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Problem Set IV

Problem 1: Show: If G : F is a field extension of prime degree, then G = F (a) for each
a ∈ G \ F .

Work: It is clear that F (a) is an intermediate field of the extension G : F , and hence
p = [G : F ] = [G : F (a)] · [F (a) : F ] . As F (a) 6= F for a 6∈ F we have [F (a) : F ] = p and
this implies G = F (a) .

Problem 2: Assume F (a) : F is a field extension where a is transcendental over F .

(a) Show that every element in F (a) \ F is transcendental over F .

(b) F (a) = {f(a)g(a)−1 | f, g ∈ F [x], g 6= 0} , meaning that F (a) is isomorphic to the field
of rational functions over F .

Work: (a) As we will learn below in (b) every element of F (a) is of the form f(a)/g(a) for
some f, g ∈ F [x] with g 6= 0 , where we may assume that gcd(f, g) = 1 . If such an element
is in F then clearly f and g are constant, so assume this is not the case and that f(a)/g(a)
is not transcendental. Then there exists a (non-constant) polynomial h ∈ F [x] of minimal
degree n such that h(f(a)/g(a)) = 0 . To see what this really means, write h =

∑n
i=0 hix

i

and then we have

h(f(a)/g(a)) =
n∑

i=0

hif
i(a)/gi(a) = 0.

Multiplying this by gn(a) we find that
∑n

i=0 hif
i(a)gn−i(a) = 0 , and thus we have found

the polynomial
∑n

i=0 hif
ign−i ∈ F [x] that has a as zero. As a is transcendental we know

0 =
∑n

i=0 hif
ign−i or better hnf

n = −
∑n−1

i=0 hif
ign−i But then every irreducible factor of

g also divides f , a contradiction to f and g being coprime.

(b) First of all we observe that the set T := {f(a)g(a)−1 | f, g ∈ F [x], g 6= 0} forms a
field extension of F that contains a . In fact by the transcendence of a we have g(a) 6= 0
for all g 6= 0 , and the remaining field axioms are easy to verify. Hence F (a) ⊆ T . On
the other hand every field extension of F that contains a must contain all expressions of
the form f(a)/g(a) with f, g ∈ F [x] and g 6= 0 , and hence it must contain T . For this
reason we have F (a) ⊇ T which finally yields F (a) = T . For the isomorphism just use the
substitution x 7→ a .



Problem 3: For every n ∈ N let an ∈ C be a zero of the rational polynomial xn − 2 ,
and let L := Q({an | n ∈ N}) . Now show the following:

(a) L : Q is an algebraic field extension.

(b) [L : Q] =∞ .

Work: (a) Observe first that

L =
⋃
n∈N

Q({ai | i ≤ n}).

For this reason every z ∈ L is contained in some Q({ai | i ≤ n}) for suitable n ∈ N .
The latter extension is finite and hence algebraic over Q and thus we have recognized the
extension that we started with to be algebraic.

(b) For the infinity of degree we have Q({an}) being an intermediate field of L : Q , and
hence [L : Q] ≥ [Q(an) : Q] = n for all n ∈ N , accepting that xn − 2 is irreducible over Q
by Eisensteins criterion.

Problem 4: In the Euclidean plane there is given a line segment of length 1 and the
parabola T described by the equation y = x2 . Assume that we allow for the usual compass
and straightedge constructions, and in addition we allow for intersections of constructible
sets with T .

(a) Determine those integers m ∈ N for which m
√

2 can be constructed.

(b) Describe a construction of the number 3
√

2 .

Work: Using just compass and straightedge we will not get beyond the results that we had
in class. But certainly we can construct m

√
2 for all m which are a power of 2 . Using the

parabola y = x2 and intersecting it with the circle defined by (x − a)2 + (y − b)2 = c2 we
end up with the equation x4 + (1 − 2b)x2 − 2xa = c2 − a2 − b2 . Choosing c2 = a2 + b2

makes this circle pass the origin. Then choosing b = 1/2 we find that the square expression
vanishes, so that we end up with the equation x4−2xa = 0 . As the origin intersection is not
the important one, we obtain x3 = 2a from this. For a = 1 we thus have constructed the
number 3

√
2 , hence yielding a solution of (b). If z := 3n

√
2 has already been constructed,

then we set a := z/2 and come up with a construction of 3n+1√
2 . This shows by induction

and our earlier results that we are able to construct m
√

2 for all m = 2n3k where n, k ∈ N .
This solves the question under (a).

Additional Remark: Why is it exactly these values? To answer this let us inspect our
proceeding in the lecture: Corollary 2.52 is certainly still true, as is Lemme 2.53. Extending
this lemma we need to analyze line-parabola intersections and circle-parabola intersections.
Intersecting a line of the form y = ax + b with the parabola y = x2 algebraically does
not imply more than the solution of a quadratic equation, and we know already that this
does not involve anything else than drawing square roots. As seen above, intersecting the
parabola with an arbitrary circle involves solving an equation of degree at most 4 on the
algebraic side. It is known (see for example www.mathworld.wolfram.com) that this can
be done by drawing square and cubic roots. This induces an immediate modification of
Theorem 2.54, where the square root expressions simply need to be exchanged by square or



cubic root expressions. Corollary 2.55 then states that a constructible element necessarily
lies in a field extension H of Q with [H : Q] = 2n3m for suitable n,m ∈ N . Then it follows
that for every prime p ≥ 5 we cannot construct p

√
2 , and hence, exactly the k -th roots of

2 (or any other constructible number) can be drawn where k is of the form 2n3m .

You are encouraged to collaborate in preparing solutions, however, please submit individual
write-ups.


