
Software Processes

CSE-C3610, Software Engineering, 5 cr

Prof. Casper Lassenius

Software Process

What?
Why?

Software Process Definitions

•  Process
–  Webster:

1. A continuing development involving many changes.

2. A particular method for doing something, usually involving a number of
steps or operations.

–  IEEE: A sequence of steps performed for a given purpose.

•  Software Process
–  CMM(I): a set of activities, methods, practices and transformations that

people use to develop and maintain software and the associated products
–  Simply: the way an organization/team/individual develops software

Leavitt’s Organizational
Diamond

Software Process
(Life-Cycle) Models

- Build-and-Fix
- Waterfall
- Rapid Prototyping

Software Process Models

•  Order all or some of the basic software development
activities in various ways

•  Typical activities in a Life-Cycle model (LCM)
–  Requirements / specification
–  Design
–  Implementation
–  Testing
–  Deployment
–  Maintenance
–  Retirement

Build and Fix Model

•  Problems
–  No specifications
–  No design
–  Lack of visibility
–  Easily leads to poorly structured systems
–  Totally unsatisfactory
–  Need life-cycle model

Waterfall Model

•  Planning and control
•  Documentation-driven
•  “Doing the homework”
•  Formal change management

The Waterfall Model

•  Strengths
–  Easily manageable process
–  Probably the most effective model, if you know the requirements
–  Extensive documentation

•  Weaknesses
–  Inflexible partitioning of the project into distinct phases
–  Difficult to respond to changing customer requirements
–  Feedback on system performance available very late and changes can be very expensive

•  Applicability
–  Appropriate when the requirements are well understood
–  Short, clearly definable projects (e.g. maintenance)
–  Very large, complex system development that requires extensive documentation. Safety critical

systems.

Cost to Detect and Correct a Fault

Rapid Prototyping Model

•  Linear
•  “Rapid”
•  Exploratory vs. throw-

away prototypes

Software Process
(Life-Cycle) Models

- Incremental development
- Rational Unified Process (RUP)
- Microsoft Sync-and-Stabilize

Incremental Model
•  The concept of growing a system via iterations: iterative and incremental development

(IID)
–  Divide the project into increments
–  Each increment adds functionality
–  Each iteration is a self-contained mini project composed of activities such as

requirements analysis, design, programming and test
–  At the end of the iteration an iteration release: a stable, integrated and tested partially

complete system
–  Most releases internal, final iteration release is the complete product

•  Prioritize user requirements
–  MOSCOW priorities: must, should, could, want
–  High-priority requirements into early increments
–  Freeze requirements during each increment

Incremental Model

Incremental Development Advantages
•  Customer value can be delivered at the end of each increment making system

functionality available earlier
•  Final product better matches true customer needs
•  Early increments act as a prototype to help

–  elicit requirements for later increments
–  get feedback on system performance

•  Lower risk of overall project failure

•  Smaller sub-projects are easier to control and manage
–  A meaningful progress indicator: tested software

•  The highest priority features tend to receive the most testing
•  Job satisfaction is increased for developers who can see early results of their work

Incremental Development Disadvantages

•  Can be harder to plan and control than waterfall development
•  Can be more expensive than waterfall development
•  May require more experienced staff
•  System architecture must be adaptive to change
•  Software project contracts are still mostly drawn up according to

the waterfall model and all changes cause renegotiations

Rational Unified Process (RUP)

UP Work Products

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach. 6/e and are
provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005.

Synchronize-and-Stabilize Model

•  Microsoft’s life-cycle model
•  Requirements analysis—interview

potential customers
•  Draw up specifications
•  Divide project into 3 or 4 builds
•  Each build is carried out by small

teams working in parallel

Sync-and-Stabilize

•  At the end of the day—synchronize (test and debug)
•  At the end of the build—stabilize (freeze build)
•  Components always work together

–  Get early insights into operation of product

Still Other Process Models

•  Spiral model—a risk-driven meta-model
•  Component based development—the process to apply when

reuse is a development objective
•  Formal methods—emphasizes the mathematical specification of

requirements
•  AOSD—provides a process and methodological approach for

defining, specifying, designing and constructing aspects

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach. 6/e and are
provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005.

Questions?

