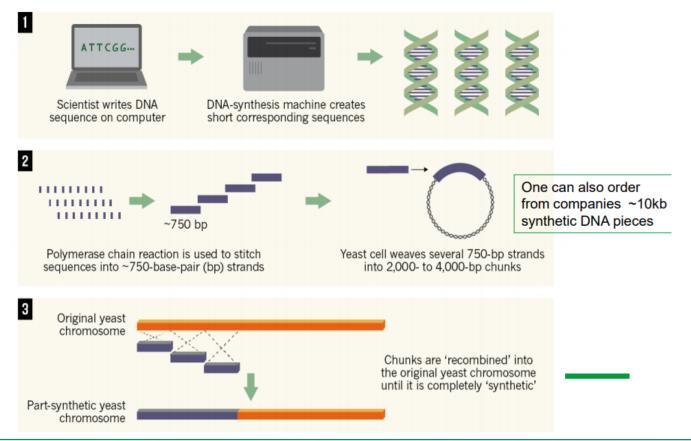


Yeast 2.0 Group 2 – Pinja, Sanna, Selina

Content

- Introduction
- Construction of yeast 2.0
- Synthetic design and construction of a ~30kb region ('Megachunk')
- Software
- Wet Lab
- SCRaMbLE mechanism
- References

Introduction

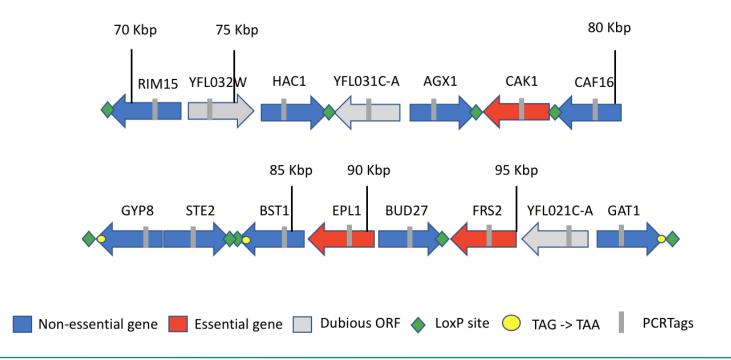

- Synthetic yeast 2.0 is the first attempt to build an artificial yeast (*S. cerevisiae*) genome from a scratch. The synthetic DNA is introduced to the wild-type genome in 30-60 kb pieces by replacing sequences.
- It is called synthetic because all the original pieces are replaced with synthetic ones.
- Alterations that are done: PCR-Tags are incorporated, telomeres are synthesized, introns and non-essential genes are removed, stop codon TAG is replaced with TAA, transposons are deleted, tRNA genes are relocated

- Yeast 2.0 can be used to answer many questions about chromosomes, genomes structure and evolution, RNA splicing, etc...
- Yeast 2.0 can be industrially significant. It can be genetically engineered to produce useful compounds in greater quantities and to have a better tolerance for stress factors (e.g. pH, temperature, pressure...)
- The artificial yeast could be used to produce biofuels better. This could happen by adding genes to the genome that enhances the production.

Construction of Yeast 2.0

Aalto University School of Chemical Engineering

Synthetic design of a ~30kb region ('Megachunk') chrVI:68657..98398 (29.74 Kb)


tracks	75.000 80.0	8	85,000	90,000 95	5,000
Reference sequence, to see sequence	Zoom in to see seque				
8 All Annotated Sequence Features					
	YFL032W AGX1 CAF16	STE2	EPL1	BUD27	¥ YFL021C-A
ARS603		GYP8 BST	1	FRS2	GAT1 →
RIM15	YFL031C-A				

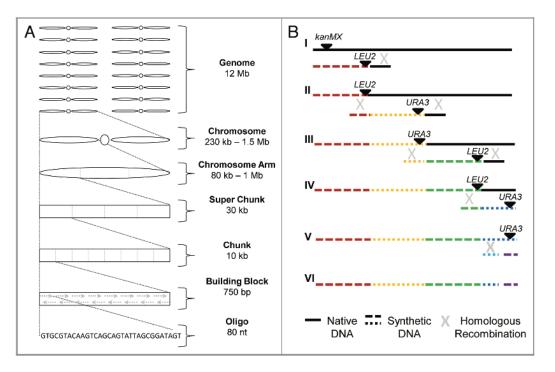
Essential genes : CAK1, EPL1, FRS2 Non - essential genes: RIM15, HAC1, AGX1, CAF16, GYP8, STE2, BST1, BUD27, GAT1 Dubious ORFs: YFL031C-A, YFL021C-A Autonomously replicating sequence ARS603 No introns in this region, no tRNA genes and no transposon

Our design of a ~30kb region ('Megachunk')

chrVI:68657..98398 (29.74 Kb)

Softwares

- Saccharomyces cerevisiae genome database (SGD)
 - https://www.yeastgenome.org/
- SnapGene (planning, visualizing, documenting of molecular biology procedures)
 - https://www.snapgene.com/
- ApE a plasmid editor (free download from multiple websites)
- BioStudio (eukaryotic genome design)
- Database of essential genes
 - http://www.essentialgene.org/

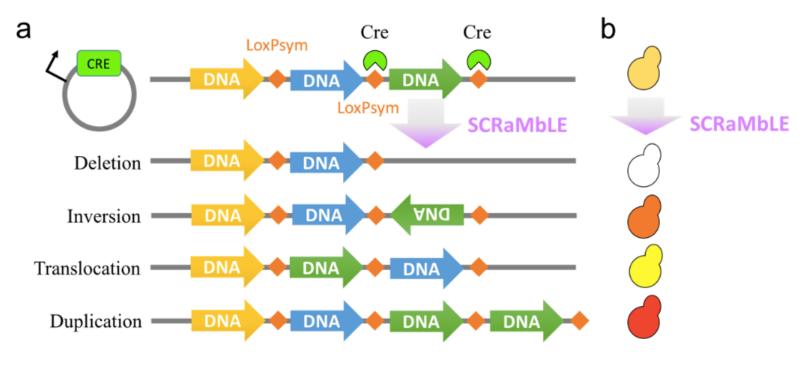


Wet Lab

- Hierarchical assembly plan:
- Construction of building blocks from oligos or buying ready-made chunks
- Smaller chunks are assembled into 'megachunks' (30-60 kb) through restriction enzymes and subsequent ligation
- Integration of 'megachunks' into yeast genome via homologous recombination
- Alternation between two selection markers (LEU2 and URA3)

Wet Lab

Genome modularity and integration of synthetic DNA



SCRaMbLE mechanism

- Synthetic Chromosome Recombination and Modification by LoxP-mediated Evolution
- Cre recombinase can recombine a pair of short target sequences called the LoxP sequences (both derived from bacteriophage P1)
- Recombination between loxPsym sites could lead to genome rearrangements
- Introduction of around 5000 symmetrical loxP sites 3 bp after the stop codon of nonessential genes and at major landmarks
- Inducible evolution and genome minimization
- Production of strains with a large genotypic diversity
- Cre expression control through galactose or estradiol induction

SCRaMbLE mechanism

SCRaMbLE leads to diversity generating desired phenotypes

Possible problems

- Harmful to humans
- Harmful to environment
- Harmful dual-use e.g. bioterrorism
- Reduced fitness of the yeast
- Instability of the genome

References

- Dymond, J. & Boeke, J. The Saccharomyces cerevisiae SCRaMbLE system and genome minimization. Bioeng. Bugs 3, 168–171 (2012).
- Richardson, S. M. *et al.* (2017) 'Design of a synthetic yeast genome', *Science*, 355(6329), p. 1040 LP-1044. doi: 10.1126/science.aaf4557
- Foo J.L., Chang M.W. (2018). Synthetic yeast genome reveals its versatility. Nature 557 (7707): 647-648. ScholarBank@NUS Repository. https://doi.org/10.1038/d41586-018-05164-3
- Jia, B. *et al.* (2018) 'Precise control of SCRaMbLE in synthetic haploid and diploid yeast', *Nature Communications*, 9(1), p. 1933. doi: 10.1038/s41467-018-03084-4.
- Merja Penttilä, Synthetic yeast 2.0, Synthetic Biology (CHEM-E8125), Aalto University, School of Chemical Engineering, 2019, (course material)
- Synthetic Yeast 2.0, http://syntheticyeast.org/ 25.03.2019
- Saccharomyces cerevisiae Genome Database, https://www.yeastgenome.org/ 25.03.2019
- https://www.genscript.com/synthetic_yeast_genome.html 25.03.2019

Any questions?