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Software Process 
 
What? 
Why? 



Software Process Definitions 

•  Process 
–  Webster:  

 
1. A continuing development involving many changes.  
 
2. A particular method for doing something, usually involving a number of 
steps or operations. 

–  IEEE: A sequence of steps performed for a given purpose. 

•  Software Process 
–  CMM(I): a set of activities, methods, practices and transformations that 

people use to develop and maintain software and the associated products 
–  Simply: the way an organization/team/individual develops software 



Leavitt’s Organizational 
Diamond 



Software Process 
(Life-Cycle) Models 
 
- Build-and-Fix 
- Waterfall 
- Rapid Prototyping 



Software Process Models 

•  Order all or some of the basic software development 
activities in various ways 

•  Typical activities in a Life-Cycle model (LCM) 
–  Requirements / specification 
–  Design 
–  Implementation 
–  Testing 
–  Deployment 
–  Maintenance 
–  Retirement 



Build and Fix Model 

•  Problems 
–  No specifications 
–  No design 
–  Lack of visibility 
–  Easily leads to poorly structured systems 
–  Totally unsatisfactory 
–  Need life-cycle model 



Waterfall Model 

•  Planning and control 
•  Documentation-driven 
•  “Doing the homework” 
•  Formal change management 



The Waterfall Model 

•  Strengths 
–  Easily manageable process  
–  Probably the most effective model, if you know the requirements 
–  Extensive documentation 

•  Weaknesses 
–  Inflexible partitioning of the project into distinct phases 
–  Difficult to respond to changing customer requirements 
–  Feedback on system performance available very late and changes can be very expensive 

•  Applicability 
–  Appropriate when the requirements are well understood 
–  Short, clearly definable projects (e.g. maintenance) 
–  Very large, complex system development that requires extensive documentation. Safety critical 

systems. 



Cost to Detect and Correct a Fault 



Rapid Prototyping Model 

•  Linear 
•  “Rapid” 
•  Exploratory vs. throw-

away prototypes 



Software Process 
(Life-Cycle) Models 
 
- Incremental development 
- Rational Unified Process (RUP) 
- Microsoft Sync-and-Stabilize 



Incremental Model 
•  The concept of growing a system via iterations: iterative and incremental development 

(IID) 
–  Divide the project into increments 
–  Each increment adds functionality 
–  Each iteration is a self-contained mini project composed of activities such as 

requirements analysis, design, programming and test 
–  At the end of the iteration an iteration release: a stable, integrated and tested partially 

complete system 
–  Most releases internal, final iteration release is the complete product 

•  Prioritize user requirements 
–  MOSCOW priorities: must, should, could, want 
–  High-priority requirements into early increments 
–  Freeze requirements during each increment 



Incremental Model 



Incremental Development Advantages 
•  Customer value can be delivered at the end of each increment making system 

functionality available earlier 
•  Final product better matches true customer needs 
•  Early increments act as a prototype to help 

–  elicit requirements for later increments 
–  get feedback on system performance 

•  Lower risk of overall project failure 

•  Smaller sub-projects are easier to control and manage 
–  A meaningful progress indicator: tested software 

•  The highest priority features tend to receive the most testing 
•  Job satisfaction is increased for developers who can see early results of their work 



Incremental Development Disadvantages 

•  Can be harder to plan and control than waterfall development 
•  Can be more expensive than waterfall development 
•  May require more experienced staff 
•  System architecture must be adaptive to change 
•  Software project contracts are still mostly drawn up according to 

the waterfall model and all changes cause renegotiations 



Rational Unified Process (RUP) 



UP Work Products 
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Synchronize-and-Stabilize Model 

•  Microsoft’s life-cycle model 
•  Requirements analysis—interview 

potential customers 
•  Draw up specifications 
•  Divide project into 3 or 4 builds 
•  Each build is carried out by small 

teams working in parallel 



Sync-and-Stabilize 

•  At the end of the day—synchronize (test and debug) 
•  At the end of the build—stabilize (freeze build) 
•  Components always work together 

–  Get early insights into operation of product 



Still Other Process Models 

•  Spiral model—a risk-driven meta-model 
•  Component based development—the process to apply when 

reuse is a development objective 
•  Formal methods—emphasizes the mathematical specification of 

requirements 
•  AOSD—provides a process and methodological approach for 

defining, specifying, designing and constructing aspects 
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Questions? 


