Exam: solutions

1. For the dyadic $\overline{\overline{B}} = \overline{\overline{I}} + \mathbf{ab}$:

(a)
$$\operatorname{tr}\overline{\overline{B}} = 3 + \mathbf{a} \cdot \mathbf{b}$$

(b)
$$\operatorname{spm}\overline{B} = 3 + 2\mathbf{a} \cdot \mathbf{b}$$

(c) det
$$\overline{\overline{B}} = 1 + \mathbf{a} \cdot \mathbf{b}$$

(d)
$$\overline{\overline{B}}^{-1} = \overline{\overline{I}} - \frac{\mathbf{a}\mathbf{b}}{1 + \mathbf{a} \cdot \mathbf{b}}$$

- (e) Straightforward products.
- 2. Substitute the transformed fields using (4.11) and (4.12) to the constitutive relations:

$$\mathbf{D}_{d} = \overline{\overline{\varepsilon}}_{d} \cdot \mathbf{E}_{d} + \overline{\overline{\xi}}_{d} \cdot \mathbf{H}_{d} \quad \Rightarrow \quad \mathbf{B} = -\frac{\alpha}{\beta} \overline{\overline{\varepsilon}}_{d} \cdot \mathbf{H} - \overline{\overline{\xi}}_{d} \cdot \mathbf{E} \quad \text{but also} \quad \mathbf{B} = \overline{\overline{\zeta}} \cdot \mathbf{E} + \overline{\overline{\mu}} \cdot \mathbf{H}$$

and

$$\mathbf{B}_{d} = \overline{\overline{\zeta}}_{d} \cdot \mathbf{E}_{d} + \overline{\overline{\mu}}_{d} \cdot \mathbf{H}_{d} \quad \Rightarrow \quad \mathbf{D} = -\overline{\overline{\zeta}}_{d} \cdot \mathbf{H} - \frac{\beta}{\alpha} \overline{\overline{\mu}}_{d} \cdot \mathbf{E} \quad \text{but also} \quad \mathbf{D} = \overline{\overline{\varepsilon}} \cdot \mathbf{E} + \overline{\overline{\zeta}} \cdot \mathbf{H}$$

which leaves us with (4.16).

3. The electric field reads

$$\mathbf{E}(\mathbf{r}) = \left[(1+j)\mathbf{u}_x + (3-2j)\mathbf{u}_y \right] \mathbf{e}^{-jk_0z} = \mathbf{E}_0 \mathbf{e}^{-jk_0z}$$

(a) From (1.35)

$$\mathbf{p}(\mathbf{E}_0) = \frac{\mathbf{E}_0 \times \mathbf{E}_0^*}{\mathbf{j}\mathbf{E}_0 \cdot \mathbf{E}_0^*} = \frac{2}{3}\mathbf{u}_z$$

(b) The wave is elliptically polarized $(0 < |\mathbf{p}(\mathbf{E}_0)| < 1)$. It is also right-handed because **p** points into the propagation direction *z*.

How eccentric is the ellipse? Page 11, item 4 says that the axial ratio of the polarization ellipse *e* is connected to the absolute value of the polarization vector in the following way:

$$\frac{2e}{e^2+1} = |\mathbf{p}(\mathbf{E}_0)| = \frac{2}{3}$$

which leads to the following major-minor-axis ratio:

$$e = \frac{3 + \sqrt{5}}{2} \approx 2.62$$