1. For the dyadic $\overline{\bar{B}}=\overline{\bar{I}}+\mathbf{a b}$:
(a) $\operatorname{tr} \overline{\bar{B}}=3+\mathbf{a} \cdot \mathbf{b}$
(b) $\operatorname{spm} \overline{\bar{B}}=3+2 \mathbf{a} \cdot \mathbf{b}$
(c) $\operatorname{det} \overline{\bar{B}}=1+\mathbf{a} \cdot \mathbf{b}$
(d) $\overline{\bar{B}}^{-1}=\overline{\bar{I}}-\frac{\mathbf{a b}}{1+\mathbf{a} \cdot \mathbf{b}}$
(e) Straightforward products.
2. Substitute the transformed fields using (4.11) and (4.12) to the constitutive relations:

$$
\mathbf{D}_{d}=\overline{\bar{\varepsilon}}_{d} \cdot \mathbf{E}_{d}+\overline{\bar{\xi}}_{d} \cdot \mathbf{H}_{d} \quad \Rightarrow \quad \mathbf{B}=-\frac{\alpha}{\beta} \overline{\bar{\varepsilon}}_{d} \cdot \mathbf{H}-\overline{\bar{\xi}}_{d} \cdot \mathbf{E} \quad \text { but also } \quad \mathbf{B}=\overline{\bar{\zeta}} \cdot \mathbf{E}+\overline{\bar{\mu}} \cdot \mathbf{H}
$$

and

$$
\mathbf{B}_{d}=\overline{\bar{\zeta}}_{d} \cdot \mathbf{E}_{d}+\overline{\bar{\mu}}_{d} \cdot \mathbf{H}_{d} \quad \Rightarrow \quad \mathbf{D}=-\overline{\bar{\zeta}}_{d} \cdot \mathbf{H}-\frac{\beta}{\alpha} \overline{\bar{\mu}}_{d} \cdot \mathbf{E} \quad \text { but also } \quad \mathbf{D}=\overline{\bar{\varepsilon}} \cdot \mathbf{E}+\overline{\bar{\zeta}} \cdot \mathbf{H}
$$

which leaves us with (4.16).
3. The electric field reads

$$
\mathbf{E}(\mathbf{r})=\left[(1+\mathrm{j}) \mathbf{u}_{x}+(3-2 \mathrm{j}) \mathbf{u}_{y}\right] \mathrm{e}^{-\mathrm{j} k_{0} z}=\mathbf{E}_{0} \mathrm{e}^{-\mathrm{j} k_{0} z}
$$

(a) From (1.35)

$$
\mathbf{p}\left(\mathbf{E}_{0}\right)=\frac{\mathbf{E}_{0} \times \mathbf{E}_{0}^{*}}{j \mathbf{E}_{0} \cdot \mathbf{E}_{0}^{*}}=\frac{2}{3} \mathbf{u}_{z}
$$

(b) The wave is elliptically polarized $\left(0<\left|\mathbf{p}\left(\mathbf{E}_{0}\right)\right|<1\right)$. It is also right-handed because \mathbf{p} points into the propagation direction z.
How eccentric is the ellipse? Page 11, item 4 says that the axial ratio of the polarization ellipse e is connected to the absolute value of the polarization vector in the following way:

$$
\frac{2 e}{e^{2}+1}=\left|\mathbf{p}\left(\mathbf{E}_{0}\right)\right|=\frac{2}{3}
$$

which leads to the following major-minor-axis ratio:

$$
e=\frac{3+\sqrt{5}}{2} \approx 2.62
$$

