Wireless power transfer techniques

Ali Saleem (ali.saleem@aalto.fi) Aalto University, School of Electrical Engineering May 29, 2019

Wired vs Wireless

Applications

- \blacktriangleright Implantable medical devices (IMDs)-uW
- \blacktriangleright Radio frequency identificaiton–mW
- \blacktriangleright Contact less memory-mW
- \blacktriangleright Wireless chargers–W
- \triangleright Wearable devices–W
- \triangleright Wafer level testing–W
- \blacktriangleright Electric vehicles–kW

Radiation Exposure

- \blacktriangleright X-rays/Gamma Rays
- \blacktriangleright RF/Microwaves
- \blacktriangleright Basic restrictions

 \blacktriangleright Human tissue specific absorption rate (SAR)

Modes of transfer

- \blacktriangleright Near field $(\lambda << d)$
- **Far field** $(\lambda >> d)$

Figure: (a) Near field WPT (b) Far field WPT

Modes of transfer (contd.)

- \blacktriangleright Path loss for two isotopic transmit/receive antennas $A_{PATH} = -20$ log $(\frac{4\pi a}{\lambda})$ $\frac{\pi a}{\lambda}$)
- **Resonance frequency:** $F_{res} = \frac{1}{2\pi\Delta}$ $\frac{1}{2\pi\sqrt{LC}}$
- \triangleright ISM bands(13.56 MHz; 6.78 MHz/100–200 KHz)

¹Depending on the coupling coefficient (k) and distance (d)

- \triangleright Tightly coupled or inductive systems (d < 4cm as per [Qi](https://en.wikipedia.org/wiki/Qi_(standard)) [standard](https://en.wikipedia.org/wiki/Qi_(standard))²)
- \blacktriangleright Loosely coupled or resonant system (Spatial freedom, Multiple devices)

¹[Wireless Charging: Inside the technology](https://blog.nordicsemi.com/getconnected/wireless-charging-inside-the-technology) ² Another standard is AirFuel Alliance

Wireless charging standards

 \triangleright Qi/AirFuel: 5W (mobile) / 15W (laptop)

Table: Comparison of standards³

Design Challenge: Signal+Power processing; transmission frequency, process technology, resonator toplogy, output regulation etc.

³ [Alternatively, a long range WPT using 2.45 GHz or 5.8 GHz can also be used.](http://www.qiwireless.com/wireless-power-cota-make-long-distance-mainstream/)

Generic inductively coupled WPT

Figure: Block diagram of WPT with TX chip capable of powering up RX chip while enabling wireless communicaiton

WPT system

- Power amplifier
- \blacktriangleright Resonating Coils
- \blacktriangleright Rectifiers(AC \rightarrow DC)
- \blacktriangleright Regulators

η*TOTAL* = η*DC*−*DC* × η*PA* × η*LINK* × η*RECT* × η*REG*

Power control stratgies-PA

Figure: Transmission frequency hopping⁴

Wireless power transfer techniques– L3520-Postgraduate Course May 29, 2019 10/28 4
Shinoda R, Tomita K, Hasegawa Y, Ishikuro H (2012) Voltage-boosting wireless power delivery system with fast load
Tracker by △ ∑ -modulated sub-harmonic resonant switching. In: IEEE international solid-state circuits co of technical papers (ISSCC), 2012, pp 288â 290

Power control stratgies-PA

Figure: DLL based power control approach⁵

$$
P_o = P_{PA} \times (1 + cos\theta)
$$

5 K. Tomita, R. Shinoda, T. Kuroda and H. Ishikuro, "1-W 3.3–16.3 V Boosting Wireless Power Transfer Circuits With Vector Summing Power Controller," in IEEE Journal of Solid-State Circuits, vol. 47, no. 11, pp. 2576-2585, Nov. 2012. doi: 10.1109JSSC.2012.2211698

Figure: Reconfigurable rectifier⁶

⁶ Lee H-M, Ghovanloo M (2012) An adaptive reconfigurable active voltage doubler/rectifier for extended-range inductive power transmission. IEEE Transac Circuits Syst II Express Briefs 59:481â 485. doi:10.1109TCSII.2012.2204840

Figure: Pulse width modulation regulating rectifier⁷

$$
P_{Cond. loss} = \frac{1}{NT} \int_{t_o}^{t_o + NT} I_{REC}^2 \cdot R_{ON} dt
$$

Wireless power transfer techniques– L3520-Postgraduate Course May 29, 2019 13/28 7 Li X, Tsui C-Y, Ki W-H (2015) A 13.56 MHz wireless power transfer system with reconfigurable resonant regulating rectifier and wireless power control for implantable medical devices. IEEE J Solid State Circuits 50:978? doi:10.1109/JSSC.2014.2387832

Figure: Pulse width modulation regulating rectifier⁸

Wireless power transfer techniques– L3520-Postgraduate Course
Li X, Tsui C-Y, Ki W-H (2015) A 13.56 MHz wireless power transfer system with reconfigurable resonant regulating_{lay 29, 2019} **14/28** rectifier and wireless power control for implantable medical devices. IEEE J Solid State Circuits 50:978â 989. doi:10.1109/JSSC.2014.2387832

Figure: Pulse width modulation regulating rectifier⁹

⁹ Cheng L, Ki W-H, Wong Y-T, Yim T-S, Tsui C-Y (2016) A 6.78MHz 6W wireless power receiver with a 3-Level $1X/\frac{1}{2}X/NX$ reconfigurable resonant regulating rectifier. In: 2016 IEEE international solid-state circuits conference $($ ISS \hat{c} C $)$, pp 376â 377

Figure: Pre-rectifier regulation¹⁰

\blacktriangleright Zero-current switching

10 Kiani M, Lee B, Yeon P, Ghovanloo M (2015) A Q-modulation technique for efficient inductive power transmission

Figure: Pre-rectifier regulation¹¹

$$
\triangleright R_{L,EQ} = R_L(8/\pi^2)(1-D)^2
$$

11 Kiani M, Lee B, Yeon P, Ghovanloo M (2015) A Q-modulation technique for efficient inductive power transmission IEEE J Solid State Circuits 50:2839â 2848. doi:10.1109/JSSC. 2015.2453201

Power control stratgies-Multilevel Rectifier

Figure: Single inductor multiple output operation (SIMO)

Power control stratgies-SIMO

Figure: A 2X rectifier and 3-level SIMO converter

Power control stratgies-SIMO

Figure: A 2X rectifier and 3-level SIMO converter

Coupled Coils

Coupled coil–Transformer model

Figure: Transformer model of coupled coils

Mutual coupling =
$$
M
$$

Coupling factor = $k = M/\sqrt{L_1 L_2}$
Turn-ratio = $n = \sqrt{L_1/L_2}$

$$
V_2(s) = \frac{M}{L_1}(sL_1I_1 - sMI_2) - sL_2I_2 + s\frac{M^2}{L_1L_2}L_2I_2
$$

Coupled coil–Reflected Impedance model

Figure: Reflected impedance model

Mutual coupling=
$$
M
$$

Coupling factor= $k = M/\sqrt{L_1L_2}$
Turn-ratio= $n = \sqrt{L_1/L_2}$

$$
\mathsf{Z}_{eq}(s)=\frac{\mathsf{M}^2\omega^2}{sL_2+Z_L(s)}
$$

Coupled coil–Link Efficiency

- ► Link voltage gain= $\frac{V_o}{V_o}$ *Vs*
- **I** Link efficiency $= \eta = \frac{P_o}{P_o}$ *Ps*
- Parasitic model (Section $3.2-3.3$)

Coupled coil

¹²M. Kung and K. Lin, "A 6.78 MHz and 13.56 MHz dual-band coil module with a repeater for wireless power transfer systems," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, 2016, pp.

157-158. doi: 10.1109/APS.2016.7695787

Integrated coils

Figure: Integrated coils : Area < 1*mm*²

13

¹³W. Pachler, W. BA¶sch, G. Holweg and G. Hofer, "A novel booster antenna design coupled to a one square millimeter coil-on-chip RFID tag enabling new medical applications," 2013 European Microwave Conference, Nuremberg, 2013, pp. 1003-1006. doi: 10.23919/EuMC.2013.6686829

Summary

- \triangleright WPT system/modes
- \triangleright System level optimization
- \blacktriangleright Rectifiers
- \triangleright Coils
- \triangleright References: Images from Google repository and IEEE.
- ▶ Book: CMOS Integrated Circuit Design for Wireless Power [Transfer Yan Lu and Wing-Hung Ki](https://ebookcentral.proquest.com/lib/aalto-ebooks/detail.action?docID=4947280)

Homework

Draw the transistor level diagram of a Full bridge rectifier.

Figure: Replace diodes with transistors