
0018-9162/99/$10.00 © 1999 IEEE60 Computer

T
here is probably little debate that Internet
software companies must use more flexible
development techniques and introduce new
products faster than companies with more
stable technology, established customer

needs, and longer product cycles. Indeed, Internet and
PC software firms have consciously departed from the
sequential product development style, popular before
1990, in favor of a more flexible style. Microsoft
began refining this alternative style—which we call
“synchronize and stabilize”—in the late 1980s and
early 1990s. The basic idea is to give programmers
lots of autonomy to evolve designs iteratively but
force team members to synchronize their work fre-
quently and then periodically stabilize their design
changes or feature innovations. The goal is to balance
an almost hacker-type flexibility and speed with pro-
fessional engineering discipline.

In 1997-1998, we interviewed more than 40 managers
and engineers at Netscape and Microsoft to see how sim-
ilar or different their development practices were and to
see how Microsoft’s Internet groups were adapting to the
rapid change characteristic of Internet software markets.
We found that Netscape was using a version of the
Microsoft-style synchronize and stabilize process for PC
software, but adapting it to build Internet browser and
server products. We also found that Microsoft’s Internet
groups were modifying their standard process to increase
development speed and flexibility.

Our interviews revealed many lessons learned using
the synchronize and stabilize model and showed that
this model works well for rapid, flexible software
development.

SYNCHRONIZE AND STABILIZE: MICROSOFT
Figure 1 graphs the elements of the synchronize and

stabilize model, and Table 1 summarizes how it differs
from the sequential, or waterfall, approach. Basically,
in the synchronize and stabilize process, developers use
daily product builds, two or more project milestones,
and early, frequent alpha or beta releases. Individual
programmers or small teams effectively act as one large
team, building large-scale software products relatively
quickly and efficiently while adapting to new tech-
nologies, feature changes driven by competition, or lots
of uncertainty in user requirements.1,2

In the waterfall model, project teams attempt to
freeze a product specification, create a functional
design specification, build components, and then
merge the components—typically in one large inte-
gration and testing phase at the end of the project. This
sequential approach was common in the early 1980s
for large-scale software projects and has remained a
basic model for project planning in many industries.
However, it has never caught on among newer PC soft-
ware companies because managers and engineers real-
ize they can build better products if they try not to
control the development process too rigidly.3,4

Vision statement and functional specification
Typically, at the start of a project, Microsoft teams

did not try to write a complete specification that locked
the developers into creating a fixed feature set. Rather,
they started by creating a vision statement, usually
gathering off-site to define product goals. They also
worked with customer data to prioritize desired fea-
tures. In more established groups, such as those devel-
oping Excel, product managers wrote the vision
statement after consulting with program managers and
developers. Program managers then wrote a functional
product specification, which they refined as develop-
ers wrote, changed, and experimented with new fea-

Product development is necessarily different in firms that must compete in
fast-paced, unpredictable markets, such as Internet software. The authors
reveal how Netscape and Microsoft have balanced flexibility and discipline
in managing the development process.

Software
Development
on Internet Time

Michael A.
Cusumano
MIT Sloan
School of
Management

David B.
Yoffie
Harvard
Business
School

Co
ve

r F
ea

tu
re

This article is adapted from chapter 5, Competing on Internet
Time: Lessons from Netscape and Its Battle with Microsoft, by
Michael A. Cusumano and David B. Yoffie (Free Press/Simon &
Schuster, New York, 1998).

tures and user interfaces. The functional specification
was complete only when the project ended.

Before the team started coding features, program
managers and developers outlined the most important
product features. The outline had to be in enough depth
for project leaders to estimate schedules and organize
feature teams (usually three to eight developers), often
with parallel teams of “buddy” testers, usually assigned
to each developer. Team members then evolved the fea-
ture set and feature details as they learned more about
what should be in the product. Hence, the feature set
in a Microsoft specification document might change by
30 percent or more by the project’s end.

Milestones
Microsoft also tended to break the schedule into

three, sometimes four, milestones, which represented
completion or stabilization points for major feature
clusters. Each feature team went through a complete
development subcycle, including feature integration,
testing, and problem fixing (see Figure 1). Throughout
the project, feature teams or individual engineers syn-
chronized their work by building the product and find-
ing and fixing errors on a daily basis. At the end of a
milestone subcycle, the developers stabilized the prod-
uct by fixing major errors and agreeing not to change
particular features or to change them only very care-
fully. Teams also issued alpha (internal) releases and
then beta (external) releases of their evolving products
at the milestone junctures. The development teams
proceeded from milestone to milestone and eventually
to the ship date, continuously integrating components,
incorporating feedback from both external and inter-
nal users, and finding and fixing major bugs.

October 1999 61

Development
subcycle

Buffer t ime

Alpha release

Development
subcycle

Buffer t ime

Beta release

Funct ional speci f ica tion

Development
subcycle

Buffer t ime

Fea ture
comple te

Be ta release

UI freeze

Code comple te

Final release

• Final t est
• Final debug
• Stabilize

Product vision

Figure 1. The synchronize-and-stabilize software development model. The project
begins with the team’s vision of what the product should do. From this vision, the pro-
gram manager derives a rough functional specification, which the team evolves until
the end of the project. The schedule has multiple stabilization points, or milestones.
Three is a common number. Each represents progress after weeks of “a development
subcycle”: design, code, usability test, test, daily builds, debugging, integration, and
stabilization. This subcycle is repeated several times, as the blue region in each mile-
stone depicts. Each milestone marks either an alpha or beta release. The buffer time,
which precedes each release, ensures that the team has flexibility to meet market
demands, such as adding features that have surfaced as desirable. In the final
milestone, the user interface is frozen, and the code is considered complete. The team
runs a final test, debugging, and stabilizing subcycle and issues a final release. Note
that only when the project is complete is the functional specification considered done.
This differs significantly from the traditional waterfall (sequential) development model,
which begins with a finished specification—often the road map to development.

Table 1. How the synchronize and stabilize development process contrasts to the sequential, or waterfall, approach.

Synchronize and stabilize Waterfall

Specification, development, testing are done in parallel Phases are completed sequentially

Vision statement is created and specification evolves (spec is output, not input) “Complete” specification document and detailed design
is done before coding

Prioritized features are built in three or four milestones All product pieces are built simultaneously

Synchs are done frequently (daily builds), with intermediate stabilizations (milestones) One late and large integration and test phase occurs at
the project’s end

Ship dates are “fixed,” but there are multiple release cycles An attempt is made to achieve feature and product
perfection

Customer feedback is considered during development Customer feedback serves as input for future projects

Large teams work like small teams regardless of project size Many individuals work in large functional groups to scale
up projects

Source: Microsoft Secrets: How the World’s Most Powerful Software Company Creates Technology, Shapes Markets, and Manages People, M.A.
Cusumano and R.W. Selby, Free Press/Simon & Schuster, New York, 1995, p. 407.

62 Computer

Projects also added buffer time (such as 20 to 50 per-
cent of total allotted time) at the end of each milestone
so that team members could respond to unexpected
difficulties or delays or add unplanned features. This
buffer, together with an evolving specification, gave
developers and program managers room to innovate or
adapt to unforeseen competitive opportunities and
threats. Most products had relatively modular archi-
tectures, which meant that teams could add features
incrementally or combine them fairly easily. In the
more experienced product units, managers tried to fix
project resources by limiting the people allocated to
any one project. They might also limit project time,
especially in applications like Office, by setting specific
ship dates and attaching years to product names (Office
97 and Windows 98, for example). Teams generally
deleted features if they fell too far behind schedule.

Planning and reviews
Product managers usually compiled multiyear prod-

uct plans so that marketing and engineering did not try
to force all the features they wanted into a particular
product release. Senior managers like CEO Bill Gates
and other executives closely followed key projects by
attending program reviews held every three months
or so. In addition, project managers submitted
monthly project status reports, and executives checked
progress relative to three-year product plans from the
divisions. Most projects had considerable indepen-
dence, however, and the resources to hire as many
developers and testers as they needed. This financial
freedom was particularly important for new product
experiments, like Internet Explorer. Ben Slivka, man-
ager of the first three IE projects, told us that he had
no budget constraint for those projects.

Microsoft continued to use its established process,
first honed on products such as Excel, Word, and
Windows NT, to build Internet software. The Internet
groups, however, generally had shorter schedules, did
more code reviews to catch bugs early, and used more
external design reviews and intensive work with a
select group of customers to get deeper feedback early
in requirements generation and again during testing.

SYNCHRONIZE AND STABILIZE: NETSCAPE
Netscape managers and engineers had to establish

a development process suitable for the time frames
and uncertainty of the new Internet market. In a sense,
they did this from scratch, although the company
hired many people with experience at software com-
panies such as Borland and Microsoft, and adopted
heavily from what these and other companies had
done.

The sidebar, “Netscape’s Planning and Development
Process,” lists the phases (simplified) that the groups in
both the client (browser) and server product divisions

Netscape’s Planning and Development Process
Step 1: Product requirements and project proposal
Advance planning meeting (APM) held to brainstorm ideas (marketing,

development, executives)
Product vision generated, initially by senior engineers, now mainly by prod-

uct managers
Some design and coding by engineers to explore alternative technologies

or feature ideas
Product requirements document compiled by product managers, with help

from developers
Informal review of this preliminary specification by engineers
Functional specification begun by engineers, sometimes with help from

product managers
Schedule and budget plan compiled by marketing and engineering, and

informally discussed with executives

Step 2: First executive review
Executives review product requirements document and schedule and bud-

get proposal
Plan adjusted as necessary

Step 3: Start of development phase
Design and coding of features, architecture work as necessary
Daily integration of components as they are created and checked in (builds)
Bug lists generated and fixes initiated

Step 4: Interim executive review (if necessary)
Functional specification should be complete at this point
Midcourse corrections in specification or project resources, as necessary
Coordination issues with other products or projects discussed, as necessary
Development continues

Step 5: First internal (alpha) release (takes approximately six weeks)
Development stops temporarily
Intensive debugging and testing of existing code
Alpha release for internal feedback (or possibly a developer’s release)
Development continues
User feedback incorporated
Feature-complete target (rarely met, though servers especially try to be as

complete as possible)
One week to stabilize beta release

Step 6: Public beta 1 or field test 1 (takes approximately six weeks)
Repeat development and testing steps in Step 5
Server groups moving to “field tests” with limited customers rather than

public betas

Step 7: Public beta 2 and 3 (each beta takes approximately six weeks)
Repeat development steps as in Step 5
UI freeze milestone
Feature-complete status “mandatory,” although some minor changes still

allowed

Step 8: Code complete
No more code added except to fix bugs; features are functionally complete

Step 9: Final testing and release
Final debugging and stabilization of release candidate
Certification meeting(s) with senior executives for ship decision
Release to manufacturing (RTM) and commercial release

generally followed from 1997 to 1998. Netscape, at
least before it merged with America Online, followed
the same basic pattern in process management for
Internet software as Microsoft did for PC software,
though again with some variations. The main differ-
ences were in functional roles and process implemen-
tation.

Functional roles and head count
In July 1998, Netscape’s client product division con-

tained approximately 240 people and the server prod-
uct division about 400 people, as Table 2 shows. The
numbers in the table reflect Netscape’s underlying
organizational philosophy: Operate as much as pos-
sible in small units and avoid adding too many people
in testing. With this approach to functional hiring and
team organization, Netscape was able to make the
most of its relatively limited resources. In contrast,
Microsoft’s personal and business operating systems
division, which built Windows 98, IE, and Windows
NT, had more than a thousand people in 1998.
Indeed, Netscape’s browser division was smaller than
Microsoft’s product units within its divisions—Office,
Windows 95/98, and Windows NT, for example—
which each had roughly 300 to 450 people.

After Microsoft decided to enter the Internet arena,
it gradually applied more person-hours, first to create
a browser and various complementary features, and
then to create new Web servers, and finally to adapt
major products for the Internet. In comparison,
Netscape generally had fewer people in its individual
product teams. It is difficult, however, to directly com-
pare the effort (number of engineers and time spent)
Microsoft put into developing IE and Netscape put
into developing Communicator or to compare each
company’s efforts in developing server products. Each
built some components in different groups (such as
security) or in parallel projects. Each carried over code
from previous projects or other organizations.
Different product versions and teams also overlapped
in time at both companies.

Nonetheless, the number of developers working on
core browser features like the HTML engine was com-
parable, and both companies required similar
amounts of time to create similar features.5 This sug-
gests that productivity in Microsoft and Netscape was
comparable. Netscape’s performance was especially
impressive because it used at least half the number of
testers Microsoft used. At times, Microsoft also used
larger teams of developers to catch up and add more
features. Netscape took some shortcuts, however,
reducing the head count by having fewer testers and
by not having program managers at all.

Microsoft product units had variations, especially
within the Internet groups. When acting as managers
of new projects—for example, in early versions of IE

and NetMeeting, which initially shipped with IE—
developers usually took the lead in proposing features
and writing specification outlines. Program managers
came on board later and worked mainly on managing
project schedules, writing up test cases with testers,
interacting with interface or Web page designers, and
building relationships with outside partners and cus-
tomers.

Product planning and reviews
Like Microsoft, Netscape evolved its process for

product planning and development in stages, as it
became increasingly important for projects to be more
systematic and predictable. In the company’s first two
years, executives, such as Marc Andreessen, and
senior developers drove the vision for both client and
server products. Between 1996 and 1998, Netscape
built up the product management staff in the product
teams, which gradually became more responsible for
drafting initial product requirements. At the same
time, however, senior Netscape developers could form
their own teams and move pet features into a new
release when the technologies were ready. The devel-
opers could also exercise veto power on technical
grounds. Microsoft worked the same way, with devel-
opers having veto power, although program managers
generally had more technical background than prod-
uct managers and were often more adept at negotiat-
ing with developers.

Advance Planning Meetings (APMs) helped bring
executives, engineers, and marketers together to begin
brainstorming features and release plans for each new
product. Netscape divisions held APMs at least once a
quarter because of the number of different products
and versions. Executive reviews generally followed
these meetings within a month to kick off projects more
formally. After several months or so (depending on the
project’s length), executives held an interim review
before the first public beta release to check on progress.

After drafting the product requirements document
and receiving approval for a new project, developers

October 1999 63

Table 2. Allocation of staff in Netscape’s client and server development
divisions, mid-1998.

Client products Server products Total

Software engineering 110 200 310
Testing (QA) 50 80 130
Product management 50 42 92
Subtotal 210 322 533
Other* 30 98 128
Total 240 420 660
*Persons in activities such as documentation, user interface design, OEM porting,
internationalization and localization, and special product support.

64 Computer

typically shared their design ideas and
preliminary design documents with col-
leagues and their managers as part of
an informal review process. Developers
sometimes created more formal design
documents and held face-to-face meet-
ings to discuss these before the mid-
course executive review. How much to
formalize the design documents or
reviews was left up to the individual
engineer or team leader. According to
Jon Mittlehauser, a member of
Netscape’s original browser develop-
ment team, any part of a feature with a
user interface (UI) went through a rela-
tively formal design and review process.

Netscape also relied on a separate UI
group that put out a written spec to

make sure that the user interface was the same across
different platform versions. The affected groups
needed to review features that touched on other fea-
tures, such as the new Roaming Access feature under
development in 1997-1998, which affected security
and privacy components. Again, the developers
responsible for the features took the lead in schedul-
ing these meetings. (In Microsoft, program managers
often coordinated requirements and scheduled reviews
so developers had more time to write the code.)

The length and intensity of the planning phase var-
ied with product complexity. For some new server
products, Netscape spent as long as nine months sim-
ply generating requirements and planning the prod-
uct. Servers also required extra time for cross-product
coordination. In general, Netscape managers and engi-
neers openly adopted the philosophy that, in the
rapidly changing Internet world, it’s impossible to
specify everything that should go into a new product
or a new release before coding. At the same time, they
clearly believed that some planning was necessary to
build complex products. David Stryker, who was in
charge of building shared components from 1996 to
1997, outlined the thinking that seemed to prevail at
Netscape, Microsoft, and other PC software firms:

Here’s a classic statement from a gunslinger engineer:
“Do you want me to plan or do you want me to build
it because, after all, if I plan it, then at the end of it you
have a plan. If I build it, you have a product. Now,
which do you want at the end of the process?” This
is sheer b*** s***, right? The way you get places, the
way you hit the bull’s-eye the first time, is by planning
things [But] you can’t plan everything down to the
atoms. The art of planning is articulating your goals
and nongoals [what you don’t want to do] really clearly
and picking the things that have to be planned down
to the atoms because some things do ... So we make a

pretty big deal of goals and nongoals of projects. We
try to make the goals measurable and concrete. The
nongoals are more important than the goals because,
when you’re doing midcourse correction, which you
do on a 72-hour basis, the best guidance you can get
is to remember what you weren’t trying to do.

Probably the most important midproject change to
a PC software product in recent years was Microsoft’s
decision in April 1994 to add a browser to Windows
95. The product had already been under development
since Windows 3.1 shipped in 1992. This decision dra-
matically changed the direction of Windows and
Microsoft.

We saw some major midproject shifts at Netscape
as well, such as to cancel a project to rewrite
Communicator in Java modules, cancel other Java
efforts, and then reorganize the client engineers into
what became the 4.5 and 5.0 projects. Several man-
agers also talked about adding Netcaster to
Communicator 4.0, which shipped in June 1997, as a
good example of Netscape’s flexibility. This technol-
ogy responded to Microsoft’s Active Channels in IE
4.0. Neither feature proved successful commercially,
and the Netcaster feature performed poorly in its first
implementation. Nonetheless, it gave Netscape a posi-
tion and some experience in the new push technology.
Debby Meredith, who headed client development as
well as quality initiatives in Netscape, commented in
our July 1997 interview:

Three-quarters of the way through the
Communicator [4.0] development process, we
decided to add the Netcaster component. It was never
planned ... never in any specs. To this date, it’s not in
any Communicator specs because we didn’t rev
[revise] it. But it was a separate project on a different
release schedule. It was more that we started off doing
this technology, weren’t really sure when it was going
to hook up to one of these trains, and then just sensed
that the world was right for push technology.
Microsoft was thinking about similar things. We
wanted to preempt them.

Product documentation
Netscape’s product requirements document was

usually short (five pages or so) for a new product
release, at least for the client. Once engineers and exec-
utives bought off on this document in the executive
review, developers, sometimes with the help of prod-
uct managers, began evolving it into a rough func-
tional specification. This spec continued to change
through at least half and often two-thirds of the pro-
ject, though some features (like Netcaster) might ship
with the product and never make it into the written
specification.

‘The way you hit the
bull’s-eye the first time

is by planning.’
—Netscape manager

Most PC and Internet software companies will tol-
erate incomplete documentation because they put a
premium on creating code, not documents. The Web
eased the documentation process somewhat, however.
Both Netscape and Microsoft created electronic doc-
uments that were extremely easy to change and struc-
ture with different layers. The new product specs were
mostly HTML pages posted on internal Web sites,
with indexes of features and hot links to different doc-
uments, such as API specifications. This was a major
departure from pre-1994.

Project management and scheduling
Netscape did not emphasize tight project controls.

Instead, projects relied on experienced and respected
engineers to use their influence over developers and
act as release managers or project managers. For
Navigator 1.0, this was Tom Paquin, who joined
Netscape in April 1994 after working at IBM
Research and Silicon Graphics. For most of the later
browser versions, it was Michael Toy, who had also
worked as a developer at Silicon Graphics. For servers,
Netscape used directors, development managers, and
test managers to oversee development in smaller prod-
uct teams (called “divlets”).

Generating a schedule usually began in the product
marketing group, which proposed a date to introduce
a new product or version. Engineers in each group
tried to figure out what features they could complete
in that amount of time. Marketing helped identify the
highest priority items. The release then went out when
teams finished or were close to finishing at least the
top-priority features. Less important features could
fall off the feature list—miss the train—but they often
became part of the next release.

Toy tried to combine flexibility and realism with a
gentle push in his schedules. Rather than give engi-
neers deadlines, he asked developers to estimate how
much code they needed to write for particular small
product chunks, such as features or identifiable sub-
systems. He let developers adjust for a feature’s com-
plexity (how time-consuming might it be to create)
and degree of self-containment (how much time might
be spent coordinating with another feature group).
Some engineers added a fudge factor for debugging
time. Projects also added time for beta testing.

Netscape teams tended to focus not on specific tar-
get ship dates (which Microsoft managers preferred)
but on three-month windows, mapping to the finan-
cial quarters. Netscape could afford to be lax about
ship dates because it used the Internet for distribution
and did not need two or more months of extra time to
package and distribute products.
Project managers posted schedules on an intranet,

rather than just sharing schedules and progress reports
periodically over e-mail. Intranets provided an easy

way for both managers and engineers to
check on the status of the daily builds
for each platform and see which mod-
ules worked and which did not. The
server teams also used more formal
scheduling tools than the client division
and put more effort into standardizing
release cycles so that Netscape could
ship its SuiteSpot product set with
updated versions of each server coming
together at the same time. The server
division had a master schedule posted
on an intranet, which it called the Plan
of Record. This schedule tracked the
progress of the different projects and
incorporated Web agents that automat-
ically notified people of changes as they
occurred.

Component integration
At the code writing level, Netscape

(like Microsoft and many other PC soft-
ware producers in the 1990s) used daily builds to
coordinate the work of developers, rather than rely-
ing on detailed planning and controls to supervise the
work of engineers.

Check-in and change tracking. Being able to control
changes is critical in fast-paced development projects.
Netscape used a modified version of Concurrent
Versions System, a source-code control tool freely
available on the Internet. CVS was also the basis for
the tool Microsoft originally used for its daily builds.
CVS is not particularly advanced and has limitations
for managing the concurrent development of large,
complex systems, such as Communicator 4.0.
Nonetheless, it was useful for a multiplatform com-
pany like Netscape because it runs on Windows,
Macintosh, and Unix. Netscape engineers added their
own Tinderbox and Bonsai tools to CVS to automate
check-in and tracking within Communicator projects.

CVS works by comparing new and old versions of
files being checked in and then creating patches for
the changed code when the developer asks for an
update. It then keeps track of these changes and lets
the developer back up to previous files, if necessary.
The Tinderbox extension was primarily an HTML
page generator that showed the status of all the builds
going on in the company, for all platforms, and who
was checking in which components. When a build
broke (files didn’t compile or link properly or failed a
quick acceptance test), a red box appeared, and the
transgressor was likely to be the person who most
recently checked into that build. Netscape also added
a local newsgroup feature to post all the check-in
information. Developers and testers could view this
information through their browsers.

October 1999 65

Netscape could afford to
be lax about ship dates

because it used the Internet
for distribution.

66 Computer

Daily builds. Microsoft had no hard
rule on how often developers should
check in, but each project had to cre-
ate a build at least daily. Developers
who checked in code that broke the
build had to fix their code immediately
and face penalties, such as become the
build master for the next day (who had
to run tests on everybody else’s code),
wear a dunce cap, or pay a small fine.
Consequently, Microsoft developers
tended to check in and synchronize
their code about twice a week on aver-
age and at least daily in the latter stages
of a project, when there were lots of
bugs to fix.

Netscape developers worked the
same way. The client team relied on the
Bonsai hook to keep track of who

checked in and alert people to problems. The hook
consisted of e-mail notices automatically sent to indi-
viduals who checked in code since the last successful
build. Developers were in essence “on call” until
someone fixed the problem. Bonsai, in combination
with CVS/Tinderbox, made it possible for a relatively
large team to integrate their components in just two
or so hours, on average, rather than in days or weeks.
In 1999, Netscape was also using this tool set to man-
age bug fixes and other code contributions from out-
side developers who were working on the public
source code version of the browser, the Mozilla
release. Lloyd Tabb, who took charge of building the
code management tools, gave this account of the
Bonsai hook:

If you pull a build and it’s not working, you can e-
mail the hook and say, “Hey, what we’ve built today
is a piece of garbage. Could anybody have broken
this?” And the mail will go out to only the people who
are interested parties. That list grows until the fol-
lowing day when the hook is cleared It’s hard
enough getting five people not to break the build.
When you have 120 people, unless you’re all building
together, you don’t ship software on time. If you have
an integration step that takes a week, your cycle time
is a week. Our cycle time was hours. It was a painful
thing for the developers. But it also allowed us to have
our ship time very short.

Daily-build testing
Although both Netscape and Microsoft used daily

builds to integrate components and changes continu-
ously, the companies differed in the way they tested
the builds. Microsoft developers generally went
through the following procedure, which Netscape did
not have the resources to do:

• create a build and private release for themselves
and their buddy testers;

• run a quick regression test (some called it a smoke
test) that checked whether existing functions con-
tinued to work after adding new code; and

• have their buddy testers test the code, usually
from a user’s perspective.

Microsoft developers and testers normally went
through the procedure before developers checked their
code into the project build. The build team then ran
the quick regression test again as new files came in. On
at least one build per week, testers ran more extensive
tests to ensure that features were working properly.
Because of this extra layer of automated and manual
testing, Microsoft was more likely than Netscape to
catch and correct technical errors and usability prob-
lems before doing the required daily builds.

Multiplatform support. Cross-platform products pro-
vided strategic leverage for Netscape, but keeping so
many versions of the code working on the daily builds
was difficult. Tabb counted about 20 operating sys-
tem versions on which they had to test the client. In
addition, during 1997 and 1998, Netscape generally
had two teams working on the same code base in par-
allel, such as the client 4.5 and 5.0 teams. Netscape
had to use CVS to track different versions of the same
product. It also used separate “branches” to build for-
eign language versions of its products, though sepa-
rate teams handled this localization process.

Netscape groups building servers and shared com-
ponents also created frequent builds—at least once a
week and usually daily. But their rules and tools var-
ied somewhat from those of the client product divi-
sion. There was no daily or even weekly build of
SuiteSpot. Instead, because SuiteSpot was actually a
collection of separate server products (even though
Netscape sold it as one product), server QA teams did
spot-checking to make sure that components in the
different servers worked together and with the client.
A small test group in server marketing tested the com-
mon install features for SuiteSpot.

Some individual server teams preferred not to build
every day because of the overhead involved. Nor did they
use tools like Bonsai to keep people who might have bro-
ken the build on the hook. They did use CVS/Tinderbox
to track check-ins and notify people of problems.

Code reviews. Netscape had no set policy with
regard to how often or how intensively developers
should inspect their code or designs. Some compo-
nents received very light reviews; others received fairly
intensive scrutiny. It depended on the project and the
manager. Microsoft was only a little better at this:
Shared components got reviewed at the design and
coding phases, and most code went through at least a
buddy review. But the intensity varied by project.

Microsoft and Netscape
developers both intended to

synchronize their code at
least daily in the latter

stages of a project.

Slivka noted that the early IE groups used code reviews
much more extensively—at each code check-in.

By the time Netscape teams were working on the last
beta, the project or release manager had to approve
every change, and one or two senior developers usually
reviewed every code change. Netscape managers
expected developers to add comments to their code, not-
ing who reviewed it and when. For bug fixes, a tracking
tool tagged each bug with a number and kept records of
code changes, who checked in the code, and when.

Milestones
Milestones were important stabilization points as

well as good progress indicators. For client develop-
ment, Netscape’s Toy focused on two targets: the first
alpha (internal beta) release and the first public beta.
At the project’s start, the team made a rough deter-
mination of when they wanted the first public beta
and worked backward to set other key milestones.

Though Netscape projects usually had a feature-com-
plete milestone scheduled along with the first or second
beta release, this milestone was not rigid. Toy explained
why Netscape was so flexible with its milestones:

You can’t ship a release without features getting added,
no matter how fascist you try to be about saying,
“We’re feature-complete, darn it!” Again, we’re
responding to things on the Internet. And so, suddenly,
something that didn’t look like it was going to be impor-
tant for another six to nine months becomes important
yesterday. You’ve got to have a response to it.

Conventional thinking about good software engi-
neering practice says that you should have a more dis-
ciplined process and more rigid schedules so that
managers can plan adequately for debugging and final
testing, which enterprise customers demand. In con-
trast, Netscape, like Microsoft and other PC software
companies, chose to let their feature sets evolve and
their milestones slip because the competition, tech-
nology, and market required it. There was no point
shipping a product on time if it was obsolete or con-
tained the wrong features.

Bob Lisbonne, who headed Netscape client devel-
opment after Meredith, contrasted traditional soft-
ware development (along the waterfall model) to the
faster-paced requirements of the Internet world:

Traditionally, you have a complete market require-
ments document that’s a research project in and of
itself. [It’s] handed off to ... developers to do a product
requirements document or product specification,
which is then implemented according to a bottom-up
schedule, a big project-management task. That just
doesn’t work in the Internet world. There are too many
bends in the road ... So we pursue several milestones in

parallel. There’s almost an alpha and a
beta of the marketing requirements, and
developers are working on specs well
before a final marketing requirements
document is done. Likewise, developers
are implementing features well in advance
of formal schedules being built for every
piece of the product. And part of
Netscape’s ... nimbleness, which I think
is part of its success in the market, is because we
approach product development in that fashion. We are
open and receptive to considering course corrections or
other changes midstream.

Netscape’s server groups made midproject changes
in their feature sets and objectives as well, although
too many major feature changes could destabilize a
server product and make it difficult to sell to enterprise
customers. Nor did the server groups have an alpha
release milestone because Netscape’s internal infor-
mation systems organization would not use a new
server product until it was further along in develop-
ment. Instead, Netscape relied less on broad public
betas and more on intensive field tests to examine the
quality of the server code before the final releases.

Final-product stabilization
Shipping the final version of a software product

requires tracking down, prioritizing, and fixing as
many serious bugs as possible without introducing
more bugs with each line of changed code. Many PC
software engineers and testers, including people at
Netscape and Microsoft, call this final debugging a
stabilization phase. The term “stabilization” recog-
nizes a certain reality: Given the freedom of develop-
ers to make so many late changes in a project, it is
generally impossible to eliminate all bugs, but pro-
jects should reduce major bugs to a low and stable
level before making the decision to ship.

In the client area, like Microsoft, Netscape allowed
only two or three weeks for final stabilization.
Managers relied on the daily builds, multiple beta
releases, and internal QA testing to find bugs, and they
expected developers to fix problems as they surfaced.
The QA team also developed plans for functional test-
ing along with the beta release plans.

Mark Tompkins was a 20-year veteran of IBM and
Tandem who headed QA for Netscape’s client division
before moving to the application products division in
May 1998. He stated that it took two to three days to
test the client on one platform, such as Windows.
Because they released on Unix and on the Macintosh,
managers allotted a week to functional testing. After
the code-complete milestone, the client division allo-
cated two weeks of final testing—running the functional
tests as well as regression tests on bug fixes to make sure

October 1999 67

Projects should reduce
major bugs to a low and

stable level before making
the decision to ship.

68 Computer

the fixes worked and did not break exist-
ing functionality. They then shipped the
final beta and repeated the process for
the final release. Tompkins briefly out-
lined the steps to final stabilization:

There’s a feature-complete date that pre-
cedes ... the beta 1 schedule We’re test-
ing before feature-complete also, so
we’re testing in parallel here and our test-
ing is causing bugs to be found We get
to a time frame that is a couple weeks
before beta, where we really tighten the
screws down and we really look at every
fix we’ve put in because this is our sta-
bilization period We will continue to
take fixes but we’ll take fewer fixes
because we don’t want to destabilize

That’s our [ideal] process: feature-complete, no new fea-
tures, fix as many bugs as possible, tighten down within
two weeks, fix only the most significant bugs with the
objective of not destabilizing it.

Bug tracking. To aid in stabilization, developers and
QA engineers tracked basic bug statistics such as the
number of new bugs opened, bug close rates, fix ver-
sus invalid rates (some bugs are declared invalid or
“nonbugs”), won’t-fix numbers, and number of bug
fixes verified by QA. Most groups used the commer-
cial Scopus tool to track bug data (it also tracked cus-
tomer calls to technical support).

Netscape team leaders held bug meetings or bug
counsels about once a week after they moved into the
development phase. In a project’s last days, groups
tended to have these meetings once a day and some-
times twice a day to prioritize bugs and make decisions
on what to fix. The project or release manager gener-
ally led the meetings, which brought together repre-
sentatives from development, QA, and marketing.

Netscape used five bug categories—critical, major,
normal, minor, and trivial. Engineers (usually from
QA) who found the bugs classified them and entered
them into the database. In the client division, mar-
keting also kept a separate list of its “top 10 bugs” as
reported by customers and passed this data over to
QA. In the ship-decision meetings at the end of a pro-
ject, which some groups called “certification meet-
ings,” QA managers went over these bug statistics and
trend lines with the project manager and senior exec-
utives. They debated the product’s readiness for man-
ufacturing (creation of diskettes or CDs or certified
e-copies for Web-based distribution). The groups then
typically stabilized a release for one platform first
(such as Windows or Unix) and later shipped the other
versions within a month. Tompkins spoke about the
fast pace of development:

Speed is very, very important in this market twice-
a-day meetings and the decisions that get made very
quickly, the empowerment at the lower levels It
almost spins your head how quick it can be.

Final release. The decision making on the final
release thus combined several factors. There was usu-
ally pressure to ship as well as pressure not to ship
buggy products. Compared with Microsoft, Netscape
managers did not have much historical data such as
expected bug rates or bug trends given certain size
systems or likely problem areas in the code. And, of
course, late feature additions got much less testing
than features built early in the project. These prob-
lems were common in new software companies, espe-
cially those racing on Internet time to get new
products and technologies to market.

T he synchronize and stabilize process works well
for the Internet’s very fast cycle times and high
degree of uncertainty in market requirements.

Netscape’s loose attitude toward project milestones
such as feature-complete and beta deadlines had some
costs: Being “slightly out of control” strained testers
and the testing process, and strained technical support
and customer patience as well. But this development
style, aided by homegrown tools and a few rigid
process rules such as daily builds and the periodic sta-
bilizations that accompanied alpha and beta releases,
also had advantages. This process gave Netscape and
Microsoft an effective mechanism to coordinate large
numbers of developers and testers, and it provided
great flexibility in controlling even late design changes.

In comparison with Microsoft, Netscape was not
unique or particularly refined in its development prac-
tices, but it was effective and efficient despite—or per-
haps because of—its informality and occasional lack
of discipline. Netscape’s product teams were innova-
tors in Internet technology. They also did what was
required to deliver complex software products and ser-
vices to new markets. They were flexible and fast as
well as creative when these characteristics were impor-
tant to success, and they paid more attention to qual-
ity and schedules when and where these became more
important goals, such as for enterprise customers buy-
ing server suites and intranet/extranet packages. Both
Netscape and Microsoft had the ability to adapt rapidly
to change and to introduce more process discipline over
time. These are two capabilities that we think are crit-
ical for coping with the demands of product develop-
ment in any fast-paced, unpredictable marketplace.v

Acknowledgments
We thank all the current and former engineers and

managers at Netscape and Microsoft, who graciously

The synchronize and
stabilize process works well

for the Internet’s very fast
cycle times and high degree

of uncertainty in market
requirements.

answered questions about development practices. For
Microsoft, thanks especially to Steve Ballmer, Dave
Moore, Max Morris, and Ben Slivka. For Netscape,
thanks especially to Marc Andreessen, Jim Barksdale,
Alex Edelstein, Julie Herendeen, Ben Horowitz, Tim
Howes, Joy Lenz, Bob Lisbonne, Debby Meredith,
Jon Mittlehauser, Lou Montulli, Tom Paquin, John
Paul, Greg Sands, Rick Schell, David Stryker, Lloyd
Tabb, Mark Tompkins, Aleks Totic, Michael Toy, and
Bill Turpin.

References
1. M.A. Cusumano and R.W. Selby, Microsoft Secrets:

How the World’s Most Powerful Software Company
Creates Technology, Shapes Markets, and Manages Peo-
ple, Free Press/Simon & Schuster, New York, 1995, pp.
187-326.

2. M.A. Cusumano and R.W. Selby, “How Microsoft
Builds Software,” Comm. ACM, June 1997, pp. 53-61.

3. V.R. Basili and A.J. Turner, “Iterative Enhancement: A
Practical Technique for Software Development,” IEEE
Trans. Software Eng., Vol. SE-1, No. 4, Dec. 1975, pp.
390-396.

4. B.W. Boehm, “A Spiral Model of Software Development
and Enhancement,” Computer, May 1988, pp. 61-72.

5. R. Verganti, A. MacCormack, and M. Iansiti, “Rapid
Learning and Adaptation in Product Development: An
Empirical Study of the Internet Software Industry,” Proc.
5th Int’l Product Development Management Conf.,
Politecnico di Milano, Milan, Italy, 1998, Vol. 2, pp.
1063-1080.

Michael A. Cusumano is the Sloan Distinguished Pro-
fessor of Management at the MIT Sloan School of
Management, where he teaches courses on strategy
and the software business. He is the author of five
books. Competing on Internet Time was named one
of the top 10 books of 1998 by Business Week, and
Microsoft Secrets has been translated into 14 lan-
guages. Cusumano consults for software producers
worldwide, writes a monthly column for Computer-
world, is chairman of the board for the Sloan Man-
agement Review, and sits on several corporate boards,
including NetNumina Solutions (middleware soft-
ware) and Marbles Inc. (real-time wireless software).
He holds a PhD in Japanese management studies from
Harvard University and completed a postdoctoral fel-
lowship at the Harvard Business School in produc-
tion/operations management. Contact Cusumano at
cusumano@mit.edu.

David B. Yoffie is the Max and Doris Starr Professor
of International Business Administration and co-chair
of the Competition and Strategy Department at the
Harvard Business School. He is the editor of Com-

peting in the Age of Digital Convergence and author
or coauthor of several other books, including Strate-
gic Management in Information Technology (Pren-
tice Hall, 1994) and Beyond Free Trade (Harvard
Business Press, 1993). He consults widely with cor-
porations around the world in competitive strategy
and international competition and serves on the Board
of Directors of Intel Corp., the National Bureau of
Economic Research, and several other high-tech com-
panies. He received a PhD in political science from
Stanford University.

October 1999 69

Writers
We welcome submissions. For detailed
information, write for a Contributors’ Guide
(computer@ computer.org) or visit our Web site:
http://computer.org/computer/.

News Ideas
Contact Lee Garber at l.garber@computer.org with
ideas for news features or news briefs.

Products and Books
Contact Kirk Kroeker at k.kroeker@computer.org
with product announcements. Contact Jason
Seaborn at j.seaborn@computer.org with book
announcements.

Letters to the Editor
Please provide an e-mail address or daytime phone
number with your letter. Send letters to Computer
Letters, 10662 Los Vaqueros Circle, Los Alamitos,
CA 90720; fax (714) 821-4010; computer@
computer.org.

On the Web
Visit http://computer.org for information about
joining and getting involved with the Society and
Computer.

Magazine Change of Address
Send change-of-address requests for magazine
subscriptions to address.change@ieee.org. Make
sure to specify Computer.

Missing or Damaged Copies
If you are missing an issue or received a damaged
copy, contact membership@computer.org.

Reprint Permission
To obtain permission to reprint an article, contact
William Hagen, IEEE Copyrights and Trademarks
Manager, at whagen@ieee.org. To buy a reprint,
send a query to computer@computer.org or a fax
to (714) 821-4010.

Innova t ive t echno logy for comput er prof ess iona ls

How to Reach Computer

