1. For the dyadic $\overline{\bar{B}}=\overline{\bar{I}}+\mathbf{a b}$ where \mathbf{a} and \mathbf{b} are arbitrary complex vectors, compute
(a) $\operatorname{tr} \overline{\bar{B}}$
(b) $\operatorname{spm} \overline{\bar{B}}$
(c) $\operatorname{det} \overline{\bar{B}}$
(d) $\overline{\bar{B}}^{-1}$
(e) Check and show that $\overline{\bar{B}} \cdot \overline{\bar{B}}^{-1}=\overline{\bar{I}}$ and $\overline{\bar{B}}{ }^{-1} \cdot \overline{\bar{B}}=\overline{\bar{I}}$.
2. Derive Equation (4.16) in our textbook, using the duality transformations of the fields in (4.11) and (4.12).
3. The electric field of a plane wave obeys the following description

$$
\mathbf{E}(\mathbf{r})=\left[(1+\mathrm{j}) \mathbf{u}_{x}+(3-2 \mathrm{j}) \mathbf{u}_{y}\right] \mathrm{e}^{-\mathrm{j} k_{0} z}
$$

where $k_{0}=\omega \sqrt{\mu_{0} \varepsilon_{0}}$ is the free-space wave number.
(a) Compute the polarization vector \mathbf{p} of this wave.
(b) Determine the polarization of this wave (ellipticity, handedness).

