
MS-E1999 Special Topics in the Finite Element Method

1. Prove the following result in one space dimension.

For v ∈ H1(K) it holds

‖v‖2
0,∂K.

(
h−1
K ‖v‖

2
0,K+hK‖∇v‖2

0,K

)
.

Solution: Assume, without loss of generality, that I = (0, h), and for v ∈ H1(I) write

v(x)− v(0) =

∫ x

0

v′(x) dx .

It follows, using Cauchy-Schwartz inequality, that

v(0)2 =
(
v(x)−

∫ x

0

v′(x) dx
)2

. v(x)2 + (

∫ x

0

v′(x) dx)2 ≤ v(x)2 +

∫ h

0

12dx

∫ h

0

v′(x)2 dx

= v(x)2 + h‖v′‖2
0,I

Integrating the previous inequality in x over I, yields

hv(0)2 . ‖v‖2
0,I+h

2‖v′‖2
0,I ⇔ v(0)2 . h−1‖v‖2

0,I+h‖v′‖2
0,I .

Similarly, writing

v(h)− v(x) =

∫ h

x

v′(x) dx ,

one obtains
v(h)2 . h−1‖v‖2

0,I+h‖v′‖2
0,I ,

and thus
v(0)2 + v(h)2 . h−1‖v‖2

0,I+h‖v′‖2
0,I .

2. Consider the problem with a (positive) diffusion coefficient: find u ∈ H1(Ω) such that

−div (k∇u) = f in Ω,

u = 0 on ΓD,

k
∂u

∂n
= g on ΓN , ΓD ∪ ΓN = ∂Ω.

How is the error estimator now defined?

Solution: The variational and the FE formulations read now as follows

(k∇u,∇v) = (f, v) + 〈g, v〉ΓN
∀v ∈ H1

D(Ω), (0.1)

and
(k∇uh,∇v) = (f, v) + 〈g, v〉ΓN

∀v ∈ Vh. (0.2)
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The energy norm is defined as
|||v||| := ‖k1/2∇v‖0 .

As before, we then define e = u− uh, let Ihe ∈ Vh be the Clément interpolant of e and calculate

|||e|||2 = (k∇e,∇e) = (k∇u,∇(e− Ihe))− (k∇uh,∇(e− Ihe))

=
∑
K∈Ch

(f, e− Ihe)K −
∑
K∈Ch

(k∇uh,∇(e− Ihe))K + 〈g, e− Ihe〉ΓN

=
∑
K∈Ch

(div(k∇uh) + f, e− Ihe)K

+ 〈g, e− Ihe〉ΓN
−
∑
K∈Ch

〈k∇uh · nK , e− Ihe〉∂K .

Since the energy norm has been redefined, we need to write the Clément interpolation estimate
in the form ∑

K∈Ch

k

h2
K

||e− Ihe||20,K +
∑

E∈Ω∪ΓN

k

hE
||e− Ihe||20,E. |||e|||

2 .

Consequently, the local error estimators are defined as

ηK =
hK
k
‖div(k∇uh) + f‖0,K , K ∈ Ch,

ηE,Ω =
h

1/2
E

k
‖Jk ∂uh

∂nE

K‖0,E, E ∈ Ω,

ηE,N =
h

1/2
E

k
‖k∂uh

∂n
− g‖0,E, E ⊂ ΓN .

The global error indicator is, as before,

η2 =
∑
K∈Ch

η2
K +

∑
E⊂Ω

(ηE,Ω)2 +
∑

E⊂ΓN

(ηE,N)2.

The rest of proof goes as in the lecture notes for the Poisson problem. For example, we estimate

∑
K∈Ch

(div(k∇uh) + f, e− Ihe)K

≤
∑
K∈Ch

‖div(k∇uh) + f‖0,K‖e− Ihe‖0,K

≤
∑
K∈Ch

hK
k1/2
‖div(k∇uh) + f‖0,K

k1/2

hK
‖e− Ihe‖0,K

≤
( ∑

K∈Ch

h2
K

k
‖div(k∇uh) + f‖2

0,K

)1/2( ∑
K∈Ch

k

h2
K

‖e− Ihe‖2
0,K

)1/2

. η|||e||| .
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3. Assume that ΓN = ∅, and that the regularity estimate

‖u‖2 . ‖f‖0

holds in the Poisson problem. Use Nitsche’s trick and the Lagrange interpolation operator to
show that

‖u− uh‖0 .
( ∑

K∈Ch

h4
K‖∆uh + f‖2

0,K+
∑
E⊂Ω

h3
E‖J

∂uh
∂nE

K‖2
0,E

)1/2

.

Solution: Let u ∈ H1
D(Ω) and uh ∈ V 1

H be respectively the exact and the FEM solution to the
Poisson problem. Define e = u− uh as the error and ϕ as the solution to the dual problem

−∆ϕ = e in Ω,
ϕ = 0 on ∂Ω.

Assume, moreover, that the elliptic regularity estimate

‖ϕ‖2. ‖e‖0

holds and let Ih : H1
D(Ω) → V 1

h be the Lagrange interpolation operator for which we have the
estimate

( ∑
K∈Ch

{h−4
K ||v − Ihv||

2
0,K+h−3

E ||v − Ihϕ||
2
0,∂K}

)1/2

. ‖v‖2. (0.3)

It follows that

‖e‖2
0= −(e,∆ϕ) = (∇e,∇ϕ) = (∇e,∇(ϕ− Ihϕ)) = (∇u,∇(ϕ− Ihϕ))− (∇uh,∇(ϕ− Ihϕ)),

where we have used the Galerkin orthogonality (∇e,∇Ihϕ) = 0. Therefore

‖e‖2
0 = (f, ϕ− Ihϕ)− (∇uh,∇(ϕ− Ihϕ))

=
∑
K∈Ch

(f, ϕ− Ihϕ)K −
∑
K∈Ch

(∇uh,∇(ϕ− Ihϕ))K

=
∑
K∈Ch

(∆uh + f, ϕ− Ihϕ)K −
∑
K∈Ch

〈∇uh · nK , ϕ− Ihϕ〉∂K

≤
∑
K∈Ch

h2
K‖∆uh + f‖0,K h

−2
K ‖ϕ− Ihϕ‖0,K+

∑
E⊂Ω

h
3/2
E ‖J

∂uh
∂nE

K‖0,E h
−3/2
E ‖ϕ− Ihϕ‖0,E

≤
( ∑

K∈Ch

h4
K‖∆uh + f‖2

0,K

)1/2 ( ∑
K∈Ch

h−4
K ‖ϕ− Ihϕ‖

2
0,K

)1/2

+
(∑

E⊂Ω

h3
E‖J

∂uh
∂nE

K‖2
0,E

)1/2 (∑
E⊂Ω

h−3
E ‖ϕ− Ihϕ‖0,E

)1/2

.

Defining the global error estimator

η2 =
∑
K∈Ch

h4
K‖∆uh + f‖2

0,K+
∑
E⊂Ω

h3
E‖J

∂uh
∂nE

K‖2
0,E
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and using the Lagrange interpolation estimate for ϕ, we obtain

‖e‖2
0 .

( ∑
K∈Ch

h4
K‖∆uh + f‖2

0,K+
∑
E⊂Ω

h3
E‖J

∂uh
∂nE

K‖2
0,E

)1/2

‖ϕ‖2

. η‖∆ϕ‖0= η‖e‖0,

from which the assertion follows after division by ‖e‖0.

4. Show that the strain vanishes if and only if the displacement is a infinitesimal rigid body motion,
i.e.

ε(v) = 0 ⇔ v(x) = a + b× x for some a, b.

Solution: Let v = (v1, v2, v3),a = (a1, a2, a3), b = (b1, b2, b3),x = (x, y, z) and write the rigid
body motion componentwise as

v1 = a1 − b3y + b2z,
v2 = a2 − b1z + b3x,
v3 = a3 − b2x+ b1y.

(0.4)

It is now easy to see by a direct computation that all components of the strain tensor

ε(v) =

 ∂xv1
1
2
(∂yv1 + ∂xv2) 1

2
(∂zv1 + ∂xv3)

1
2
(∂xv2 + ∂yv1) ∂yv2

1
2
(∂zv2 + ∂yv3)

1
2
(∂xv3 + ∂zv1) 1

2
(∂yv3 + ∂zv2) ∂zv3

 ,

where ∂x = ∂/∂x vanish.

On the other hand, assuming that ε(v) = 0, we first obtain from the diagonal components of the
strain tensor

v1 = v1(y, z), v2 = v2(x, z), v3 = v3(x, y) .

It also follows from the off-diagonal components that

∂xxv2 = 0, ∂xxv3 = 0, ∂yyv1 = 0, ∂yyv3 = 0, ∂zzv1 = 0, ∂zzv2 = 0,

∂yzv1 = −∂xzv2 = −∂zxv2 = ∂yxv3 = ∂xyv3 = −∂zyv1 = −∂yzv1 ⇒ ∂yzv1 = 0 .

Similarly, we see that ∂xzv2 = ∂xyv3 = 0 and thus v1, v2 and v3 are affine functions.

Integrating (formally) the off-diagonal components, we obtain

v1(y, z) = a1 − (∂xv2)y − (∂xv3)z, v2(x, z) = a2 − (∂yv1)x− (∂yv3)z,

v3(x, y) = a3 − (∂zv1)x− (∂zv2)y,

where aj, j = 1, 2, 3, are constants. Thus, defining b1 = ∂zv2, b2 = ∂xv3 and b3 = ∂yv1, we see that
v1, v2 and v3 are of the form (0.4).

5. Prove the Korn inequality in the case when ΓD = ∂Ω, i.e.

‖ε(v)‖0 & ‖∇v‖0 ∀v ∈H1
0 (Ω).

(Hint: Assume that v is a smooth function and integrate by parts a couple of times.)
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Solution: Given that v vanishes on ∂Ω and v = (v1, v2, v3) is taken as a smooth function, we
obtain after integrating twice by parts∫

Ω

∇v : (∇v)T dx =

∫
Ω

∂vj
∂xi

∂vi
∂xj

dx = −
∫

Ω

∂2vj
∂xj∂xi

vi dx =

∫
Ω

∂vj
∂xj

∂vi
∂xi

dx =

∫
Ω

(div v)2 dx ≥ 0 .

Therefore

‖ε(v)‖2
0 =

∫
Ω

ε(v) : ε(v) dx =
1

4

∫
Ω

(∇v + (∇v)T ) : (∇v + (∇v)T ) dx

≥ 1

2

∫
Ω

∇v : ∇v dx = ‖∇v‖2
0 .

6. Prove that the following velocity-pressure FE space pair for the two-dimensional Stokes system
yields a unique solution

Vh = {v ∈H1
0 (Ω) |v|K∈ [P2(K)⊕B(K)]2 , K ∈ Ch }.

Ph = { q ∈ L2
0(Ω) | q|K∈ P1(K) , K ∈ Ch }.

Solution: For the discrete solution to be unique the condition

(q, div v) = 0 ∀v ∈ Vh

must imply that q is constant in Ω. Note that we can choose v ∈ Vh conveniently. First, we take
v|K= bK∇q|K where bK ∈ P3(K) ∩ H1

0 (K) is a bubble function. Thus v = 0 in Ω \ K and it
follows that

0 = (q, div v) = −(∇q,v)K =

∫
K

bK |∇q|2 dx,

from where we conclude that q is a constant function at each element K since bK(x) > 0 ∀x ∈ K
and K ∈ Ch was arbitrary.

On the other hand, letting K and K ′ be two arbitrary adjacent elements, with E as their common
edge, and choosing v so that it vanishes in Ω \ (K ∪K ′), we obtain, knowing that q is constant
elementwise,

0 = (q, div v) = (q, div v)K∪K′ = q|K
∫
K

div v dx+ q|′K
∫
K′

div v dx = (q|K−q|K′)

∫
E

v · nE ds.

where qK and qK′ are the constant values of q in K and K ′. Assuming, furthermore, that v is
such that

∫
E
v · nE ds 6= 0, we conclude that q|K= q|K′ , that is, q is constant in Ω which implies

uniqueness for the Stokes problem.

7. Let us recall the following notation. A . B means: there exists a positive constant C, independent
of the mesh size h (or the local mesh since hK , such that A ≤ CB. With A ≈ B we mean A . B
and B . A.
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Let K be a triangle or tetrahedron, Pk(K) the polynomials of degree k on K, and bK ∈ Pd+1(K)
be the bubble function on K (d = the space dimension.)

Prove by scaling arguments that

‖v‖0,K ≈ ‖b1/2
K v‖0,K ≈ ‖bKv‖0,K ∀v ∈ Pk(K),

and
‖∇v‖0,K . h−1

K ‖v‖0,K ∀v ∈ Pk(K).

Solution: Recall that in a finite-dimensional space all norms are equivalent so that the results
involving the bubble function bK are trivially valid in the reference triangle K̂ since bK > 0 ∀x ∈ K
so that ‖b1/2

K v‖0,K and ‖bKv‖0,K define norms. In an arbitrary triangle K ∈ Ch we define the affine
mapping

x = FK(x̂) = BK(x̂) + bK , BK ∈ R2×2 , bK ∈ R2,

and set v̂ = v ◦ FK and b̂K̂ = bK ◦ FK . It follows that

‖v‖2
0,K =

∫
K

v(x)2 dx = |detBK |
∫
K̂

v(FK(x̂))2 dx̂ = |detBK | ‖v̂‖2
0,K̂

. |detBK | ‖b̂K̂ v̂‖
2
0,K̂

= |detBK | |detBK |−1 ‖bKv‖2
0,K= ‖bKv‖2

0,K .

The other inequalities are now obvious. In fact, given that 0 < bK ≤ 1 ∀x ∈ K it holds trivially

‖bKv‖0,K ≤ ‖b1/2
K v‖0,K ≤ ‖v‖0,K .

In order to establish the inverse inequality, recall that

∇̂v̂(x̂) = BT
K∇v(x), ‖BK‖≤

hK
ρK̂

, ‖B−1
K ‖≤

hK̂
ρK

where ρK is the diameter of the largest sphere inscribed in K and ‖·‖ is the usual matrix (operator)
norm. Now, we can compute

‖∇v‖2
0,K =

∫
K

‖∇v(x)‖2 dx =

∫
K̂

‖B−TK ∇̂v̂(x̂))‖2|detBK | dx̂ ≤ |detBK | ‖B−TK ‖
2 ‖∇̂v̂‖2

0,K̂
.

Next, write v̂ ∈ Pk(K̂) as v̂(x̂) =
∑N

j=0 cjϕ̂j so that

‖v̂‖2
0,K̂

= cTAc , ‖∇̂v̂‖2
0,K̂

= cTBc

where c = (c0, c1, . . . , cN), N = (k+1)(k+2)
2

and A,B ∈ RN×N are symmetric matrices, with A
positive definite and B positive semi-definite. It follows that

‖∇̂v̂‖2
0,K̂

‖v̂‖2
0,K̂

=
cTBc

cTAc
=
yTL−1BL−Ty

yTy
,
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where we have written A = LLT (Cholesky decomposition) and defined y = LT c. From the
Rayleigh quotient it follows that

‖∇̂v̂‖2
0,K̂

‖v̂‖2
0,K̂

≤ λmax(L−1BL−T ) ,

where λmax(L−1BL−T ) is the largest eigenvalue of the symmetric and positive definite matrix
L−1BL−T . Given that λmax(L−1BL−T ) is independent of h, we conclude that

‖∇v‖2
0,K ≤ |detBK | ‖B−TK ‖

2 ‖∇̂v̂‖2
0,K̂

. |detBK | ‖B−TK ‖
2 ‖v̂‖2

0,K̂

= |detBK | ‖B−TK ‖
2 |detBK |−1 ‖v‖2

0,K . ρ−2
K ‖v‖

2
0,K . h−2

K ‖v‖
2
0,K ,

where we have used the shape-regularity of the triangulation, that is hK ≤ CρK ∀K ∈ Ch.

8. Read the section in the lecture notes where it is shown that the discrete linear system for the
Stokes problem is of the form: (

A B
BT 0

)(
U
P

)
=

(
F
0

)
, (0.5)

where U ∈ IRN , P ∈ IRM . Note that A ∈ RN×N is a symmetric and positive definite matrix.

Show that this can be interpreted as the discrete optimisation problem: find U which minimises
the objective function

1

2
V TAV − F TV (0.6)

subject to the linear constraint
BTV = G. (0.7)

Show that the problem has a unique solution if, and only if, N(B) = {0}, or equivalently R(BT ) =
IRM , with N and R denoting the nullspace and range, respectively.

Solution: Let us define the quadratic objective function F : RN → R by

F(V ) =
1

2
V TAV − F TV

and consider the equality-constrained minimization problem

min
V ∈RN

F(V ) subject to BTV −G = 0 ,

where B ∈ RN×M , F ∈ RN , G ∈ RM . Defining, furthermore, the Lagrangian function

L(V,Q) = Q(V ) + P T (BTV −G)

the first-order necessary conditions for optimality at (U, P ) (Karush-Kuhn-Tucker conditions) read
as follows {

∇VL(U, P ) = 0
BTU −G = 0

⇔
(
A B
BT 0

)(
U
P

)
=

(
F
G

)
,

7



which, choosing, G = 0, is of the form (0.5). The KKT matrix(
A B
BT 0

)
is non-singular if and only if B has full column rank. In fact, if(

A B
BT 0

)(
V
Q

)
=

(
0
0

)
then

0 =

(
V
Q

)T (
A B
BT 0

)(
V
Q

)
= V TAV + V TBQ+QTBTV = V TAV,

given that BTV = 0. Consequently V = 0 since A is positive definite and therefore BQ = 0. We
thus conclude that Q = 0 and the solution is unique if and only if B has full column rank.

9. In the lectures we proved the stability of the lowest order Crouzeix-Raviart element, i.e. the FE
pair

Vh = {v ∈H1
0 (Ω) |v|K∈ [P2(K)]2K ∈ Ch },

Ph = { q ∈ L2
0(Ω) | q|K∈ P0(K)K ∈ Ch }.

A common (mis)belief is that the same method works in 3D, i.e, Ω ⊂ IR3 and

Vh = {v ∈H1
0 (Ω) |v|K∈ [P2(K)]3K ∈ Ch },

Ph = { q ∈ L2
0(Ω) | q|K∈ P0(K)K ∈ Ch }.

(0.8)

Question: does the 2D stability proof (or even the uniqueness proof) carry over to 3D?

Solution: There are 10 degrees of freedom in [P2(K)]3 and, to ensure continuity from element to
element, each face of the tetrahedron has to have 6 degrees of freedom, all of them are situated
along the edges of the face. Thus there are no degrees of freedom in the interior of the faces
(or the tetrahedron). Consequently, we cannot construct bubble functions on the faces to prove
stability (or uniqueness) as in the 2D case.

10. Let Ch be a partitioning into quadrilaterals and consider the Stokes pair

Vh = {v ∈H1
0 (Ω) |v|K∈ [Q2(K)]2K ∈ Ch },

Ph = { q ∈ L2
0(Ω) | q|K∈ P1(K)K ∈ Ch }.

Verify the stability. How is it with the method in 3D?

Solution: Note that there are nine degrees of freedom in the quadrilateral element Q2(K), namely
the vertices and the midpoints of the edges (to ensure continuity) and the center of K. Now
decompose q ∈ Ph in each K as q = q̄ + q̂ where q̄ is piecewise constant and q̂ its orthogonal
component, i.e. (q̂, q̄) = 0. For q̄ ∈ Ph we choose v̄ ∈ Vh in such a way that v̄|E= hEbEJq̄KE where
bE is the edge bubble which vanishes at the endpoints and is equal to one in the midpoint of E
and Jq̄KE is the jump of q̄ over the edge E ⊂ Ω. It follows that v̄|K=

∑
E⊂∂K hEbEJq̄KE so that

(div v̄, q̄) =
∑
K∈Ch

(div v̄, q̄)K =
∑
E⊂Ω

〈v̄ · nE, Jq̄KE〉E =
∑
E⊂Ω

hE‖b1/2
E Jq̄K‖2

0,E ≈ ‖q̄‖2
h .

8



Moreover,∑
K∈Ch

‖v̄‖2
1,K .

∑
K∈Ch

h−2
K ‖v̄‖

2
0,K=

∑
K∈Ch

‖
∑

E⊂∂K

bEJq̄KE‖2
0,K .

∑
K∈Ch

∑
E⊂∂K

Jq̄K2
E‖bE‖2

0,K

≈
∑
K∈Ch

h2
K

∑
E⊂∂K

Jq̄K2
E ≈

∑
K∈Ch

∑
E⊂∂K

hE‖Jq̄K‖2
0,E ≈

∑
E⊂Ω

hE ‖Jq̄K‖2
0,E = ‖q̄‖2

h ,

where we have used the inverse inequality and the facts that

hE ∼ hK , ‖bE‖2
0,K ∼ h2

K , ‖Jq̄K‖2
0,E ∼ hEJq̄K2

E ,

‖q̄‖2
h =

∑
K∈Ch

h2
K‖∇q̄‖2

0,K +
∑
E⊂Ω

hE‖Jq̄K‖2
0,E =

∑
E⊂Ω

hE‖Jq̄K‖2
0,E.

It thus follows that

sup
vVh

(div v, q̄)

‖v‖1

& ‖q̄‖h ∀q̄ ∈ P 0
h := { q ∈ L2

0(Ω) | q|K∈ P0(K)K ∈ Ch },

which, by Theorem 4.4, ensures stability also in the continuous norms, that is

sup
vVh

(div v, q̄)

‖v‖1

& ‖q̄‖0 ∀q̄ ∈ P 0
h . (0.9)

Next, assuming that

q̂ ∈ P⊥h := { q ∈ L2
0(Ω) | q|K∈ P1(K)K ∈ Ch , (q, q̄) = 0 ∀q̄ ∈ P 0

h}

is given, we choose v̂ ∈ Vh such that v̂|K= −h2
KbK∇q̂ ∀K ∈ Ch, where bK ∈ Vh is a non-negative

bubble function in K. Given that v̂ vanishes on ∂K, we obtain

(div v̂, q̂) = −(v̂,∇q̂) =
∑
K∈Ch

∫
K

h2
KbK |∇q̂|2 dx =

∑
K∈Ch

h2
K‖b

1/2
K ∇q̂‖

2
0,K

&
∑
K∈Ch

h2
K‖∇q̂‖2

0,K &
∑
K∈Ch

‖q̂‖2
0,K= ‖q̂‖2

0,

where we have used the Poincaré’s inequality

‖q̂‖0,K= ‖q − q̄‖0,K. hK‖∇q‖0,K= hK‖∇q̂‖0,K .

Moreover, recalling the inverse inequality it is easy to see that

‖∇v̂‖0,K. h−1
K ‖v̂‖0,K= hK‖bK∇q̂‖0,K. hK‖∇q̂‖0,K≤ ‖q̂‖0,K ,

which implies, after summing over the elements, that

‖v̂‖1. ‖q̂‖0 .

The stability condition

sup
vVh

(div v, q̂)

‖v‖1

& ‖q̂‖0 ∀q̂ ∈ P⊥h (0.10)
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is thus established directly in the continuous norms.

Finally, for any q ∈ Ph, we write q = q̂ + q̄, let δ > 0, and choose v = v̂ + δv̄, where v̂ and
v̄ are functions for which the stability conditions (0.9) and (0.10) hold. We may assume that
‖v̄‖1= ‖q̄‖0 and ‖v̂‖1= ‖q̂‖0.

We can now estimate (note that (div v̂, q̄) = 0 since v̂ vanishes at ∂K and ∇q̄ = 0 in K),

(div (v̂ + δv̄), q̂ + q̄) = (div v̂, q̂) + δ(div v̄, q̄) + δ(div v̄, q̂)

≥ C1‖q̂‖2
0+δ C2 ‖q̄‖2

0−δ ‖v̄‖1‖q̂‖0

≥ C1‖q̂‖2
0+δ C2 ‖q̄‖2

0−
δ C2

2
‖v̄‖1−

δ

2C2

‖q̂‖0

& ‖q̄‖2
0+‖q̂‖0 = ‖q‖2

0 ,

where we have chosen δ < 2C1C2. Moreover, ‖v‖1= ‖v̂ + δv̄‖1. ‖q‖0 and thus

sup
vVh

(div v, q)

‖v‖1

& ‖q‖0 ∀q ∈ Ph .

The stability of the Q2(K) − P1(K) element in 3D (hexahedral elements) can be established
similarly since there are 27 degrees of freedom and, to ensure continuity, 20 are located along the
edges (8 in corner points, 12 in the midpoints of edges) 6 at the centers of the faces) and one in
the center of the hexahedron. Thus one can construct similar bubble functions as above to show
stability.

11. The lowest order quadrilateral Taylor-Hood method (continuous pressures) consists of the follow-
ing spaces

Vh = {v ∈H1
0 (Ω) |v|K∈ [Q2(K)]2K ∈ Ch },

Ph = { q ∈ L2
0(Ω) ∩ C(Ω) | q|K∈ Q1(K)K ∈ Ch }.

with the mesh Ch consists of quadrilaterals. For the case of rectangles, prove the uniqueness of
the solution. Hint: use a patch of two elements and the fact that Simpson’s rule is exact for cubic
polynomials.

Solution: Consider the patch of two adjacent rectangular elements, say K1 = [0, h1] × [0, h2]
and K2 = [h1, h3] × [0, h2] and define the corresponding shape functions in Q1(K1) and Q1(K2)
(numbered counterclockwise from the lower left-hand corner of Kj) by

η1,1(x1, x2) =
(

1− x1

h1

)(
1− x2

h2

)
, η2,1(x1, x2) =

x1

h1

(
1− x2

h2

)
, (x1, x2) ∈ K1,

η3,1(x1, x2) =
x1

h1

x2

h2

, η4,1(x1, x2) =
(

1− x1

h1

)x2

h2

, (x1, x2) ∈ K1,

η1,2(x1, x2) =
h3

h3 − h1

(
1− x1

h3

)(
1− x2

h2

)
, (x1, x2) ∈ K2

η2,2(x1, x2) =
h1

h1 − h3

(
1− x1

h1

)(
1− x2

h2

)
, (x1, x2) ∈ K2,

η3,2(x1, x2) =
h1

h1 − h3

(
1− x1

h1

)x2

h2

, η4,2(x1, x2) =
h3

h3 − h1

(
1− x1

h3

)x2

h2

, (x1, x2) ∈ K2,
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Thus q ∈ Ph is expressed in K1 and K2 as

q|K1= q1η1,1 + q2η2,1 + q3η3,1 + q4η4,1 q|K2= q2η1,2 + q5η2,2 + q6η3,2 + q3η4,2 .

The nine degrees of freedom in

Q2(K) = span{1, x1, x2, x1x2, x
2
1, x

2
2, x1x

2
2, x

2
1x2, x

2
1x

2
2}

are the vertices, the midpoints of the edges and the center of K. Noting that the integrand in

(div v, q) =

∫
K1

div v q dx = −
∫
K1

v · ∇q dx = −
∫
K1

(
v1

∂q

∂x1

+ v2
∂q

∂x2

)
dx

= −
∫ h2

0

(∫ h1

0

(
v1

∂q

∂x1

+ v2
∂q

∂x2

)
dx1

)
dx2

is (at most) a third-order polynomial in x1 or in x2, we may compute the integrals in x1 and in
x2 exactly using Simpson’s rule. Choose v ∈ Vh in such a way that both v1 and v2 vanish in the
nodes at ∂K1 ∪ ∂K2 as well as in the center node of K2 and that first v1(x9) = 1,v2(x9) = 0,
where x9 = (h1

2
, h2

2
) is the center node of K1, and then v1(x9) = 0,v2(x9) = 1. It follows that

0 = −1

2

(
− q1 + q2 + q3 − q4

)
,

0 = −1

2

(
− q1 − q2 + q3 + q4

)
.

Similarly, choosing v ∈ Vh in such a way that v1 and v2 vanish in the nodes at ∂K1 ∪ ∂K2 as well
as in the center node of K1 and v1(x15) = 1,v2(x15) = 0, respectively v1(x15) = 0,v2(x15) = 1,

where x15 = ( (h1+h3)
2

, h2

2
) is the center node of K2, we obtain

0 = −1

2

(
− q2 + q5 + q6 − q3

)
,

0 = −1

2

(
− q2 − q5 + q6 + q3

)
.

These equations imply that

q1 = q3 = q5 = c1 , q2 = q4 = q6 = c2

where c1 and c2 are arbitrary constants. Finally choosing v ∈ Vh in such a way that that v1 and v2

vanish at ∂(K1∪∂K2) and v2(x9) = 0,v2(x15) = 0,v2(x4) = 1 and v1(x9) = v1(x15) = v1(x4) = 0,
where x4 = (h1,

h2

2
) is the midpoint of the common edge ∂K1 ∩ ∂K2, we obtain

0 = −1

2

(
− q2 + q3

)
.

Thus c1 = c2 which means that q is constant in K1 ∪K2 and consequently everywhere in Ω since
K1 and K2 were arbitrary rectangles. For the proof in the general case (quadrilateral elements),
see Stenberg, Analysis of Mixed Finite Element Methods for the Stokes Problem: A Unified
Approach, Math. Comp. 42, 9-23 (1984).
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