Structure Colors

Photonic Structures: Discovery, Replication & Application

Photonics (ELEC-E3240)

Zhipei Sun

Photonics Group
Department of Electronics and Nanoengineering
Aalto University

What is COLOR?

- Color is the characteristic of human visual perception described through color categories, such as red, yellow, green, blue, or purple. (From wikipedia)
- This perception of color derives from cone cells in the human eye when they are stimulated by the reflected (or luminous) light from objects.

Color generation

Color and spectrum

Color generation in nature

Pigment color

Bioluminescence

Structure color

Pigment color

Tulips from Holland

 Cafe terrace at night By van gogh

Eyeshadow from NARS

Selective absorption

Chlorophyll

Transparent Fish (Leptocephalus)

Bioluminescence

Chemical reaction: A + B → C +

Firefly

Jellyfish

Structural color

Interactions between light and photonic structures

Interference

Diffraction

Scattering

- Communication
- Courtship

Photonic crystal structures

Photonic crystal:

Si Diamond crystal structure

Electric band structure

Mechanism for structural coloration

interference

Thin film

Constructive interference

Optical path difference

$$2nd \cos\theta = N$$

n: refractive index
N: order of the mode

 1D photonic crystal

Parameters

- Refractive index
- Thickness
- Period (filling fraction)
- Incidence/Observ ation angles

Photonic crystals (PCs) in nature

1D PCs

(beetle)

Parker et al., JEB 1998

2D PCs

(peacock)

Zi et al., PNAS 2003

3D PCs

(weevil)

Welch et al., PRE 2007

Photonic crystals (PCs) in nature

Hybrid

Brazil morpho

Indonesian butterfly

Properties of structural colors

Iridescence

Color varies with different observation angles

 $2nd \cos\theta = N \lambda$

Pigeon

Properties of structural colors Color changing with angle

Properties of structural colors

Polarization dependence

Jewel beetle
Brilliant green color

Properties of structural colors Active color change

Parameters

- Refractive index
- Period (thickness)
- Observation angle

Relaxed ----- Excited Green Red Yellow

Excited ----- Relaxed Red Yellow Green

J. Teyssier, nature comm. (2015)

What about amorphous photonic structure colors?

Amorphous photonic crystals in nature

	Periodic	Amorphous
Long-range order	Yes	No
Short-range order	Yes	Yes
Iridescence	Yes	No

Parrot feather Amorphous diamond structure

Amorphous photonic crystals in nature

A Sunday Afternoon on the Island of La Grande Jatte Georges Seurat (1859 - 1891)

Longhorn beetles

Spectra and structure analysis of Colored Scales

chitin nanoparticles

Artificial structure color

Fabrication methods

- Inversion from templates
 - ✓ Easy, low-cost
 - limited by templates
- Self-assembly
 - ✓ Low-cost
 - Limited kinds of materials
- Nanofabrication
 - ✓ Targeted, controllable, friendly for imaging processing
 - Expensive, easy for 2D but difficult for 3D

Inversion from templates

Beetle Sphingnotus mirabilis

Spinodal decomposition structure

Inversion from templates

Inverted SiO₂

Atomic Layer Deposition

Inverted Al₃O₂

Sol-gel

Potential applications in photonics

Scalable Inkjet-Based Structural Color Printing by Molding Transparent Gratings

Self-Assembled Films Display structure color

Self-assembly

Single-size spheres

Electrostatic repulsive force

Photonic crystal

P. D. García et al., Adv. Mater. 19, 2597 (2007)

Dual-size spheres: 226 nm & 271 nm

Amorphous photonic structure

J. D. Foster et al., Adv Mater. 22, 2939 (2010)

Self-assembly

Using PS spheres, and cuttlefish ink as an additive

Dried cuttlefish ink

Ink particles ~ 110 nm

Advantages

- Non-spherical shape, easy to attain amorphous structures
- Broadband absorption, enhancing color visibility

Self-assembly

Simple procedure:

- Mixing PS spheres and ink particles in water
- Drop onto a substrate
- Wait for drying

200-nm PS spheres alone

200-nm PS spheres + ink particles

Octopus is changing:
PATTERN
COLOR
BRIGHTNESS
TEXTURE