oo
°0
°
o3
N —-—

Aalto U
School

Software Processes

versity
ience

CSE-C3610, Software Engineering, 5 cr

Prof. Casper Lassenius

Software Process

What?
Why?

* Process
— Webster:

1. A continuing development involving many changes.

2. A particular method for doing something, usually involving a number of
steps or operations.

— |IEEE: A sequence of steps performed for a given purpose.

 Software Process

— CMM(I): a set of activities, methods, practices and transformations that
people use to develop and maintain software and the associated products

— Simply: the way an organization/team/individual develops software

A' Aalto University
! ‘ ,

Leavitt’ s Organizational
D iam o n d Structure

Structure, Culture,
Management,

Decision making

Process People

Practices Knowledge
Procedures Skills, Needs,
Instructions Motivation

Technology

Tools, Methods, Facilities,

Environment

Aalto University
School of Science Adapted from Leavitt, H.J. Applied organizational change in industry: Structural, technological and
] humanistic approaches. Handbook of Organizational. J.G. March. Chicago, Rand McNally. 1965

Software Process
(Life-Cycle) Models

- Build-and-Fix
- Waterfall
- Rapid Prototyping

* Order all or some of the basic software development
activities in various ways

« Typical activities in a Life-Cycle model (LCM)
— Requirements / specification
— Design
— Implementation
— Testing
— Deployment
— Maintenance
— Retirement

A' Aalto University
’ ‘ ,

Build and Fix Model

Build first
version

Modify until

i

— Development
- ——= Maintenance

" client is satisfied :
j I

l

l

|

Aalto University
School of Science
|

Maintenance
phase

Y

Retirement

Problems

No specifications

No design

Lack of visibility

Easily leads to poorly structured systems
Totally unsatisfactory

Need life-cycle model

Picture from Schach: Classical and Object-Oriented Software Engineering, 5th ed.

Waterfall Model

— Development
- —— Maintenance

'

r _______ =1
Requirements | Changed b s o s
phase I___| requirements |
| e — | :
Veri | Veri
ity 1 : (LTINS _f.! PP | |
|
L I
Specification :
hase
P Ry N —— =
Verify : :
l I
||
Design : :
hase
3 e e 2 |
Verify : : :
I N
iR
Implementation | | |
phase —-= | : |
Test | : I :
| | I
l Ly b
I
Integration Ly 1
phase [I
[
Test L1
[I
L 111

Maintenance
phase

!

Retirement

Planning and control
Documentation-driven
“Doing the homework”
Formal change management

Aalto University
School of Science
|

Picture from Schach: Classical and Object-Oriented Software Engineering, 5th ed.

+ Strengths
— Easily manageable process
— Probably the most effective model, if you know the requirements
— Extensive documentation

« Weaknesses
— Inflexible partitioning of the project into distinct phases
— Difficult to respond to changing customer requirements
— Feedback on system performance available very late and changes can be very expensive

* Applicability
— Appropriate when the requirements are well understood
— Short, clearly definable projects (e.g. maintenance)

— Very large, complex system development that requires extensive documentation. Safety critical
systems.

A' Aalto University
School of Science
O

Cost to Detect and Correct a Fault

= 400
& 368
350 - I I
2 I I
‘g 1 |
S 300 : :
c I I
e I |
’g 250 - I I
3 : '
o 1
2 200 200
27
o
(6]
o 150
% Projects between 1974 and 1980
® — ——— |IBM AS/400(Kan et al., 1994]
° 100
©
E 52
s S0 -
(3 1 3 4 10
%:_l T
Requirements Design Integration
Specification Implementation Maintenance
(Analysis)

Aalto University
School of Science
|

Rapid Prototyping Model

Rtapid :_ - _C;.a:g_eci - ﬂ: s s o e s .
pro ot‘ype :— — —L _fejtfe_f“f.“_s_ i : b Ll near
Verify : : ... B : . “R -d”
b | api
Specification
Pohase | | ____________ . « Exploratory vs. throw-
eril I
Vedky l N away prototypes
11
esign 1
Dphasge A —: : i
Verify i : :
|
L I
Implementation | __ __ = |
phase | : I :
Test : : : :
i N
Integration : : : :
phase I : |
Test : : | :
| I
|

!

— Development Maintenance
- — —» Maintenance phase
| Retirement

Aalto University
School of Science
u Picture from Schach: Classical and Object-Oriented Software Engineering, 5th ed.

Software Process
(Life-Cycle) Models

- Incremental development
- Rational Unified Process (RUP)
- Microsoft Sync-and-Stabilize

« The concept of growing a system via iterations: iterative and incremental development
(11D)

— Divide the project into increments
— Each increment adds functionality

— Each iteration is a self-contained mini project composed of activities such as
requirements analysis, design, programming and test

— At the end of the iteration an iteration release: a stable, integrated and tested partially
complete system

— Most releases internal, final iteration release is the complete product

* Prioritize user requirements
— MOSCOW priorities: must, should, could, want
— High-priority requirements into early increments
— Freeze requirements during each increment

A' Aalto University
! ‘ ,

Incremental Model

Requirements
phase

Verify

A 4

Specification
phase

Verify

Architectural
design

Verify

Y

For each build:
Perform detailed [~ — — 7
design, imple- I
mentation, and |
integration. Test. I

Deliver to client. :

|
|

— Development Maintenance
- —— Maintenance > phase
| Retirement |

Aalto University
School of Science
|

Picture from Schach: Classical and Object-Oriented Software Engineering, 5th ed.

« Customer value can be delivered at the end of each increment making system
functionality available earlier

« Final product better matches true customer needs
« Early increments act as a prototype to help
— elicit requirements for later increments

— get feedback on system performance

Lower risk of overall project failure

Smaller sub-projects are easier to control and manage
— A meaningful progress indicator: tested software

The highest priority features tend to receive the most testing

Job satisfaction is increased for developers who can see early results of their work

A' Aalto University
! ‘ ,

« Can be harder to plan and control than waterfall development
« Can be more expensive than waterfall development

« May require more experienced staff

« System architecture must be adaptive to change

« Software project contracts are still mostly drawn up according to
the waterfall model and all changes cause renegotiations

A' Aalto University
’ ‘ ,

Rational Unified Process (RUP)

Phases
Process Workflows Inception Elaboration Construction Transition

—

M
S

Supporting Workflows
——A
e et e, e, T

P

Preliminary Itcr.l Iter. | Tter. | Iter. | Tter. | Tter. | Iter.
Iteration(s) © #1 ' #2 #n i+l Yene2 ! g ! #mt]

Aalto University
School of Science
|

UP Work

A!

Inception phase

Vision document
Initial use-case model
Initial project glossary
Initial business case
Initial risk assessment.
Project plan,

phases and iterations.
Business model,

if necessary.
One or more prototypes

Products

Aalto University
School of Science

Elaboration phase

Use-case model

Supplementary requirements

including non-functional
Analysis model
Software architecture
Description.
Executable architectural
prototype.
Preliminary design model
Revised risk list
Project plan including
iteration plan
adapted workflows
milestones
technical work products
Preliminary user manual

Construction phase

Design model

Software components

Integrated software
increment

Test plan and procedure

Test cases

Support documentation
user manuals
installation manuals
description of current

increment

Transition phase

Delivered software increment
Beta test reports
General user feedback

Synchronize-and-Stabilize Model

« Microsoft’ s life-cycle model

* Requirements analysis—interviev
potential customers

» Draw up specifications
* Divide project into 3 or 4 builds

« Each build is carried out by small
teams working in parallel

Product vision

Functional specification

M
subcycle

/De@p\mm\
subcycle

Velopment
subcycle

Buffer time

Buffer time

Buffer time

Alpha release

Beta release

'RSITY OF TECHNOLOGY

Aalto University
School of Science
|

Feature
complete

Beta release

Ul freeze

Code complete
* Final test

* Final debug
« Stahilize

Final release

« At the end of the day—synchronize (test and debug)
« At the end of the build—stabilize (freeze build)

« Components always work together
— Get early insights into operation of product

A' Aalto University
’ ‘ ,

Still Other Process Models

« Spiral model—a risk-driven meta-model

« Component based development—the process to apply when
reuse is a development objective

« Formal methods—emphasizes the mathematical specification of
requirements

« AOSD—provides a process and methodological approach for
defining, specifying, designing and constructing aspects

Aalto University
e _
|

Questions?

