
Software Evolution and
Configuration Management

Casper Lassenius

26.2.2013

Topics covered

² Evolution processes
§  Change processes for software systems

² Program evolution dynamics
§  Understanding software evolution

² Software maintenance
§  Making changes to operational software systems

² Legacy system management
§  Making decisions about software change

2

Chapter 9 Software
evolution

Software change

² Software change is inevitable
§  New requirements emerge when the software is used;
§  The business environment changes;
§  Errors must be repaired;
§  New computers and equipment is added to the system;
§  The performance or reliability of the system may have to be

improved.

² A key problem for all organizations is implementing and
managing change to their existing software systems.

3

Chapter 9 Software
evolution

Evolution processes

² Software evolution processes depend on
§  The type of software being maintained;
§  The development processes used;
§  The skills and experience of the people involved.

² Proposals for change are the driver for system evolution.
§  Should be linked with components that are affected by the

change, thus allowing the cost and impact of the change to be
estimated.

² Change identification and evolution continues throughout
the system lifetime.

4

Chapter 9 Software
evolution

Change identification and evolution
processes

Change proposalsNew system

Change identification
process

Software evolution
process

5

Chapter 9 Software
evolution

The software evolution process

Release
planning

Change
implementation

System
release

Impact
analysis

Change
requests

Platform
adaptation

System
enhancementFault repair

6

Chapter 9 Software
evolution

Change implementation

Requirements
updating

Software
development

Requirements
analysis

Proposed
changes

7

Chapter 9 Software
evolution

Urgent change requests

² Urgent changes may have to be implemented without
going through all stages of the software engineering
process
§  If a serious system fault has to be repaired to allow normal

operation to continue;
§  If changes to the system’s environment (e.g. an OS upgrade) have

unexpected effects;
§  If there are business changes that require a very rapid response

(e.g. the release of a competing product).

8

Chapter 9 Software
evolution

The emergency repair process

Modify
source code

Deliver modified
system

Analyze
source code

Change
requests

9

Chapter 9 Software
evolution

Agile methods and evolution

² Agile methods are based on incremental development so
the transition from development to evolution is a seamless
one.
§  Evolution is simply a continuation of the development process

based on frequent system releases.

² Automated regression testing is particularly valuable when
changes are made to a system.

² Changes may be expressed as additional user stories.

10

Chapter 9 Software
evolution

Handover problems

² Where the development team have used an agile
approach but the evolution team is unfamiliar with agile
methods and prefer a plan-based approach.
§  The evolution team may expect detailed documentation to support

evolution and this is not produced in agile processes.

² Where a plan-based approach has been used for
development but the evolution team prefer to use agile
methods.
§  The evolution team may have to start from scratch developing

automated tests and the code in the system may not have been
refactored and simplified as is expected in agile development.

11

Chapter 9 Software
evolution

Key points

² Software development and evolution can be thought of as
an integrated, iterative process that can be represented
using a spiral model.

² For custom systems, the costs of software maintenance
usually exceed the software development costs.

² The process of software evolution is driven by requests for
changes and includes change impact analysis, release
planning and change implementation.

12

Chapter 9 Software
evolution

² Modifying a program after it has been put into use.

² The term is mostly used for changing custom software.
Generic software products are said to evolve to create
new versions.

² Maintenance does not normally involve major changes to
the system’s architecture.

² Changes are implemented by modifying existing
components and adding new components to the system.

Software maintenance

13

Chapter 9 Software
evolution

² Maintenance to repair software faults
§  Changing a system to correct deficiencies in the way meets its

requirements.

² Maintenance to adapt software to a different operating
environment
§  Changing a system so that it operates in a different environment

(computer, OS, etc.) from its initial implementation.

² Maintenance to add to or modify the system’s
functionality
§  Modifying the system to satisfy new requirements.

Types of maintenance

14

Chapter 9 Software
evolution

Figure 9.8 Maintenance effort
distribution

Functionality
addition or

modification
(65%)

Fault repair
(17%)

Environmental
adaptation

(18%)

15

Chapter 9 Software
evolution

² Usually greater than development costs (2* to
100* depending on the application).

² Affected by both technical and non-technical
factors.

²  Increases as software is maintained.
Maintenance corrupts the software structure so
makes further maintenance more difficult.

² Ageing software can have high support costs
(e.g. old languages, compilers etc.).

Maintenance costs

16

Chapter 9 Software
evolution

System re-engineering

² Re-structuring or re-writing part or all of a
legacy system without changing its
functionality.

² Applicable where some but not all sub-systems
of a larger system require frequent
maintenance.

² Re-engineering involves adding effort to make
them easier to maintain. The system may be re-structured
and re-documented.

17

Chapter 9 Software
evolution

Advantages of reengineering

² Reduced risk
§  There is a high risk in new software development. There may be

development problems, staffing problems and specification
problems.

² Reduced cost
§  The cost of re-engineering is often significantly less than the costs

of developing new software.

18

Chapter 9 Software
evolution

The reengineering process

Reverse
engineering

Program
documentation

Data
re-engineering

Original data

Program
structure

improvement

Program
modularization

Restructured
program

Re-engineered
data

Re-engineered
program

Original
program

Source code
translation

19

Chapter 9 Software
evolution

Figure 9.12 Reengineering approaches

Automated restructuring
with manual changes

Automated source
code conversion

Restructuring plus
architectural changes

Automated program
restructuring

Program and data
restructuring

Increased cost

20

Chapter 9 Software
evolution

Preventative maintenance by refactoring

² Refactoring is the process of making improvements to a
program to slow down degradation through change.

² You can think of refactoring as ‘preventative maintenance’
that reduces the problems of future change.

² Refactoring involves modifying a program to improve its
structure, reduce its complexity or make it easier to
understand.

² When you refactor a program, you should not add
functionality but rather concentrate on program
improvement.

21

Chapter 9 Software
evolution

Refactoring and reengineering

² Re-engineering takes place after a system has been
maintained for some time and maintenance costs are
increasing. You use automated tools to process and re-
engineer a legacy system to create a new system that is
more maintainable.

² Refactoring is a continuous process of improvement
throughout the development and evolution process. It is
intended to avoid the structure and code degradation that
increases the costs and difficulties of maintaining a
system.

22

Chapter 9 Software
evolution

‘Bad smells’ in program code

² Duplicate code
§  The same or very similar code may be included at different places

in a program. This can be removed and implemented as a single
method or function that is called as required.

² Long methods
§  If a method is too long, it should be redesigned as a number of

shorter methods.

² Switch (case) statements
§  These often involve duplication, where the switch depends on the

type of a value. The switch statements may be scattered around a
program. In object-oriented languages, you can often use
polymorphism to achieve the same thing.

23

Chapter 9 Software
evolution

Legacy system management

² Organisations that rely on legacy systems must choose a
strategy for evolving these systems
§  Scrap the system completely and modify business processes so

that it is no longer required;
§  Continue maintaining the system;
§  Transform the system by re-engineering to improve its

maintainability;
§  Replace the system with a new system.

² The strategy chosen should depend on the system quality
and its business value.

24

Chapter 9 Software
evolution

Figure 9.13 An example of a legacy
system assessment

1
2

3 4
5

6
7

8
9

10

System quality

Bu
si

ne
ss

 v
al

ue
High business value
Low quality High business value

High quality

Low business value
Low quality

Low business value
High quality

25

Chapter 9 Software
evolution

Key points
² There are 3 types of software maintenance, namely bug

fixing, modifying software to work in a new environment,
and implementing new or changed requirements.

² Software re-engineering is concerned with re-structuring
and re-documenting software to make it easier to
understand and change.

² Refactoring, making program changes that preserve
functionality, is a form of preventative maintenance.

² The business value of a legacy system and the quality of
the application should be assessed to help decide if a
system should be replaced, transformed or maintained.

26

Chapter 9 Software
evolution

Configuration Management

² Change management

² Version management

² System building

² Release management

27

Chapter 25 Configuration
management

Configuration management
² Because software changes frequently, systems, can be

thought of as a set of versions, each of which has to be
maintained and managed.

² Versions implement proposals for change, corrections of
faults, and adaptations for different hardware and
operating systems.

² Configuration management (CM) is concerned with the
policies, processes and tools for managing changing
software systems. You need CM because it is easy to lose
track of what changes and component versions have been
incorporated into each system version.

28

Chapter 25 Configuration
management

CM activities
²  Change management

§  Keeping track of requests for changes to the software from customers
and developers, working out the costs and impact of changes, and
deciding the changes should be implemented.

²  Version management
§  Keeping track of the multiple versions of system components and

ensuring that changes made to components by different developers do
not interfere with each other.

²  System building
§  The process of assembling program components, data and libraries, then

compiling these to create an executable system.

²  Release management
§  Preparing software for external release and keeping track of the system

versions that have been released for customer use.

29

Chapter 25 Configuration
management

Configuration management activities

Component
versions

Release
management

Change
proposals

System
releases

Change
management

System
versions

Version
management

System
building

30

Chapter 25 Configuration
management

CM terminology

Term Explanation

Configuration item or
software configuration
item (SCI)

Anything associated with a software project (design, code, test data,
document, etc.) that has been placed under configuration control. There
are often different versions of a configuration item. Configuration items
have a unique name.

Configuration control The process of ensuring that versions of systems and components are
recorded and maintained so that changes are managed and all versions of
components are identified and stored for the lifetime of the system.

Version An instance of a configuration item that differs, in some way, from other
instances of that item. Versions always have a unique identifier, which is
often composed of the configuration item name plus a version number.

Baseline A baseline is a collection of component versions that make up a system.
Baselines are controlled, which means that the versions of the components
making up the system cannot be changed. This means that it should
always be possible to recreate a baseline from its constituent components.

Codeline A codeline is a set of versions of a software component and other
configuration items on which that component depends.

31

Chapter 25 Configuration
management

CM terminology

Term Explanation

Mainline A sequence of baselines representing different versions of a
system.

Release A version of a system that has been released to customers (or
other users in an organization) for use.

Workspace A private work area where software can be modified without
affecting other developers who may be using or modifying that
software.

Branching The creation of a new codeline from a version in an existing
codeline. The new codeline and the existing codeline may then
develop independently.

Merging The creation of a new version of a software component by merging
separate versions in different codelines. These codelines may have
been created by a previous branch of one of the codelines
involved.

System building The creation of an executable system version by compiling and
linking the appropriate versions of the components and libraries
making up the system.

32

Chapter 25 Configuration
management

Change management

² Organizational needs and requirements change during the
lifetime of a system, bugs have to be repaired and
systems have to adapt to changes in their environment.

² Change management is intended to ensure that system
evolution is a managed process and that priority is given
to the most urgent and cost-effective changes.

² The change management process is concerned with
analyzing the costs and benefits of proposed changes,
approving those changes that are worthwhile and tracking
which components in the system have been changed.

33

Chapter 25 Configuration
management

The change management process

Change
requests

Submit
CR

Check CR

Close CR

Implementation
analysis

Cost/impact
analysisAssess CRs

Select CRs Modify
software

Test software

Close CR

Close CRs

ValidInvalid

Pass
Fail

Customer
Customer support

Development

Product development/CCB

Register CR

34

Chapter 25 Configuration
management

Factors in change analysis

² The consequences of not making the change

² The benefits of the change

² The number of users affected by the change

² The costs of making the change

² The product release cycle

35

Chapter 25 Configuration
management

Change management and agile methods
²  In some agile methods, customers are directly involved in

change management.

² The propose a change to the requirements and work with
the team to assess its impact and decide whether the
change should take priority over the features planned for
the next increment of the system.

² Changes to improve the software improvement are
decided by the programmers working on the system.

² Refactoring, where the software is continually improved, is
not seen as an overhead but as a necessary part of the
development process.

Chapter 25 Configuration
management
36

Version management

² Version management (VM) is the process of keeping track
of different versions of software components or
configuration items and the systems in which these
components are used.

²  It also involves ensuring that changes made by different
developers to these versions do not interfere with each
other.

² Therefore version management can be thought of as the
process of managing codelines and baselines.

37

Chapter 25 Configuration
management

Codelines and baselines

² A codeline is a sequence of versions of source code with
later versions in the sequence derived from earlier
versions.

² Codelines normally apply to components of systems so
that there are different versions of each component.

²  A baseline is a definition of a specific system.

² The baseline therefore specifies the component versions
that are included in the system plus a specification of the
libraries used, configuration files, etc.

38

Chapter 25 Configuration
management

Codelines and baselines

A

L1 L2

A1.1

Ex1 Ex2

A1.2 A1.3

Codeline (A)

B B1.1 B1.2 B1.3

Codeline (B)

C C1.1 C1.2 C1.3

Codeline (C)

Libraries and external components

Baseline - V1

A B1.2 C1.1

L1 L2 Ex1

Baseline - V2

A1.3 B1.2 C1.2

L1 L2 Ex2

Mainline

39

Chapter 25 Configuration
management

Baselines

² Baselines may be specified using a configuration
language, which allows you to define what components
are included in a version of a particular system.

² Baselines are important because you often have to
recreate a specific version of a complete system.
§  For example, a product line may be instantiated so that there are

individual system versions for different customers. You may have
to recreate the version delivered to a specific customer if, for
example, that customer reports bugs in their system that have to
be repaired.

40

Chapter 25 Configuration
management

Version management systems

² Version and release identification
§  Managed versions are assigned identifiers when they are

submitted to the system.

² Storage management
§  To reduce the storage space required by multiple versions of

components that differ only slightly, version management systems
usually provide storage management facilities.

² Change history recording
§  All of the changes made to the code of a system or component are

recorded and listed.

41

Chapter 25 Configuration
management

Version management systems

²  Independent development
§  The version management system keeps track of components that

have been checked out for editing and ensures that changes
made to a component by different developers do not interfere.

² Project support
§  A version management system may support the development of

several projects, which share components.

42

Chapter 25 Configuration
management

Storage management using deltas

Version
1.0

Version
1.1

Version
1.2

Version
1.3

D1 D2 D3

Creation dateVersion sequence

Most recent

V1.3 source
code

Storage structure

43

Chapter 25 Configuration
management

Check-in and check-out from a version
repository

A

C

B X

C

Y

A CB XZ

Y P

R

Q

Version management system

A1.1 C1.1B1.1

Alice Bob

Workspace (U1) Workspace (U2)

check_incheck_in check_out check_out

44

Chapter 25 Configuration
management

Codeline branches

² Rather than a linear sequence of versions that reflect
changes to the component over time, there may be
several independent sequences.
§  This is normal in system development, where different developers

work independently on different versions of the source code and
so change it in different ways.

² At some stage, it may be necessary to merge codeline
branches to create a new version of a component that
includes all changes that have been made.
§  If the changes made involve different parts of the code, the

component versions may be merged automatically by combining
the deltas that apply to the code.

45

Chapter 25 Configuration
management

Branching and merging

V1.0 V1.1 V1.2

V2.2 V2.3

V2.0

V2.1.1 V2.1.2

V2.1 V2.4

Codeline 1

Codeline 2

<branch>

<branch>

<merge>

Codeline 2.1

46

Chapter 25 Configuration
management

Key points

²  Configuration management is the management of an evolving
software system. When maintaining a system, a CM team is put in
place to ensure that changes are incorporated into the system in a
controlled way and that records are maintained with details of the
changes that have been implemented.

²  The main configuration management processes are change
management, version management, system building and release
management.

²  Change management involves assessing proposals for changes from
system customers and other stakeholders and deciding if it is cost-
effective to implement these in a new version of a system.

²  Version management involves keeping track of the different versions
of software components as changes are made to them.

Chapter 25 Configuration
management
47

System building

² System building is the process of creating a complete,
executable system by compiling and linking the system
components, external libraries, configuration files, etc.

² System building tools and version management tools must
communicate as the build process involves checking out
component versions from the repository managed by the
version management system.

² The configuration description used to identify a baseline is
also used by the system building tool.

48

Chapter 25 Configuration
management

Development, build, and target platforms

Development system

Development
tools

Private workspace

Build server
Version

management
system

co

Version management and build server

Target system

Executable system

Target platform

Check-out
(co)

Check-in

49

Chapter 25 Configuration
management

System building

Automated
build system

Source
code files

Data files

Libraries

Configuration
files

Executable
tests

Executable
target system

Test resultsCompilers
and tools

50

Chapter 25 Configuration
management

Build system functionality

² Build script generation

² Version management system integration

² Minimal re-compilation

² Executable system creation

² Test automation

² Reporting

² Documentation generation

51

Chapter 25 Configuration
management

Continuous integration

Check-out
mainline

Build and
test system

Build and
test system

Make
changes

Check-in to
build server

Build and
test system

Commit
changes to VM

Version
management

system

Version
management

system
Build server

Private
workspace

Tests fail

Tests OK

OK

Tests fail

52

Chapter 25 Configuration
management

Daily building

² The development organization sets a delivery time (say 2
p.m.) for system components.
§  If developers have new versions of the components that they are

writing, they must deliver them by that time.
§  A new version of the system is built from these components by

compiling and linking them to form a complete system.
§  This system is then delivered to the testing team, which carries out

a set of predefined system tests
§  Faults that are discovered during system testing are documented

and returned to the system developers. They repair these faults in
a subsequent version of the component.

53

Chapter 25 Configuration
management

Release management

² A system release is a version of a software system that is
distributed to customers.

² For mass market software, it is usually possible to identify
two types of release: major releases which deliver
significant new functionality, and minor releases, which
repair bugs and fix customer problems that have been
reported.

² For custom software or software product lines, releases of
the system may have to be produced for each customer
and individual customers may be running several different
releases of the system at the same time.

54

Chapter 25 Configuration
management

Release tracking

²  In the event of a problem, it may be necessary to
reproduce exactly the software that has been delivered to
a particular customer.

² When a system release is produced, it must be
documented to ensure that it can be re-created exactly in
the future.

² This is particularly important for customized, long-lifetime
embedded systems, such as those that control complex
machines.
§  Customers may use a single release of these systems for many

years and may require specific changes to a particular software
system long after its original release date.

Chapter 25 Configuration
management
55

Release planning

² As well as the technical work involved in creating a
release distribution, advertising and publicity material
have to be prepared and marketing strategies put in place
to convince customers to buy the new release of the
system.

² Release timing
§  If releases are too frequent or require hardware upgrades,

customers may not move to the new release, especially if they
have to pay for it.

§  If system releases are too infrequent, market share may be lost
as customers move to alternative systems.

Chapter 25 Configuration
management
56

Key points

²  System building is the process of assembling system components into
an executable program to run on a target computer system.

²  Software should be frequently rebuilt and tested immediately after a
new version has been built. This makes it easier to detect bugs and
problems that have been introduced since the last build.

²  System releases include executable code, data files, configuration
files and documentation. Release management involves making
decisions on system release dates, preparing all information for
distribution and documenting each system release.

Chapter 25 Configuration
management
57

Questions?

