
26	 IEEE Software | published by the IEEE computer societ y � 074 0 -74 5 9 /12 / $ 31. 0 0 © 2 012 I E E E

FOCUS: lean software development

The term “lean” was first applied
publicly to a production management
process and then to product develop-
ment at MIT during the mid-1980s
(for a history of lean in the operations
management literature, see Matthias
Holweg’s “The Genealogy of Lean Pro-
duction”1). John Krafcik, currently the
CEO of Hyundai Motor America, was
the first American engineer hired by
Toyota to work in the NUMMI (New
United Motor Manufacturing, Inc.) as-
sembly plant in California, a joint ven-
ture with General Motors. He came
to the MIT Sloan School of Manage-
ment in 1986 to do a master’s degree

and thesis under my (Michael’s) super-
vision, after I had just published The
Japanese Automobile Industry in 1985.
I had reported that Toyota, using tech-
niques that had evolved since the late
1940s, was producing automobiles
with roughly half the number of labor
hours as the Big Three US automakers
with much faster inventory turns and
higher quality. Nissan was not far be-
hind Toyota. Encouraged by MIT’s
International Motor Vehicle Program
(IMVP) research director, James Wom-
ack, Krafcik launched a survey to com-
pare auto assembly plants around the
world. In 1988 companion articles in

Sloan Management Review, I sum-
marized my findings while Krafcik at-
tempted to generalize Toyota’s man-
agement philosophy and presented his
own data showing Japanese superior-
ity. Krafcik coined the term “lean” as
a contrast to a Ford-style “buffered”
mass production system.2

Toyota’s techniques dramatically
reduced in-process and final invento-
ries, expanding worker responsibili-
ties to operate more machines, as well
as enabling more assembly line work-
ers to build in quality. A key element
was that Toyota reversed the flow of
information signals (then in the form
of Kanban cards) controlling produc-
tion operations. This change gave To
yota factories the ability to make small
batches of components “just in time”
(JIT) for final assembly and shipment
to dealers, while eliminating most of
the “just in case” in-process and fi-
nal inventories. The basic philosophy
was to “pull” materials and compo-
nents through the production system
as needed in a continuous flow, rather
than “push” them through and stock-
pile using fully predetermined produc-
tion plans. The terms “lean” and “JIT”
were later popularized by MIT’s global
best-seller The Machine That Changed
the World (Rawson, 1990). The au-
thors used the term “lean” to describe
any efficient management practice that
minimized waste, including in prod-
uct development, where Japanese au-
tomakers had achieved shorter leader
times (by about one-third) and fewer
engineering hours (by about half) com-
pared to US and European projects.
(The more detailed research was done
at Harvard Business School by IMVP
research affiliates Kim Clark and Taka-
hiro Fujimoto, published as Product
Development Performance [Harvard
Business School, 1991].)

Some similarities between Japanese

Lean Software
Development:
A Tutorial

Mary Poppendieck, Poppendieck.LLC

Michael A. Cusumano, Massachusetts Institute of Technology

// This tutorial describes where lean software

development comes from, what it means, how it

relates to well-known agile development practices,

and how it is likely to evolve in the future. //

	 september/october 2012 | IEEE Software � 27

management and PC-style software
development were becoming apparent
by the mid-1990s. For example, in Mi-
crosoft Secrets (Free Press, 1995), we
(Michael and coauthor Richard Selby)
noted a similarity in the philosophy
behind Microsoft’s daily builds, where
engineers had to stop and fix bugs on a
daily basis (we dubbed this the “synch
and stabilize” process), and Toyota’s
JIT production philosophy, where
workers stopped assembly lines when-
ever they detected problems to fix them
immediately. This book did not use
the term “lean” for software develop-
ment; we were thinking mainly about
the common application of a JIT engi-
neering and quality-control practice,
as well as the reduced levels of bureau-
cracy and staffing in Microsoft com-
pared to companies such as IBM. To
dive deeper into product development
in the auto industry, along with an MIT
doctoral student (Kentaro Nobeoka) I
(Michael) launched another major re-
search effort, summarized in the book
Thinking beyond Lean (Free Press,
1998). This book also built on a pub-
lication by James Womack and Daniel
Jones, Lean Thinking (Simon & Schus-
ter, 1996), which attempted to gener-
alize lean practices and applications.
Thinking beyond Lean focused on
newer approaches to product develop-
ment, emphasizing the systematic reuse
of product platforms and major com-
ponents, as well as other techniques,
such as short, overlapping phases (con-
current engineering) to reduce calendar
time and engineering hours, but it only
included a brief discussion of software
development.

The popularization of the term
“lean” and its association with “ag-
ile” for software product develop-
ment seems to have come mainly from
later efforts, such as those of one of us
(Mary) and Tom Poppendieck in the

book, Lean Software Development
(Addison-Wesley, 2003). In common
with the MIT and IMVP researchers,
we also emphasized eliminating waste
and bureaucracy in product develop-
ment, encouraged learning through
short cycles and frequent builds, and
promoted late changes and fast itera-
tions, with feedback pulling changes
into a product, rather than require-
ments documents and rigid plans push-
ing development work forward.

Authors who have used the term
“lean” with reference to software de-
velopment all seem to have stressed
the difference between older and more
labor-intensive, bureaucratic, push-
style methods, initially associated with
the mainframe computer business,
and newer, less bureaucratic, iterative
or incremental, and flexible methods.
There clearly are many common ele-
ments between Toyota-style lean pro-
duction and Microsoft-style iterative

or agile development (before the Win-
dows teams became inordinately large
in the late 1990s and early 2000s),
even when we look at specific prac-
tices. My (Michael’s) 2010 book sum-
marized some of these similarities un-
der the principle of “pull, don’t just
push” (see Table 1).

Early use of the term “lean” no
doubt leveraged the popularity of Jap-
anese management techniques, but the
emphasis has always been on reducing
waste in terms of time and staffing, fo-
cusing on value for the customer, the
product, and the enterprise, as well as
stressing the benefits of a more flex-
ible, iterative, lightweight development
process. We also see this orientation
in XP and Scrum.3 These approaches,
referred to as iterative, incremen-
tal, or agile, encompass a set of tech-
niques for software development that
are less sequential or “waterfall-ish”
as well as bureaucratic and slow, and

Ta
b

l
e

 1 Process comparison of Toyota and Microsoft.

Toyota-style “lean” production
(manual demand-pull with Kanban cards)

1990s Microsoft-style “agile” development
(daily builds with evolving features)

JIT “small lot” production Development by small-scale features

Minimal in-process inventories Short cycles and milestone intervals

Geographic concentration—production Geographic concentration—development

Production leveling Scheduling by features and milestones

Rapid setup Automated build tools and quick tests

Machine and line rationalization Focus on small, multifunctional teams

Work standardization Design, coding, and testing standards

Foolproof automation devices Builds and continuous integration testing

Multiskilled workers Overlapping responsibilities

Selective use of automation Computer-aided tools, but no code generators

Continuous improvement Postmortems, process evolution

Source: M. Cusumano, Staying Power, Oxford, 2010, p. 197.

28	 IEEE Software | www.computer.org/software

FOCUS: Lean software development

have become commonplace around the
world owing to the benefits they offer.4

Lean Software
Development
This leads to the more general issue
of whether or not it is even appropri-
ate to apply the principles behind lean
production to product development
or software engineering. In fact, we

have frequently encountered nega-
tive reactions to this with comments
such as, “Development is not at all
like manufacturing.” And, indeed, if
lean is thought of as a set of practices,
it doesn’t translate well from opera-
tional to development environments.
However, if lean is thought of as a set
of principles rather than practices, then
applying lean concepts to product de-
velopment and software engineering
makes more sense and can lead to pro-
cess and quality improvements.

In fact, the idea of applying lean
principles to software development is
almost as old as the term “lean” itself.
In the 1990s, Robert Charette used the
term “lean development” to refer to a
risk management strategy that brings
about dynamic stability in organiza-
tions by making them more agile, re-
silient, and change tolerant. In 2002,
Charette wrote “Challenging the Fun-
damental Notions of Software Develop-
ment,” a piece that is as wise today as it
was a decade ago.5 In it, he provides an
excellent summary of the main points
of this article: “As Drucker pointed out
long ago, a business’s sole purpose is to
create and serve the customer. In this
spirit, [lean development]’s focus is not
on the development process per se, but

on how to use IT to create value for the
customers…. Thus lean development is
not a software engineering methodol-
ogy in the conventional sense. It’s re-
ally a synthesis of a system of practices,
principles, and philosophy for building
software systems for a customer’s use.”

In the book, Lean Software De-
velopment (Addison-Wesley, 2003)
we (Mary and coauthor Tom) also

emphasized seven principles of lean
software development (which we later
modified slightly, based on subse-
quent experience):

•	 optimize the whole,
•	 eliminate waste,
•	 build quality in,
•	 learn constantly,
•	 deliver fast,
•	 engage everyone, and
•	 keep getting better.

These principles are used to frame
the discussion about what product de-
velopment practices might be appropri-
ate for, depending on the unique situa-
tion of each organization.

Optimize the Whole
Lean software development should be
founded on a deep understanding of
a job that customers would like done
and how this job might be mediated by
software. Discovering what customers
care about and what they will value is
not a simple process, especially because
software rarely has value in and of it-
self. The value of software is delivered
in the context of a larger system: an au-
tomated car, a website for buying prod-
ucts, an automated order fulfillment

process, and so on. Moreover, the value
of software isn’t derived solely from
the development phase; design and de-
ployment are fundamental to its value.
Finally, the value of software is rarely
limited to a single time-bound effort;
the capability to modify a code base
over time tends to be a dominant factor
in its overall value.

Eliminate Waste
In lean terms, “waste” is anything that
doesn’t either add customer value di-
rectly or add knowledge about how
to deliver that value more effectively.
Some of the biggest causes of waste in
software development are unnecessary
features, lost knowledge, partially done
work, handovers, and multitasking, not
to mention the 40 to 50 percent of de-
velopment time spent finding and fix-
ing defects. Many of these wastes have
their roots in the large batches of par-
tially done work created in sequential
development processes, in the bound-
aries between different functions, and
in the delays and knowledge lost when
work crosses these boundaries. When
organizations look at the flow of value
across the entire value stream, causes of
waste are more easily exposed and ad-
dressed, much as in a JIT pull system
for manufacturing.

Build Quality In
Microsoft’s synch and stabilize pro-
cess seemed to be a dramatic departure
from the prevailing process of waiting
until the end of a development cycle
before integrating small units of soft-
ware into a large system. But, in fact,
continuously integrating small units of
software into larger systems has long
been held to be best practice, even
though it might not have been com-
mon practice. As long ago as 1970,
IBM’s Harlan Mills successfully devel-
oped an approach he called “top-down
programming”—a process whereby
modules are integrated into the overall
system as they are written, rather than

If lean is thought of as a set of practices,
it doesn’t translate well from operational

to development environments.

	 september/october 2012 | IEEE Software � 29

at the end of development. In his 1988
book Software Productivity (Dorset
House), he noted, “My principal crite-
rion for judging whether top down pro-
gramming was actually used is [the] ab-
sence of any difficulty at integration.”

Learn Constantly
In the end, development is all about
creating knowledge and embedding
that knowledge in a product. Lean de-
velopment recommends approaching
this in two different ways, depending
on the context.

The first is to explore multiple op-
tions for expensive-to-change deci-
sions such as fundamental architecture,
choice of language, design language for
user interaction, and so on. Delay criti-
cal decisions to the last responsible mo-
ment, and then make decisions based
on the best available knowledge at the
time. Because multiple options have
been explored, there will always be an
alternative that will work, and the op-
tion that best optimizes the overall sys-
tem can be chosen. This is often called
a “learn first” approach.

The second way is to build a mini-
mum set of capabilities to get started,
followed by frequent delivery, while
using feedback from real customer
experience to make product content
decisions. This continuous learning
process will minimize the effort spent
developing features that customers
don’t find valuable.

Although the “learn first” approach
might seem diametrically opposed to
the “learn constantly” approach, they
can be used together effectively. The key
is to use options and constraints to drive
critical decisions while recognizing that
the content of most software systems
will change constantly over time.

Deliver Fast
In many lean development environments,
production releases occur frequently—
weekly, daily, even continuously. Mistake-
proofing mechanisms necessary for such

frequent deployment have dramatically
improved quality while eliminating the
large regression overhead formerly asso-
ciated with releases. Of course, existing
code bases can be riddled with defects,
and small perturbations can have serious
unintended consequences, but many or-
ganizations have discovered how to cre-
ate test harnesses that can automatically
detect most defects introduced by small
changes. Thus as an industry, we have
moved much closer to Harlan Mills’s
ideal.

When software is delivered quickly,
thinking about software development
as a project is an inappropriate meta-
phor. It’s much better to think of soft-
ware as a flow system where software
is designed, developed, and delivered in
a steady flow of small changes. This is
fundamentally different from thinking
about software development as a proj-
ect to be completed, or even thinking
about software as a series of annual or
semiannual releases.

Rapid delivery should not be isolated
to software development; flow should
happen within the overall product de-
velopment cycle, of which software is
one aspect. Embedded software devel-

opment, for example, usually takes on
the flow characteristics of the product
it’s embedded in. A good place to look
for more information on product devel-
opment flow is in Principles of Product
Development Flow by Don Reinertsen
(Celeritas Publishing, 2009).

Engage Everyone
When software is thought of as some-
thing that grows continually over time,
and its development is conceived of as

a flow process, a fundamentally differ-
ent organizational structure is often
required. Instead of placing software
development in a separate department
called “IT,” software development
tends to be thought of as product de-
velopment and located in line business
units. Responsibility for discovering,
creating, and delivering value falls to
a team that encompasses the complete
value stream. Thus a value stream
team that includes software develop-
ment will almost certainly include ad-
ditional functions; in fact, it will prob-
ably look like a miniature version of
a business. It will include people who
understand customers, designers, de-
velopers, testers, operations, support,
and perhaps finance.

Even when software development
occurs in a separate organization,
lean practices encourage teamwork
among engaged people who are em-
powered to make decisions appropri-
ate to their level. Although some so-
called lean implementations appear
to emphasize processes over people,
these represent a misunderstand-
ing of lean principles. Empowering
people, encouraging teamwork, and

moving decision-making to the low-
est possible level are fundamental to
any lean implementation.

Keep Getting Better
In their September 1999 Harvard Busi-
ness Review article “Decoding the
DNA of the Toyota Production Sys-
tem,” Steven Spear and Kent Bowen
point out that at Toyota, every work
system is improved constantly, us-
ing the scientific method, under the

Even when software development
occurs in a separate organization,

lean practices encourage teamwork.

30	 IEEE Software | www.computer.org/software

FOCUS: Lean software development

guidance of a teacher, at the lowest
possible level of the corporation. Lean
thinking holds that specific practices,
no matter how well they seem to work
in other situations, are seldom the best
solution to the problem at hand. There-
fore lean thinking would recommend
that organizations starting with prac-
tices such as XP or Scrum (or a com-
bination) should think of them as a
starting point that will be adapted and
improved over time by the people and
teams doing the work.

Agile Software
Development
To put the concept of lean software
development in context, it’s useful to
point out similarities and differences
with agile software development. “Ag-
ile,” a common term in everyday lan-
guage today, was used in the 1990s to
refer to flexible production systems.6,7
It was then applied to software de-
velopment in February 2001 when a
group of like-minded software experts
produced the Manifesto for Agile Soft-
ware Development.8 The manifesto
stated that when developing software,
it’s preferable to value individuals and

interactions over processes and tools;
working software over comprehensive
documentation; customer collabora-
tion over contract negotiation; and re-
sponding to change over following a
plan. These precepts were a reaction
against common software development
practices at the time, and they’re cer-
tainly compatible with lean principles.
However, we see lean principles as pro-
viding more comprehensive guidance
for choosing development practices

appropriate for individual contexts and
situations that expand beyond soft-
ware development.

XP
The first agile process to become popu-
lar was XP, defined in the 2000 book
Extreme Programming Explained
(Addison-Wesley) by Kent Beck. XP fo-
cuses on several technical practices, the
most notable being test-driven develop-
ment. TDD results in a unit test har-
ness, which is run frequently, making it
possible to detect defects almost imme-
diately after they are injected into the
code base. This approach has proven
to be an effective first step in mistake-
proofing a code base. Over time, meth-
ods have developed, keeping the test
harness runtime to a minimum while
factoring the tests so they don’t grow
beyond maintainable proportions.

Eventually, the concept behind TDD
was expanded to include automated
product specifications, which set the
stage for automated regression testing.
New techniques such as Framework for
Integrated Testing (FIT)9 and its part-
ner Fitness, acceptance test-driven de-
velopment (ATDD), behavior-driven

development (BDD), and specification
by example (SBE)10 emerged to tackle
this highly domain-dependent prob-
lem. Automated testing frameworks are
currently the most common technique
used to implement the lean principle of
building quality in.

Scrum
The next agile process to gain traction
was Scrum, defined in the book Agile
Software Development with SCRUM

(Prentice Hall, 2001) by Ken Schwa-
ber and Mike Beedle. Over the next
few years, Scrum became increasingly
popular as a method to replace tradi-
tional project management with devel-
opment iterations of one month (and
later two weeks). Thus it has been an
excellent way of introducing the lean
concept of flow into software develop-
ment. Because of Scrum’s widespread
popularity, it’s often equated with ag-
ile. However, it doesn’t claim to be a
complete methodology—it lacks tech-
nical practices such as those found
in XP and is generally limited to the
software development portion of the
value stream. Nevertheless, these early
agile processes proved that incremen-
tal delivery of software was a viable
approach for many domains, and that
quality could be significantly improved
through a disciplined approach to test-
first development.

Roles
Both Scrum and XP are sets of practices
aimed at optimizing the software devel-
opment process as a separate activity
in the value stream. They each define
a role—the “customer” in XP and the
“product owner” in Scrum—to own
the responsibility for deciding what
needs to be done. Development team
members aren’t generally expected to
assume the responsibility for the over-
all success of their work; that respon-
sibility is delegated to the customer or
product owner roles. In practice, the
implementation of these roles has fre-
quently led organizations to violate the
lean principle of optimizing the whole.

Lean software development, as we
view the term, places software devel-
opment as a step in a product value
stream, regards developers as members
of a larger product team, and expects
all product team members to become
engaged in the overall success of the
product. There’s no product owner or
customer roles in lean development.
Lean development teams are led by

Early agile processes proved that
incremental delivery of software was a

viable approach for many domains.

	 september/october 2012 | IEEE Software � 31

someone in a role such as chief engi-
neer (Toyota), program manager (Mi-
crosoft), or product champion (3M),
whose roles are similar to an entrepre-
neur leading a startup business. Al-
though these roles might seem similar
to the customer or product owner roles
in agile software development, they’re
quite different in practice. A chief en-
gineer has overall responsibility for a
complete product, including its success
in the marketplace, and engages every-
one on a multidiscipline product team
in delivering that success. There’s no
intermediate role prioritizing work for
a separate software development team.

Kanban
In his 2009 book, Scrumban: Essays
on Kanban Systems for Lean Soft-
ware Development (Modus Coope-
randi Press), Corey Ladas described
how to use a Kanban (card) system to
both track and limit work in progress
in a software development environ-
ment. This was followed in 2010 by
David Anderson’s book Kanban (Blue
Hole Press, 2010), which describes
how to use Kanban as the basis of an
effective, flow-based software devel-
opment system.

In a Kanban system, the value
stream is mapped on a chart (prefer-
ably a physical chart on a wall) with
columns for each step in the value
stream. Kanban cards (tokens for a
piece of work) are placed in the col-
umn, representing the current state of
the work. When work meets specified
policies for being complete, the Kan-
ban token moves to the next column,
and over time, the card moves from left
to right across the board—you visually
see work flow through the system. The
key to a Kanban system is that work in
any column (representing a step in the
value stream) is limited. This means
that within any value-adding activity,
there’s a limited amount of work; more-
over, the entire system contains a lim-
ited amount of work.

Kanban systems provide a good
framework for organizations getting
started with lean principles. Because
there are very few rules or roles, Kan-
ban systems require thoughtful consid-
eration and adaptation. For example, a
Kanban board might start out in a soft-
ware development environment, but
can easily expand to include more steps

in the value stream, such as marketing
and operations. This makes Kanban a
good tool for value stream teams. Kan-
ban systems specifically focus on the
flow of value; in fact, flow and bottle-
necks are the main topic of daily meet-
ings. Finally, Kanban board layouts
and policies are expected to be evalu-
ated and improved on a regular basis.
For an excellent case study of the use
of a Kanban system for a large govern-
ment contract, see Henrik Kniberg’s
book Lean from the Trenches (Prag-
matic Bookshelf, 2011).

Trends
Throughout the last decade, increas-
ingly sophisticated tools have evolved,
making the development process more
mistake-proof while safely allowing
the delivery of a continuous flow of
small features into production. These
tools were initially developed for Web-
based platforms delivering software as
a service.

Continuous Delivery
As early as 2004, a large Web-based
enterprise (which will remain anony-
mous for the purposes of this article)
released to production all of the soft-
ware that had been worked on during
the day at the end of every single day.

A senior manager at this company re-
cently noted that, in his opinion, speed
drives all other lean principles: “If you
deliver daily, waste is exposed almost
immediately; you have no choice but to
build quality in; you learn quickly what
customers value; everyone at every level
is focused on making customers happy;
problems are exposed quickly and so

constant improvement is mandatory;
and finally, optimizing just a part of
the system simply is not an option with
daily deployment.”

In 2011, Jez Humble and David
Farley’s book Continuous Delivery
(Addison-Wesley Professional, 2010)
described the technical practices that
must be in place to enable a continual
flow of new software released to a pro-
duction environment in a safe, defect-
free manner. This book, written for
enterprise IT departments, lays out the
tools, technologies, and organizational
cooperation necessary to achieve the
lean ideal of deploying software safely
to production virtually immediately
after it’s written. Forward-looking IT
departments around the world have
followed this playbook and found that
it takes about a year of hard work to
reach a goal of weekly, daily, or even
continuous delivery.

Lean Startup
Agile methods usually provide for a
customer or customer proxy to di-
rect the work of the software develop-
ment team; however, they provide few
mechanisms to ensure that what the
customer proxy asks for will effectively
address the customer problem, nor do
they typically involve the development

Kanban systems provide a good
framework for organizations getting

started with lean principles.

32	 IEEE Software | www.computer.org/software

FOCUS: Lean software development

team in assuring that the product is a
market success.

In 2011, Eric Reis addressed this
problem in the book Lean Startup
(Crown Business, 2011) where he advo-
cates that companies start with a busi-
ness plan and test the impact of features
on the key assumptions that form the
basis of that plan. In this approach, the
software development team becomes in-
volved in setting up the feedback loops,
such as split tests, necessary to deter-
mine the impact of features. Thus, soft-
ware engineers are typically involved in
the process of validating the value of
new features to customers while mak-
ing adjustments based on this feedback.
Obtaining feature-by-feature feedback
is an effective way for companies tar-
geting a large customer base to validate
the value of various approaches.

Design Thinking
Over the past decade, the epicenter of
software value creation has changed. It
used to be that orchestrating transac-
tions and controlling equipment were
the primary purposes of software. To-
day, new purposes have emerged, such

as providing platforms for two-sided
markets and creating engaging experi-
ences. The most rapidly growing soft-
ware companies provide ecosystems
that attract traffic through their abil-
ity to understand and address an im-
portant customer need that is not be-
ing adequately served. Increasingly,
the design of the customer experience
is a foundational element of such an
ecosystem. At the same time, these
systems tend to use a continuous de-
livery approach rather than a project
approach, so the system architecture
must be designed from the beginning
to support dynamic updating and con-
tinuous change.

A gile development methods
have generally expected sys-
tem architecture and interac-

tion design to occur outside the devel-
opment team, or to occur in very small
increments within the team. Because of
this, agile practices often prove to be
insufficient in addressing issues of so-
lution design, user interaction design,
and high-level system architecture.

Increasingly, agile development prac-
tices are being thought of as good ways
to organize software development, but
insufficient ways to address design.
Because design is fundamentally itera-
tive and development is fundamentally
iterative, the two disciplines suffer if
they are not carefully integrated with
each other. Because lean development
lays out a set of principles that demand
a whole-product, complete life-cycle,
cross-functional approach, it’s the more
likely candidate to guide the combina-
tion of design, development, deploy-
ment, and validation into a single feed-
back loop focused on the discovery and
delivery of value.

References
	 1.	 M. Holweg, “The Genealogy of Lean Produc-

tion,” J. Operations Management, vol. 25, no.
2, 2007, pp. 420–437.

	 2.	 J. Krafcik, “Triumph of the Lean Production
System,” MIT Sloan Management Rev., vol.
30, no. 1, 1988, pp. 41-52.

	 3.	 M. Cusumano, “Extreme Programming
Compared with Microsoft-Style Iterative
Development,” Comm. ACM, vol. 50, no. 10,
2007, pp. 15–18.

	 4.	 M. Cusumano et al., “Software Development
Worldwide: The State of the Practice,” IEEE
Software, vol. 20, no. 6, 2003, pp. 28–34.

	 5.	 R.N. Charette, “Challenging the Fundamental
Notions of Software Development,” white
paper, IT Metrics and Productivity Inst.,
2003; www.itmpi.org/assets/base/images/
itmpi/privaterooms/robertcharette/
ChallengingtheFundamentalNotions.pdf.

	 6.	 P.T. Kidd, Agile Manufacturing: Forging New
Frontiers, Addison-Wesley, 2004.

	 7.	 R. DeVor, R. Graves, and J. Mills, “Agile
Manufacturing Research: Accomplishments
and Opportunities,” Inst. Industrial Engi-
neers Trans., vol. 29, 1997, pp. 813–823.

	 8.	 K. Beck et al., Manifesto for Agile Software
Development, 2001; http://agilemanifesto.org.

	 9.	 R. Mugridge and W. Cunningham, FIT for
Developing Software, Addison-Wesley, 2005.

	10.	 G. Adzic, Specification by Example, Manning
Publications, 2011.

Mary Poppendieck is retired from 3M and is currently president of
Poppendieck.LLC. Her industry experience includes software develop-
ment, supply-chain management, manufacturing operations, and new
product development. Poppendieck has an MS in mathematics from the
University of Maryland. Contact her at mary@poppendieck.com.

Michael A. Cusumano is the Sloan Management Review Distin-
guished Professor at the Massachusetts Institute of Technology’s Sloan
School of Management, with a joint appointment in MIT’s Engineering
Systems Division. His research interests include technology manage-
ment and strategy, especially in the software business. Cusumano has
a PhD in Japanese studies from Harvard University. Contact him at
cusumano@mit.edu.

A
b

o
u

t
 t

h
e

 A
u

t
h

o
r

s

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

