MS-E1999 Special Topics in the Finite Element Method

1. Prove the following result in one space dimension.
For v € HY(K) it holds

[0 oxS (10l A V013 ).
Solution: Assume, without loss of generality, that I = (0, h), and for v € H(I) write

(@) — v(0) = /0 V(z) da .

It follows, using Cauchy-Schwartz inequality, that

00 = (vla) - /0 V(a)dr) S o) + (/: V() da)? < v(x)? + /Oh 124z /Oh o (2)?

2 2
= v(z)” + hllllg
Integrating the previous inequality in x over I, yields

W07 S llolls A+R%IVIG, = v(0) S AT ollg +rlvIIE, -

Similarly, writing
h

v(h) —v(x) = / V'(x) dx,
one obtains

v(h)* < B ollg 4R I'IIG -
and thus

v(0)* +v(h)* < W wllg Rl IG -
2. Consider the problem with a (positive) diffusion coefficient: find v € H*({2) such that

—div (kVu) = f in Q,
u=0onIp,

]{J@ =g on FN, FDUFN:aQ.
on

How is the error estimator now defined?

Solution: The variational and the FE formulations read now as follows
(kVu, Vo) = (f,v) + (g,v)ry, Yv € Hp (),

and
(kvuha VU) = (f7 U) + <g,'U>I‘N Vo € Vh-

1

dx

(0.1)

(0.2)



The energy norm is defined as
ol = 1&27]lo -

As before, we then define e = u — uy, let Ie € Vj, be the Clément interpolant of e and calculate
llell* = (kVe, Ve) = (kVu, V(e — Ine)) — (kVuy, V(e — Ire))
= (fe—Ie)x — > (kVun, V(e —Iye))k + (g.e — Ine)r,

KecCy, KeCy,
= Z (div(kVup) + fe — Ine)k
KecCy,
+ (g, € — [h€>FN — Z (k:Vuh "N, e — Ih6>3K.
KeCy,

Since the energy norm has been redefined, we need to write the Clément interpolation estimate
in the form

k k
> rlle=hellin + 3 o-lle—helliesS llell”
K

KeCy, EeQUl y

Consequently, the local error estimators are defined as

h )
nK = f“dlv(k:Vuh) + fllo.x, K €y,

h}E/Z 8uh
= = ||[k—— EecQ
NE.Q 2 11 8nEHHO’E’ €3
h}E/Q 8uh
= = ||lk— — , E CcTy.
NE.N 2 || an 9||0,E N

The global error indicator is, as before,

= Z M + Z(UE,Q)Z + Z (ne.n)?.

Kecy, EcQ ECy

The rest of proof goes as in the lecture notes for the Poisson problem. For example, we estimate

> (div(kVuy) + f.e — Ine)x

KeCy,

<Y ldiv(kVug) + flloxlle — Tnello.x

KeCy,

h ‘ /{?1/2

<) kl—I/(?Hdlv(kVuh) +fH0,KEHe — Inellox

KecCy,

h3 1/2 k 1/2
< (32 Elaivevu) + fI3x) (D lle— hnellix)
KecCy, KeCy, K

S nlllell



3. Assume that I'y = ), and that the regularity estimate
[ulla < 11fllo

holds in the Poisson problem. Use Nitsche’s trick and the Lagrange interpolation operator to
show that 9 12
Up,
Ju=unllo 5 (3 Hicllun + FIE it D HEIGIE )
KeCy, ECQ

Solution: Let u € H} () and u, € V4 be respectively the exact and the FEM solution to the
Poisson problem. Define e = u — uy, as the error and ¢ as the solution to the dual problem

—Ap =e inQ,
¢ =0 on 0f.

Assume, moreover, that the elliptic regularity estimate

el llello

holds and let I, : H5H(Q) — V;! be the Lagrange interpolation operator for which we have the
estimate

B _ 1/2
(D thit o = Lol B+l = gliBorcd) S lolla (0.3)

Kecy,
It follows that
lellz= —(e; Ap) = (Ve, Vo) = (Ve, V(g — Inp)) = (Vu, V(g — Lip)) — (Vur, V(e — Inp)),
where we have used the Galerkin orthogonality (Ve, VI,¢) = 0. Therefore
lells = (fs = Inp) = (Vun, V(g — L))
=Y (fo—Lp)k — > (Vun, V(e — Iip))k

Kec, Kecy,
= (Aun+ fo—Inp) — > (Vup 1m0 — Lok

Kecy, KeCy,

ou _

< D bl Aun + fllos hidle = Iellosct D il h]]IIOEh ) - Lipllos

KeCy ECQ

1/2 1/2
< (3 wklladu+ fI3x) (D hitle - hellik)
Kely, Kely

+ (S G Ee)” (3 e~ o)
EcCQ

Defining the global error estimator

Z hi ||Auh+f||01<+zh ”[[

KeCy, ECQ

ou
h]]IIOE



and using the Lagrange interpolation estimate for ¢, we obtain

ou
lellg < (3 Ahelun+ FRact 3 Il ]

Kecy, ECQ

S nllAgllo= nllello,

1/2
20) el

from which the assertion follows after division by ||e||o.

. Show that the strain vanishes if and only if the displacement is a infinitesimal rigid body motion,
ie.
e(v)=0 & v(x)=a+bxx forsome a,b.

Solution: Let v = (vq,v2,v3),a = (a1,a9,a3),b = (by,ba,b3),x = (x,y,2) and write the rigid
body motion componentwise as
V1 = a1 — bgy + bQZ,
Vg = Q9 — blZ + b3$, (04)
V3 = az — ngE + bly

It is now easy to see by a direct computation that all components of the strain tensor

@Cvl %(Gyvl + 8;6@2) %(822)1 + vas)
e(v) = | 3(0,v2 + 9yv1) D2 5(0.0 + Oyvs) |
%(aﬂ)g + 8ZU1> %(@,vg + 8Zv2) 82’03

where 0, = 0/0x vanish.

On the other hand, assuming that e(v) = 0, we first obtain from the diagonal components of the
strain tensor
v = v1(y, 2), vy = vo(x, 2), v3 = v3(x,y) .

It also follows from the off-diagonal components that

ax:vv2 = O, 8&;:52)3 = 07 ayyful = 07 ayyv?) = 07 azzvl = Oa azzUZ = 07

OyV1 = —0pV9 = =0,V = OyeVs = OpyU3 = =001 = =001 = Oyt = 0.

Similarly, we see that 0,,vy = 0,yv3 = 0 and thus v, v, and vs are affine functions.

Integrating (formally) the off-diagonal components, we obtain

v1(y, 2) = a1 — (Opv2)y — (Opv3)2, va(x, 2) = ags — (Oyv1)x — (Oyv3)2,
v3(@,y) = az — (O:v1)z — (0:v2)y,

where a;,j = 1,2,3, are constants. Thus, defining b; = 9,vy, by = 0,v3 and by = J,v,, we see that
vy, v9 and vz are of the form (0.4).

. Prove the Korn inequality in the case when I'p = 00, i.e.
le()llo 2 [Vollo Yo € Hy(9).
(Hint: Assume that v is a smooth function and integrate by parts a couple of times.)

4



Solution: Given that v vanishes on 02 and v = (vq,v,v3) is taken as a smooth function, we
obtain after integrating twice by parts

) ) 2. ) )
/Vv:(Vv)Tdasz/avj Ovs dx——/ 0, v dx = Ov; v dx—/(diVV)2d£EZO-

QO 833'1 8953- - 9] axj axz B

Therefore

le(v)|ls = /Qs(v) ce(v)dr = %1 /Q(Vv + (V) (Vv + (V)1 dx

1
2—/VV:Vde:HVv||3.
2 Jo

. Prove that the following velocity-pressure FE space pair for the two-dimensional Stokes system
yields a unique solution

Vi, ={ve HjQ)|v|ge [R(K)® B(K)*, K cC,}.

P,={qe L) |qlxe Pi(K),K € Cy }.

Solution: For the discrete solution to be unique the condition
(¢, divv) =0Vv eV,

must imply that ¢ is constant in €2. Note that we can choose v € V), conveniently. First, we take
v|x= bxVq|x where b € P3(K) N H}(K) is a bubble function. Thus v = 0 in Q\ K and it
follows that

0= (q,diV’U) = _(VQ7U)K :/ bK‘vq‘dea
K

from where we conclude that ¢ is a constant function at each element K since by (z) > 0 Vx € K
and K € Cj, was arbitrary.

On the other hand, letting K and K’ be two arbitrary adjacent elements, with E as their common
edge, and choosing v so that it vanishes in Q \ (K U K’), we obtain, knowing that ¢ is constant
elementwise,

0= (q,divv) = (¢, divv)gur = q|K/ divvdx + q|’K/ divvdr = (q|K—C]|K/)/ v-ngds.
K

E

!

where qx and gx are the constant values of ¢ in K and K’. Assuming, furthermore, that v is
such that [ V- npds # 0, we conclude that q|x= q|x, that is, ¢ is constant in  which implies
uniqueness for the Stokes problem.

. Let us recall the following notation. A < B means: there exists a positive constant C', independent
of the mesh size h (or the local mesh since hg, such that A < CB. With A ~ B we mean A < B
and B < A.



Let K be a triangle or tetrahedron, Py(K) the polynomials of degree k on K, and by € Pyyq(K)
be the bubble function on K (d = the space dimension.)

Prove by scaling arguments that
[ollo s & [1b:20llox & [[bxcvllos Vo € PL(K),

and
IVullox S hitllvllox Vo € Po(K).

Solution: Recall that in a finite-dimensional space all norms are equivalent so that the results
involving the bubble function by are trivially valid in the reference triangle K since by > 0 Ve € K
so that Hb%QUHOJ( and ||bxv||o.x define norms. In an arbitrary triangle K € C;, we define the affine

mapping
J?ZFK(i‘):BK(j)—FbK, BKER2X2, br €R2,

and set U = v o F and EK = b o Fi. It follows that

ol = / o(0)? dz = |det By| / o(Fie(2))? di = |detBe| 0]
K K ’
< |det Byc| b o112 ;= Idet Bic| [det Bl ™ [lbreoll2 = lbrcoll2 s -

The other inequalities are now obvious. In fact, given that 0 < b < 1 Va € K it holds trivially
lbrvllox < 1% *0llox < lollo -

In order to establish the inverse inequality, recall that

A h _ h g
Vi(#) = BgVo(z),  [|IBell< =, |Bg'll< £
P PK

K

where p is the diameter of the largest sphere inscribed in K and ||-|| is the usual matrix (operator)
norm. Now, we can compute

IV0]2 = /K IVo(@)|]? do = /K |BRTV0(2)) |2 \det By | di < detBl | BRI Vo) .

~

Next, write 0 € P,(K) as 0(2) = Z;V:O ¢j$; so that

10113 5 = c"Ac, IVl x = ¢ Be

where ¢ = (¢g,¢1,...,¢n), N = w and A, B € RV*N are symmetric matrices, with A

positive definite and B positive semi-definite. It follows that

HV@HéK B c'Be B y'L='BL Ty
1olf z " Ac yTy

Y



where we have written A = LL” (Cholesky decomposition) and defined y = L”c. From the

Rayleigh quotient it follows that
Ivol? ;
—— < Ama(LT'BLTT),
T .

where Apax(L7'BL™T) is the largest eigenvalue of the symmetric and positive definite matrix
L7'BLT. Given that Apa(L"!BL™T) is independent of h, we conclude that

IVollg x < Idet Bl [|B" I IVOIl] 4 < |det Bre| 1B I 1915 4

= |det B | || Bx"|I* [det B | [v]lg & < o I0ll6.1c S R 0116 ¢ -
where we have used the shape-regularity of the triangulation, that is hx < Cpg VK € Cy,.

. Read the section in the lecture notes where it is shown that the discrete linear system for the

Stokes problem is of the form:
A B\ (U F
(2 0)(2)- (), 0

where U € RN, P € IR™. Note that A € RV*¥ is a symmetric and positive definite matrix.

Show that this can be interpreted as the discrete optimisation problem: find U which minimises
the objective function

1
5VTAV —F'v (0.6)

subject to the linear constraint
BTV =G. (0.7)

Show that the problem has a unique solution if, and only if, N(B) = {0}, or equivalently R(BT) =
RM with N and R denoting the nullspace and range, respectively.

Solution: Let us define the quadratic objective function F : RN — R by
1
F(V) = VAV - F1V
and consider the equality-constrained minimization problem

min F(V) subject to BTV —G =0,

VeRN

where B € RV*M F ¢ RN G € RM. Defining, furthermore, the Lagrangian function
L(V,Q)=Q(V)+ PH(B'V - G)

the first-order necessary conditions for optimality at (U, P) (Karush-Kuhn-Tucker conditions) read

as follows
VvL(U,P)=0 - A B U\ [(F
BTU -G =0 BT 0 pP) \G)’



10.

which, choosing, G = 0, is of the form (0.5). The KKT matrix

(i 1)

is non-singular if and only if B has full column rank. In fact, if
A B\ (V) [0
BT 0 Q) \0

T
0= (g) ( ;T jg ) (g) =VTAV +VTBQ + Q"B'V = VT AV,

given that BTV = 0. Consequently V = 0 since A is positive definite and therefore BQ = 0. We
thus conclude that () = 0 and the solution is unique if and only if B has full column rank.

then

In the lectures we proved the stability of the lowest order Crouzeix-Raviart element, i.e. the FE
pair

Vi ={v e Hy(Q)|v|xe [R(K)K €C},

P,={qc L}Q)|qlx€ Po(K)K €C}.

A common (mis)belief is that the same method works in 3D, i.e, Q C IR® and

V., ={v e H}(Q)|v|ge [PK)P K €Ch},

Py ={qe Li() |qlxe Po(K)K €Cy }. (08)

Question: does the 2D stability proof (or even the uniqueness proof) carry over to 3D?

Solution: There are 10 degrees of freedom in [P(K)]? and, to ensure continuity from element to
element, each face of the tetrahedron has to have 6 degrees of freedom, all of them are situated
along the edges of the face. Thus there are no degrees of freedom in the interior of the faces
(or the tetrahedron). Consequently, we cannot construct bubble functions on the faces to prove
stability (or uniqueness) as in the 2D case.

Let C;, be a partitioning into quadrilaterals and consider the Stokes pair

Vi ={v € Hy(Q) |v|xe [Q(K)* K € Cp },
P,={qe LiyN)|qlxe P(K)K €C}.

Verify the stability. How is it with the method in 3D?

Solution: Note that there are nine degrees of freedom in the quadrilateral element Qo (K'), namely
the vertices and the midpoints of the edges (to ensure continuity) and the center of K. Now
decompose ¢ € P, in each K as ¢ = ¢ + ¢ where § is piecewise constant and ¢ its orthogonal
component, i.e. (4,q) = 0. For g € P, we choose v € V}, in such a way that v|g= hgbg[d]r where
bg is the edge bubble which vanishes at the endpoints and is equal to one in the midpoint of E
and [¢]g is the jump of ¢ over the edge E C Q. It follows that ¥|x= ) p gk hebe[q]s so that

(ive.q) = 3 (dive.dx = Y (o -ng, [dle)e = 3 helbl a0~ Il

Kecy, ECQ ECQ



Moreover,

SO hEEle= DI beldlslsn S Y Y [aElbelix

KeCy, KeCy, KeCp, ECOK KeCp, ECOK

DN DA FEDS ~ S hellldlzs=lal?.

KeCy, ECOK KeCp, ECOK ECQ

where we have used the inverse inequality and the facts that

hg ~ hg ~hi,  ales~ helds.
lallz = Y b7 ||VC.I||0K + > hllldlllse =Y helllallf -
KeC, ECS ECQ
It thus follows that
(divw, q)

wp = Rl Ve e BYi= {q € L) [alee R(E) K € ),
vVh

which, by Theorem 4.4, ensures stability also in the continuous norms, that is

L
suszuquo vie Py, (0.9)
1

'vVh

Next, assuming that
CjGPhL:{QEL(Q](Q)|Q|KEP1(K)KEC;“ ((L )_queph}

is given, we choose ¥ € V}, such that ©|x= —h%bxV§ VK € Cj,, where bx € Vj, is a non-negative
bubble function in K. Given that v vanishes on 0K, we obtain

(dive,q) = —(6,V4) = Y / Wb Vil de = > W0 Val2 «

KecCy, Kecy,

Z hKHVQHOKN Z HQHO K= HC]Hm

KeCy, KeCy

where we have used the Poincaré’s inequality
dllo.c= llg = @llo.x S hiclIVallo,.x= hxl|Vilox -
Moreover, recalling the inverse inequality it is easy to see that
IVollo,x S hig 1o]lo,x= hiclbxVillo xS PrllVallo.x < lldlo.s,
which implies, after summing over the elements, that

D)1 14l -

The stability condition

divwv, g R R
sup V0D > o v pt (0.10)

v, vl



11.

is thus established directly in the continuous norms.

Finally, for any q € P, we write ¢ = ¢+ ¢, let 0 > 0, and choose v = v + dv, where v and
v are functions for which the stability conditions (0.9) and (0.10) hold. We may assume that
[ollv= llgllo and [|&]ls= {|g[lo.

We can now estimate (note that (divo, §) = 0 since v vanishes at 0K and Vg =0 in K),

(div (0 + 69),4 + q) = (div o, §) + §(div v, §) + §(div v, §)
> Cullgl5+0 Ca 1= l|oll1lldlo
6C

> Cildllg+0 Ca llalls—=

o~ e ldl

/l] —_——

1 20, dilo
2 llala+ldllo= llalls .

where we have chosen § < 2C,C5y. Moreover, ||v|1= [|v + d0]|1< ||¢]lo and thus

(divw, q)

sup 2 lallo Vge PBy.

o |[vlh

The stability of the Q2(K) — Pi(K) element in 3D (hexahedral elements) can be established
similarly since there are 27 degrees of freedom and, to ensure continuity, 20 are located along the
edges (8 in corner points, 12 in the midpoints of edges) 6 at the centers of the faces) and one in
the center of the hexahedron. Thus one can construct similar bubble functions as above to show
stability.

The lowest order quadrilateral Taylor-Hood method (continuous pressures) consists of the follow-
ing spaces

Vi ={v e Hy(Q)|v|xe [Q:(K)]* K € Cy },

Py ={qe Ly NC(Q) |qlxe Qi(K)K €Cp}.

with the mesh C), consists of quadrilaterals. For the case of rectangles, prove the uniqueness of
the solution. Hint: use a patch of two elements and the fact that Simpson’s rule is exact for cubic
polynomials.

Solution: Consider the patch of two adjacent rectangular elements, say K; = [0,hy] x [0, ho]
and Ky = [hy, hg] X [0, ho] and define the corresponding shape functions in Q;(K;) and Q(Ks)
(numbered counterclockwise from the lower left-hand corner of K) by

ma(zy, xo) = (1 — %) (1 — Z—i), No(x1,x2) = %(1 — %), (x1,29) € K,
Ns1(x1,x2) = %z—z, Naj (21, 22) = <1 — %)2—2, (21, 22) € Ki,
ma(xy,xa) = hgffhl <1 — Z—;) (1 — i—i), (x1,29) € Ky
Noo(x1,x2) = hlh—lhg (1 — %) (1 - %), (x1,29) € Ko,
N32(x1,xa) = hlfilhg (1 — %)%’ Nao(x1,ma) = hgff)hl (1 — %)2—2, (21, 29) € Ko,

10



Thus g € P, is expressed in K and K, as
gk, = @+ @nea + qsnsa + qanaa 4K, = Q22 + @522 + G632 + @37a,2 -

The nine degrees of freedom in

2 2 .2 2 92 9
Q2(K) = span{l, x1, o, X129, X], T3, T1T5, T{To, T{T5}

are the vertices, the midpoints of the edges and the center of K. Noting that the integrand in

di = di dr = — -Vqdr = — — —)d
(divw, q) /Kl ivvgdr /Kl'v qdz /Kl (vlaxl—l_w@xg) x

N ) dq
= —/0 (/0 <’Ula_x1 +’028_J,‘2> dl‘l)dl'g

is (at most) a third-order polynomial in x; or in x2, we may compute the integrals in z; and in
2o exactly using Simpson’s rule. Choose v € V}, in such a way that both v; and v, vanish in the
nodes at 0K, U K, as well as in the center node of K, and that first v;(x%) = 1,v5(x?) = 0,
where x? = (%, 22) is the center node of K, and then v;(x°) = 0, vy(x") = 1. It follows that

272
1
0:—§<—Q1+C]2+CI3—Q4>>
1
0=—§<—Q1—Q2+Q3+Q4)-

Similarly, choosing v € V}, in such a way that v; and v, vanish in the nodes at 0K UJK, as well
as in the center node of K; and v;(x'°) = 1, v5(x!) = 0, respectively v;(x') = 0, vo(x??) = 1,

where x'% = (1458) 2y ig the center node of Ky, we obtain
0:_%<_QQ+Q5+Q6_Q3)7
0:_%<_Q2_Q5+QG+Q3)-
These equations imply that
@1 =4q3 =3 = C1, G2 = q4 = g6 = C2

where ¢; and ¢, are arbitrary constants. Finally choosing v € Vj, in such a way that that v, and v,
vanish at O(K;UOK>) and v9(x%) = 0, v9(x!%) = 0, vo(x*) = 1 and v,(x°) = v, (x'®) = v, (x*) = 0,
where x* = (hy, %) is the midpoint of the common edge 0K N 0Ky, we obtain

1
0= ara).

Thus ¢; = ¢ which means that ¢ is constant in K; U K5 and consequently everywhere in € since
K, and K5 were arbitrary rectangles. For the proof in the general case (quadrilateral elements),
see Stenberg, Analysis of Mixed Finite Element Methods for the Stokes Problem: A Unified
Approach, Math. Comp. 42, 9-23 (1984).
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