
THE MYTHICAL
MAN-MONTH

The above is anextract from the Mythical Man-Month by Frederick P. Brooks,
Jr., copyright @ 1975 liy Addison-Wesley Publishing Company, Inc., Read-
ing, Massachusetts, pages 14-26, 88-94, 153-160, and 177. Reprinted with
permission. The extract was prepared by the editors of Datamation and pub-
lished in Datamation, December 1974, pages 44-52.

NO SCENE FROM PREHISTORY is
quite so vivid as that of the mortal
struggles of great beasts in the tar pits.
In the mind's eye one sees dinosaurs,
mammoths, and saber-toothed tigers
struggling against the grip of the tar.
The fiercer the struggle, the more en-
tangling the tar, and no beast is so
strong or so skillful but that he ulti-
mately sinks.

Large-system programming has over
the past decade been such a tar pit, and
many great and powerful beasts have
thrashed violen~ly in it. Most have
emerged with running systems-few
have met goals, schedules, and budgets.
Large and small, massive or wiry, team
after team has become entangled in the
tar. No one thing seems to cause the
difficulty-any particular paw can be
pulled away. But the accumulation of
simultaneous and interacting factors
brings slower and slower motion.
Everyone seems to have been surprised
by the stickiness of the problem, and it
is hard to discern-the nature of it. But
we must try to understand it if we are
to solve it.

More software projects have gone
awry for lack of calendar time than for
all other causes combined. Why is this
case of disaster so common?

First, our techniques of estimating
are poorly developed. More seriously,
they reflect an unvoiced assumption
which is quite untrue, i.e., that all will
go well.

Second, our estimating techniques
fallaciously confuse effort with prog-
ress, hiding the assumption that men
and months are interchangeable.

Third, because we are uncertain of
our estimates, software managers often

HOW DOES A PROJECT GET TO
BEAYEAR LATE?
ONE DAY AT A TIME.

By Frederick P. Brooks, Jr.

lack the courteous stubbornness re-
quired to make people wait for a good
product.

Fourth, schedule progress is poorly
monitored. Techniques proven and
routine in other engineering disciplines
are considered radical innovations in
software engineering.

Fifth, when schedule slippage is rec-
ognized, the natural (and traditional)
response is to add manpower. Like
dousing a fire with gasoline, this makes
matters worse, much worse. More fire
requires more gasoline and thus begins
a regenerative cycle which ends in dis-
aster.

Schedule monitoring will be covered
later. Let us now consider other as-
pects of the problem in more detail.

Optimism
All programmers are optimists. Per-

haps this modern sorcery especially at-
tracts those who believe in happy end-
ings and fairy godmothers. Perhaps the
hundreds of nitty frustrations drive
away all but those who habitually fo-
cus on the end goal. Perhaps it is mere-
ly that computers are young, program-
mers are younger, and the young are
always optimists. But however the se-
lection process works, the result is in-
disputable: "This time it will surely
run," o r "I just found the last bug."

So the first false assumption that
underlies the scheduling of systems
programming is that all will go well,
i.e., that each task will take only as
long as it " o ~ g h i " to take.

The pervasiveness of optimism
among programmers deserves more
than a flip analysis. Dorothy Sayers, in
her excellent book, The Mind of the

Maker, divides creative activity into
three stages: the idea, the implementa-
tion, and the interaction. A book, then,
or a computer, or a program comes
into existence first as an ideal con-
struct, built outside time and space
but complete in the mind of the au-
thor. It is realized in time and space
by pen, ink, and paper, or by wire,
silicon, and ferrite. The creation is
complete when someone reads the
book, uses the computer or runs the
program, thereby interacting with the
mind of the maker

This description, which Miss Sayers
uses to illuminate not only human cre-
ative activity but also the Christian
doctrine of the Trinity, will help us in
our present task. For the human mak-
ers of things, the incompletenesses and
inconsistencies of our ideas become
clear only during implementation.
Thus it is that writing, experimenta-
tion, "working out" are essential disci-
plines for the theoretician.

In many creative activities the medi-
um of execution is intractable. Lumber
splits; paints smear; electrical circuits
ring. These physicad limitations of the
medium constrain the ideas that may
be expressed, and they also create un-
expected diicultie:~ in the irnplemen-
tation.

Implementation, then, takes time
and sweat both because of the physical
media and because of the inadequacies
of the underlying ideas. We tend to
blame the physical media for most of
our implementation difficulties; for the
media are not "oui-s" in the way the
ideas are, and our pride colors our
judgment.

Computer programming, however,
creates with an exceedingly tractable
medium. The progrsimmer builds from

the product of the number of men and
the number of months. Progress does
not. Hence the man-month as a unit
for measuring the size of a job is a
dangerous and deceptive myth. It im-
plies that men and months are inter-
changeable.

Men and months are interchange-
able commodities only when a task can
be partitioned among many workers
with no communication among them
(Fig. 1) . This is true of reaping wheat
or picking cotton; it is not even ap-
proximately true of systems program-
ming.

When a task cannot be partitioned

Men

Fig. 1. The term "man-month" implies
that if one man takes 10 months to do a
job, 10 men can do it in one month. This
may be true of picking cotton.

because of sequential constraints, the
application of more effort has no effect
on the schedule. The bearing of a child
takes nine months, no matter how
many women are assigned. Many soft-
ware tasks have this characteristic be-
cause of the sequential nature of de-

Corbat6 of MIT points out that a long
project must anticipate a turnover of
20% per year, and new people must be
both technically trained and integrated
into the formal structure.

Intercommunication is worse. If
each part of the task must be separate-
ly coordinated with each other part,
the effort increases as n(n-1) / 2. Three
workers require three times as much
pairwise intercommunication as two;
four require six times as much as two.
If, moreover, there need to be confer-
ences among three, four, etc., workers
to resolve things jointly, matters get
worse yet. The added effort of com-
municatine mav fullv counteract the
division of the original task and bring
us hack to the situation of Fig. 3.

Since software construction is inher-
ently a systems effort-an exercise in
complex interrelationships-commu-
nication effort is great, and it quickly

Men
pure thought-stuff: concepts and very buggidg. Fig. 2. Even on tasks that can be nicely
flexible representatlions thereof. Be- In tasks that an be partitioned but partitioned among people, the additional
cause the medium i s tractable, we ex- which require ~ ~ m n ~ u n i c a t i o n among communication required adds to the to-
pect few difficulties nn implementation; thesubtask% the effort of ~ ~ ~ m u n i c a - tal work, increasing the schedule.
hence our pervasive optimism. Because tion must be added to the amount of
our ideas a r e faulty, we have bugs;
hence our optimism is unjustified.

In a single task, the assumption that
all will go well has a probabilistic effect
on the schedule. It night indeed go as
planned, for there is a probability dis-
tribution for the delay that will be en-
countered, and "no delay" has a finite
probability. A large programming ef-
fort, however, consisits of many tasks,
some chained end-to-end. The prob-
ability that each will go well becomes
vanishingly small.

The mythical man-month
The second fallacious thought mode

is expressed in the very unit of effort
used in estimating and scheduling: the
man-month. Cost docs indeed vary as

work to be done. Therefore the best
that can be done is somewhat poorer
than an even trade of men for months
(Fig. 2).

The added burden of communica-
tion is made up of two parts, training
and intercommunication. Each worker
must be trained in the technology, the
goals of the effort, the overall strategy,
and the plan of work. This training
cannot be partitioned, so this part of
the added effort varies linearly with the
number of workers.

V. S. Vyssotsky of Bell Telephone
Laboratories estimates that a large
project can sustain a manpower build- Men
up of 30% per year- More than that Fig. 3. since software construction is
strains and even inhibits the evolution complex, the communications overhead
of the essential informal structure and is great. Adding more men can lengthen,
its communication pathways. F. J. rather than shorten, the schedule.

dominates the dec-ease in individual
task time brought iboiit by partition-
ing. Adding more nen then lengthens,
not shortens, the schedule.

Systems test
No parts of the schedule are so thor-

oughly affected by sequential con-
straints as component debugging and
system test. Furthermore, the time re-
quired depends or the number and
subtlety of the errors encountered.
Theoretically this number should be
zero. Because of optimism, we usually
expect the number if bugs to be small-
er than it turns oi t to be. Therefore
testing is usually tlie most mis-sched-
uled part of programming.

For some years I have been success-
fully using the following rule of thumb
for scheduling a software task:

% planning
36 coding
% component tert and earIy system

test
% system test, all components in

hand.
This differs from conventional

scheduling in several important ways:
1. The fraction devoted to planning is

larger than normal. Even so, it is
barely enough to produce a de-

of the schedule.
In examining conventionally sched-

uled projects, I have found that few
allowed one-half of the projected
schedule for testing, but that most did
indeed spend half of the actual sched-
ule for that purpose. Many of these
were on schedule until and except in
system testing.

Failure to allow enough time for
system test, in particular, is peculiarly
disastrous. Since the delay comes at the
end of the schedule, no one is aware of
schedule trouble until almost the deliv-
ery date. Bad news, late and without
warning, is unsettling to customers and
to managers.

Furthermore, delay at this point has
unusually severe financial, as well as
psychological, repercussions. The proj-
ect is fully staffed, and cost-perday is
maximum. More seriously, the soft-
ware is to support other business effort
(shipping of computers, operation of
new facilities, etc.) and the secondary
costs of delaying these are very high,
for it is almost time for software ship-
ment. Indeed, these secondary costs
may far outweigh all others. It is there-
fore very important to allow enough
system test time in the original sched-
ule.

two choices~wait or eat it raw. Soft-
ware customers have had the same
choices.

The cook has another choice; he can
turn up theheat. The result is often an
omelette nothing can save-burned in
one part, raw in another.

Now I do not think software man-
agers have less inherent courage and
firmness than chefs, nor than other
engineering managers. But false sched-
uling to match the patron's desired
date is much more common in our
discipline than elsewhere in engineer-
ing. It is very difficult to make a vigor-
ous, plausible, and job-risking defense
of an estimate that is derived by no
quantitative method, supported by lit-
tie data, and certified chiefly by the
hunches of the managers.

Clearly two solutions are needed.
We need to develop and publicize pro-
ductivity figures, bug-incidence figures,
estimating rules, and so on. The whole
profession can only profit from sharing
such data.

Until estimating is on a sounder ba-
sis, individual managers will need to
stiffen their backbones, and defend
their estimates with the assurance that
their poor hunches are better than
wishderived estimates.

Fig. 4. Adding manpower to a project which is late may not help. In this case, suppose
three men on a 12 nan-month project were a month late. If it takes one of the three
an extra month to t-ain two new men, the project will be just as late as if no one was
added.

5*-

4

3
C '

g
2

1

0

tailed and soliii specification, and
not enough to include research or
exploration of totally new tech-
niques.

2. The half of the schedule devoted to
debugging of completed code is
much larger than normal.

3. The part that is easy to estimate,
i.e., coding, is ,given only one-sixth

i--- 1-1Ã‘IÃ Regenerative disaster

V
D

What does one do when an essential
I software project is behind schedule?
I
I

Add manpower, naturally. As Figs. 1 -
I through 3 suggest, this may or may not

I help.
I Let us consider an example. Suppose
I Training a task is estimated at 12 man-months

-. A complete and assigned to three men for four
A months, and that there are measurable

mileposts A, B, C, D, which are sched- - uled to fall at the end of each month.
Now suppose the first milepost is not

reached until two months have elapsed.
5 programmers What are the alternatives facing the - for 7+ mlm manager?

1. Assume that the task must be done
on time. Assume that only the first

1 I 1 1 I I I 1 part of the task was misestimated.

Gutless estimating
Observe that for the programmer, as

for the chef, the urgency of the patron
may govern the scheduled completion
of the task, but it cannot govern the
actual completion. An omelette, prom-
ised in ten minutes, may appear to be
progressing nicely. But when it has not
set in ten minutes, the customer has

1 2 3 4 5 6 7 8
Then 9 man-months of effort re-
main, and two months, so 4% men

Months will be needed. Add 2 men to the 3
assigned.

2. Assume that the task must be done
on time. Assume that the whole
estimate was uniformly low. Theft
18 man-months of effort remain,
and two months, so 9 men will be
needed. Add 6 men to the 3 as-
signed.

3. Reschedule. In this case, I like the
advice given by an experienced
hardware engineer, 'Take no small
slips." That is, allow enough time
in the new schedule to ensure that
the work can be carefully and

thoroughly done, and that resched-
uling will not have to be done
again.

4. Trim the task. In practice this
tends to happen anyway, once the
team observes schedule slippage.
Where the secondary costs of delay
are very high, this; is the only feas-
ible action. The manager's only al-
ternatives are to trim it formally
and carefully, to reschedule, or to
watch the task get silently trimmed
by hasty design and incomplete
testing.

In the first two cases, insisting that
the unaltered task be completed in four
months is disastrous. Consider the re-
generative effects, for example, for the
first alternative (Fig. 4 preceding page).
The two new men, however competent
and however quickly recruited, will re-
quire training in the bisk by one of the
experienced men. If this takes a month,
3 man-months will have been devoted
to work not in the original estimate.
Furthermore, the task originally parti-
tioned three ways, must be reparti-
tioned into five parts, hence some work
already done will be lost and system
testing must be lengthened. So at the
end of the third month, substantially
more than 7 man-months of effort re-
main, and 5 trained people and one
month are available. As Fig. 4 suggests,
the product is just as late as if no one
had been added.

To hope to get done in four months,
considering only training time and not
repartitioning and extra systems test,
would require adding 4 men, not 2, at
the end of the second month. To cover
repartitioning and system test effects,
one would have to add still other men.
Now. however, one has at least a 7-
man team. not a 3-man one; thus such
aspects as team organization and task
division are different in kind, not mere-
ly in degree.

Notice that by the end of the third
month things look very black. The
March 1 milestone has not been
reached in spite of all the managerial
effort. The temptation is very strong to
repeat the cycle, adding; yet more man-
power. Therein lies madness.

The foregoing assumed that only the
first milestone was misestimated. If on
March 1 one makes tile conservative
assumption that the whole schedule
was optimistic one wants to add 6 men
just to the original task Calculation of
the training, repartitioning, system
testing effects is left as an exercise for
the reader. Without a doubt, the ,re-
generative disaster will yield a poorer
product later, than would rescheduling
with the original three men, unaug-
mented.

Oversimplifying outrageously, we

state Brooks' Law: one-sixth or so of the problem, and
errors in its estimate o r in the ratios

Adding manpower to a late
software project makes it later. could lead to ridiculous results.

Second, one must say that data for
This then is the demythologizing of

the man-month. The number of
months of a project depends upon its
sequential constraints. The maximum
number of men depends upon the
number of independent subtasks. From
these two quantities one can derive
schedules using fewer men and more
months. (The only risk is product ob-
solescence.) One cannot, however, get
workable schedules using more men
and fewer months. More software
projects have gone awry for lack of
calendar time than for all other causes
combined.

Calling the shot
How long will a system program-

ming job take? How much effort will
be required? How does one estimate?

I have earlier suggested ratios that
seem to apply to planning time, cod-
ing, component test, and system test.
First, one must say that one does not
estimate the entire task by estimating
the coding portion only and then ap-
plying the ratios. The coding is only

building isolated small programs are
not applicable to programming systems
products. For a program averaging
about 3,200 words, for example, Sack-
man, Erikson, and Grant report an
average code-plusdebug time of about
178 hours for a single programmer, a
figure which would extrapolate to give
an annual productivity of 35,800 state
ments per year. A program half that
size took less than one-fourth as long,
and extrapolated productivity is almost
80,000 statements per year.t1J. Plan-
ning, documentation, testing, system
integration, and training times must be
added. The linear extrapolation of
such spring figures is meaningless. Ex-
trapolation of times for the hundred-
yard dash shows that a man can run a
mile in under three minutes.

Before dismissing them, however, let
us note that these numbers, although
not for strictly comparable problems,
suggest that effort goes as a power of
size even when no communication is
involved except that of a man with his
memories.

Thousands of machine instructions
Fig. 5. As a project's complexity increases, the number of man-months required to
complete it goes up exponentially.

Fig. 5 tells the sad story. It illustrates
results reported from a study done by
Nanus and Farrl21 at System Develop-
ment Corp. This shows an exponent of
1.5; that is,
effort = (constant)x(nuniber of instructions)l~~
Another SDC study reported by Wein-
wunnt31 also shows an exponent near
1.5.

A few studies on programmer pro-
ductivity have been nade, and several

Operational

Maintenance

Compiler

Translator
(Data assembler)

Prog.
units

50

36

13

15

Number of
programmers

estimating techniques have been pro-
posed. Morin has prepared a survey of
the published data.[*] Here I shall
give only a few items that seem espe-
cially illuminating.

Portman's data
Charles Portman, manager of ICL'S

Software Div., Computer Equipment
Organization (Northwest) at Man-
chester, offers another useful personal

Words/
man-yr.

Table 1. Data from l3ell Labs indicates productivity differences between complex
problems (the first two are basically control programs with many modules) and less
complex ones. No ore is certain how much of the difference is due to complexity,
how much to the number of people involved.

Mar Jun Sep Dec Mar Jun Sep Dec

Fig. 6. Bell Labs' expt rience in predicting programming effort on one project.

insight.
He found his programming teams

missing schedules by about one-half-
each job was taking approximately
twice as long as estimated. The esti-
mates were very careful, done by ex-
perienced teams estimating man-hours
for several hundred subtasks on a PERT
chart. When the slippage pattern ap-
peared, he asked them to keep careful
daily logs of time usage. These showed
that the estimating error could be en-
tirely accounted for by the fact that his
teams were only realizing 50% of the
working week as actual programming
and debugging time. Machine down-
time, higher-priority short unrelated
jobs, meetings, paperwork, company
business, sickness, personal time, etc.
accounted for the rest. In short, the
estimates made an unrealistic assump-
tion about the number Of technical
work hours per man-year. My own
experience quite confirms his conclu-
sion.

An unpublished 1964 study by E. F.
Bardaii shows programmers realizing
only 27% productive time.161

Aron's data
Joel Aron, manager of Systems

Technology at IBM in Gaithersburg,
Maryland, has studied programmer
productivity when working on nine
large systems (briefly, large means
more than 25 programmers and 30,-
000 deliverable instructions). He di-
vides such systems according to inter-
actions among programmers (and sys-
tern parts) and finds productivities as
follows :
Very few interactions 10000 instructions per man-year
Some interactions 5,000
Many interactions 1,500

The man-years do not include sup*
port and system test activities, only
design and programming. When these
figures are diluted by a factor of two to
cover system test, they closely match
Harr's data.

50 Hair's data
John Harr, manager of program-

(/)
u

ming for the Bell Telephone Labora-
c 40 tories' Electronic Switching System, s
3 reported his and others' experience in a
o paper at the 1969 Spring Joint Com-
5 30
c .- puter Conference.[*] These data are
V)

shown in Table 1 and Figs. 6 and 7 .
20 Of these, Fig. 6 is the most detailed

3 and the most useful. The first two jobs
are basically control programsethe sec-

10 ond two are basically language transla-
tors. Productivity is stated in terms of
debugged words per man-year. This in-

0 cludes programming, component test,
Mar Jun Sep Dec Mar J u n sep and system test. It is not clear how

Fig. 7. Bell's predictions for debugging rates on a single project, contrasted with much of the planning effort, or effort
actual figures. in machine support, writing, and the

like, is included.
The productivities likewise fall into

two classifications: those for control
programs are about 600 words per
man-year; those for translators are
about 2,200 words per man-year. Note
that all four programs are of similar
size-the variation is in size of the
work groups, length of time, and num-
ber of modules. Which is cause and
which is effect? Did the control pro-
grams require more people because
they were more complicated? Or did
they require more modules and more
man-months because they were as-
signed more people? Did they take
longer because of thi; greater complex-
ity, or because more people were as-
signed? One can't be sure. The control
programs were surely more complex.
These uncertainties aside, the num-
bers describe the real productivities
achieved on a large 5ystem. using pres-
ent-day programming techniques. As
such they are a real contribution.

Figs. 6 and 7 show some interesting
data on programming and debugging
rates as compared to predicted rates.

OSl360 data
IBM os/360 experience, while not

available in the detail of Harr's data,
confirms it. Product ivities in range of
600-800 debugged instructions per
man-year were experienced by control
program groups. Productivities in the
2,000-3,000 debugged instructions per
man-year were achieved by language
translator groups. Tliese include plan-
ning done by the gr,~up, coding com-
ponent test, system test, and some sup-
port activities. They ,ire comparable to
Harr's data, so far as I can tell.

Aron's data, Hanm's data, and the
0~1360 data all confirm striking differ-
ences in productivity related to the
complexity and difficulty of the task
itself. My guideline in the morass of
estimating complexity is that compilers
are three times as bail as normal batch
application programs, and operating
systems are three times as bad as com-
pilers.

Corbato's data
Both Harr's data and os/360 data

are for assembly language program-
ming. Little data seem to have been
published on system programming
productivity using higher-level lan-
guages. Corbat6 of MIT'S Project MAC
reports, however, a mean productivity
of 1,200 lines of debugged PL/I state-
ments per man-year on the MULTICS
system (between 1 and 2 million
words) I71

This number is very exciting. Like
the other projects, MULTICS includes
control programs and language transla-

tors. Like the others, it is producing a
system programming product, tested
and documented. The data seem to be
comparable in terms of kind of effort
included. And the productivity number
is a good average between the control
program and translator productivities
of other projects.

But Corbat6's number is lines per
man-year, not words! Each statement
in his system corresponds to about
three-to-five words of handwritten
code! This suggests two important con.
clusions :

Productivity seems constant in terms
of elementary statements, a conclu-
sion that is reasonable in terms of
the thought a statement requires and
the errors it may include.
Programming productivity may be
increased as much as five times
when a suitable high-level language
is used. To back up these conclu-
sions, W. M. Taliaffero also reports
a constant productivity of 2,400
statements/year in Assembler, FOR-
TRAN, and C O B O L . ~ E. A. Nelson
has shown a 340-1 productivity im-
provement for high-level language,
although his standard deviations are
wide.Pl

Hatching a catastrophe
When one hears of disastrous sched-

ule slippage in a project, he imagines
that a series of major calamities must
have befallen it. Usually, however, the
disaster is due to termites, not torna-
does; and the schedule has slipped im-
perceptibly but inexorably. Indeed,
major calamities are easier to handle;
one responds with major force, radical
reorganization, the invention of new
approaches. The whole team rises to
the occasion.

But the day-byday slippage is hard-
er to recognize, harder to prevent,
harder to make up. Yesterday a key
man was sick, and a meeting couldn't
be held. Today the machines are all
down, because lightning struck the
building's power transformer. Tomor-
row the disc routines won't start test-
ing, because the first disc is a week late
from the factory. Snow, jury duty,
family problems, emergency meetings
with customers, executive audits-the
list goes on and on. Each one only
postpones some activity by a halfday
or a day. And the schedule slips, one
day at a time.

How does one control a big project
on a tight schedule? The first step is to
have a schedule. Each of a list of
events, called milestones, has a date.
Picking the dates is an estimating prob-
lem, discussed already and crucially
dependent on experience.

For picking the milestones there is

only one relevant rule. Milestones must
be concrete, specific, measurable
events, defined with knife-edge sharp-
ness. Coding, for a counterexample, is
"90% finished" for half of the total
coding time. Debugging is "99% com-
plete" most of the time. "Planning
complete" is an event one can proclaim
almost at will.[l01

Concrete milestones, on the other
hand, are 100% events. "Specifications
signed by architects and implement-
em," "source coding 100% complete,
keypunched, entered into disc library,"
"debugged version passes all test
cases." These concrete milestones de-
mark the vague phases of planning,
coding, debugging.

It is more important that milestones
be sharp-edged and unambiguous than
that they be easily verifiable by the
boss. Rarely will a man lie about mile-

None love
the bearer of bad news.

Sophocles

stone progress, if the milestone is so
sharp that he can't deceive himself.
But if the milestone is fuzzy, the boss
often understands a different report
from that which the man gives. To
supplement Sophocles, no one enjoys
bearing bad news, either, so it gets
softened without any real intent to de-

CL-

ceive.
Two interesting studies of estimating

behavior by government contractors
on large-scale development projects
show that:
1. Estimates of the length of an activ-

ity made and revised carefully
every two weeks before the activity
starts do not significantly change as
the start time draws near, no mat-
ter how wrong they ultimately turn
out to be. ,

2. During the activity, overestimates
of duration come steadily down as
the activity proceeds.

3. Underestimates do not change sig-
nificantly during the activity until
about three weeks before the
scheduled completion.[11] I (

Sharp milestones are in fact a ser-
vice to the te&m, and one they can
properly expect from a manager. The
fuzzy milestone is the harder burden to
live with. It is in fact a millstone that
grinds down morale, for it deceives one
about lost time until it is irremedi-
able. And chronic schedule slippage is
a morale-killer.

"The other piece is latew
A schedule slips a day; so what?

Who gets excited about a one-day slip?
We can make it up later. And the other
piece ours fits into is late anyway.

A baseball manager recognizes a
nonphysical talent, hustle, as an es-
sential gift of greal players and great
teams. It is the chiiracteristic of, run-
ning faster than necessary, moving
sooner than necessary, trying harder
than necessary. It is essential for great
programming team:;, too. Hustle pro-
vides the cushion, the reserve capacity,
that enables a team to cope with rou-
tine mishaps, to ant cipate and forfend
minor calamities. The calculated re-
sponse, the measui ed effort, are the
wet blankets that dampen hustle. As
we have seen, one must get excited
about a one-day slip. Such are the ele-
ments of catastrophe.

But not all one-dily slips are equally
disastrous. So some calculation of re-
sponse is necessary though hustle be
dampened. How does one tell which
slips matter? There is no substitute for
a PERT chart or a critical-path sched-
ule. Such a network shows who waits
for what. It shows who is on the criti-
cal path, where any slip moves the
end date. It also shaws how much an
activity can slip bei'ore it moves into
the critical path.

The PERT technique, strictly speak-
ing, is an elaboration of critical-path
scheduling in which one estimates
three times for every event, times cor-
responding to different probabilities of

meeting the estimated dates. I do not
find this refinement to be worth the
extra effort, but for brevity I will call
any critical path network a PERT chart.

The preparation of a PERT chart is
the most valuable part of its use. Lay-
ing out the network, identifying the
dependencies, and estimating the legs
all force a great deal of very specific
planning very early in a project. The
first chart is always terrible, and one
invents and invents in making the sec-
ond one.

As the project proceeds, the PERT
chart provides the answer to the de-
moralizing excuse, "The other piece is
late anyhow." It shows how hustle is
needed to keep one's own part off the
critical path, and it suggests ways to
make up the lost time in the other
part.

Under the rug
When a first-line manager sees his

small team slipping behind, he is rarely
inclined to run to the boss with this
woe. The team might be able to make
it up, or he should be able to invent or
reorganize to solve the problem. Then
why worry the boss with it? So far, so
good. Solving such problems is exactly
what the first-line manager is there
for. And the boss does have enough
real worries demanding his action that

SYSTEM/360 SUMMARY STATUS REPORT
05/369 LANGUAGE PROCESSORS + SERVICE PROGRAMS

AS OF FEBRUARY 0 1 1965

C MMITMNT OBJECTIVE SPECS
ANNOUNCE AVAI BLE AVAILABLE

PROJECT LOCATION RELEASE APPROVED APPROVED

OPERATING SYSTEM

12K DESIGN LEVEL (E)

ASSEMBLY SAN JOSE 04/--/4 10/28/4 C 10/13/4 C
12/31/5 01/11/5

FORTRAN POK 04/--/4 C 10/28/4 C 10/21/4 C
12/31/5 01/22/5

COBOL ENDICOTT 04/--/4 C 10/25/4 C 10/15/4 C
12/31/5 01/20/5 A

RPG SAN JOSE 04/--/4 C 10/28/4 C 09/30/4 C
12/31/5 01/05/5 A

UTILITIES TIMWLIFE 04/--/4 C 06/24/4 C
12/31/5

SORT 1 POK 04/--/4 C 10/28/4 C 10/19/4 C
12/31/5 01/11/5

SORT 2 POK 04/--/4 C 10/28/4 C 10/19/4 C
06/30/6 01/11/5

44K DESIGN LEVEL (F)

ASSEMBLY SAN JOSE 04/--/4 C 10/28/4 C 10/13/4 C
12/31/5 01/11/5

COBOL TIMWLIFE 04/--/4 C 10/28/4 C 10/15/4 C
06/30/6 01/20/5 A

NPL HURSLEY 04/--/4 C 10/28/4 C
03/31/6

2250 KINGSTON 03/30/4 C 11/05/4 C 10/06/4 C
03/31/6 01/04/5

2280 KINGSTON 06/30/4 C 11/05/4 C
09/30/6

200K DESIGN LEVEL (HI

ASSEMBLY TIMWLIFE 10/28/4 C

FORTRAN POK 04/--/4 C 10/28/4 C 10/16/4 C
06/30/6 01/11/5

NPL HURSLEY 04/--/4 C 10/28/4 C

NPL H POK 041--14 C 03/30/4 C

Fig. 8. A report showing milestones and status in a key docu-
ment in project control. This one shows some problems in OS
development: specifications approval is late on some items

he doesn't seek others. So all the dirt
gets swept under the rug.

But every boss needs two kinds of
information, exceptions for action and
a status picture for education.[12] For
that purpose he needs to know the
status of all his teams. Getting a true
picture of that status is hard.

The first-line manager's interests
and those of the boss have an inherent
conflict here. The first-line manager
fears that if he reports his problem,
the boss will act on it. Then his action
will preempt the manager's function,
diminish his authority, foul up his
other plans. So as long as the man-
ager thinks he can solve,it alone, he
doesn't tell the boss.

Two rug-lifting techniques are open
to the boss. Both must be used. The
first is to reduce the role conflict and
inspire sharing of status. The other is
to yank the rug back.

Reducing the role conflict
The boss must first distinguish be-

tween action information and status
information. He must discipline him-
self not to act on problems his manag-
ers can solve, and never to act on
problems when he is explicitly review-
ing status. I once knew a boss who
invariably picked up the phone to give
orders before the end of the first para-

= REVISED PLANNED DATE
NE=NOT ESTABLISHED

SRL ALPHA TEST COMP TEST SYS TEST BULLETIN BETA TEST
AVAILABLE ENTRY START START AVAILABLE ENTRY
APPROVED EXIT COMPLETE COMPLETE APPROVED EXIT

11/11/4 C 02/15/5 03/01/6
12/10/4 A 03/22/5 05/30/6

07/--/5 01/--/7

02/01/5 10/15/5
04/01/5 12/15/5

(those without "A"); documentation (SRL) approval is overdue
on another; and one (2250 support) is late coming out of
alpha test.

graph in a status report. That response
is guaranteed to squelch full disclosure.

Conversely, when the manager
knows his boss will accept status re-
ports without panic or preemption, he
comes to give honest appraisals.

This whole process is helped if the
boss labels meetings, reviews, confer-
ences, as status-review meetings versus
problem-action meetings, and controls
himself accordingly. Obviously one
may call a problem-action meeting as a
consequence of a status meeting, if he
believes a problem is out of hand. But
at least everybody knows what the
score is. and the boss thinks twice be-
fore grabbing th i ball.

Yanking the nig off
Nevertheless, it is necessary to have

review techniques by which the true
status is made known, whether cooper-
atively or not. The PERT chart with its
frequent sharp milestones is the basis
for such review. On a large project one
may want to review some part of it
each week, making the rounds once a
month or so.

A report showing milestones and ac-
tual completions is the key document.
Fig. 8 (precedini; page), shows an ex-
cerpt from such a report. This report
shows some troutiles. Specifications ap-
proval is overdue on several corn$
nents. Manual (SRL) approval is over-
due on another, ind one is late getting
out of the first jtate (ALPHA) of the
independently co iducted product test.
So such a report serves as an agenda
for the meeting of 1 February. Every-
one knows the questions, and the com-
ponent manager should be prepared to
explain why it's ate, when it will be
finished, what strps he's taking, and
what help, if any, he needs from the
boss or collateral groups.

V. Vyssotsky of Bell Telephone
Laboratories adds the following obser-
vation:

1 have found it handy to carry both
"scheduled" and 'estimated" dates in
the milestone retort. The scheduled
dates are the property of the project
manager and represent a consistent
work plan for the project as a whole,
and one which is i i priori a reasonable
plan. The estimate~i dates are the prop-
erty of the lowest level manager who
has cognizance over the piece of work
tn question, and represents his best
judgment as to when if will actually
happen, given thr resources he has
available and when he received (or has
commitments for delivery of) his pre-
requisite inputs. The project manager
has to keep his fingers off the estimated
dates, and put the tmphasis on getting
accurate, unbiased estimates rather

than palatable optimistic estimates or
self-protective conservative ones. Once
this is clearly established in everyone's
mind, the project manager can see
quite a ways into the future where he is
going to be in trouble if he doesn't do
something.

The preparation of the PERT chart is
a function of the boss and the manag-
ers reporting to him. Its updating, revi-
sion, and reporting requires the atten-
tion of a small (one-to-three-man)
staff group which serves as an exten-
sion of the boss. Such a "Plans and
Controls" team is invaluable for a large
project. It has no authority except to
ask all the line managers when they
will have set or changed milestones,
and whether milestones have been met.
Since the Plans and Controls group
handles all the paperwork, the burden
on the line managers is reduced to the
essentials-making the decisions.

We had a skilled, enthusiastic, and
diplomatic Plans and Controls group
on the os/360 project, run by A. M.
Pietrasanta, who devoted considerable
inventive talent to devising effective
but unobtrusive control methods. As
a result, I found his group to be widely
respected and more than tolerated. For
a group whose role is inherently that
of an irritant, this is quite an accom-
plishment.

The investment of a modest amount
of skilled effort in a Plans and Controls
function is very rewarding. It makes
far more difference in project accom-
plishment than if these people worked
directly on building the product pro-
grams. For the Plans and Controls
group is the watchdog who renders the
imperceptible delays visible and' who
points up the.critical elements. It is the
early'warning system against losing a
year, one day at a time.

Epilogue
The tar pit of software engineering

will continue to be sticky for a long
time to come. One can expect the hu-
man race to continue attempting sys-
tems just within or just beyond our
reach; and software systems are per-
haps the most intricate and comvlex of
man's handiworks. The management
of this complex craft will demand our
best use of new languages and systems,
our best adaptation of proven engi-
neering management methods, liberal
doses of common sense, and a God-
given humility to recognize our fallibil-
ity and limitations.

References
1. Sacknm, H., W. I. Erikson, and E. E. Grant,

"Exploratory Experimentation Studies Com-
paring Online and Offline Programming Per-
fonnance." Communications of the ACM, 11
(1968). 3-11.

2. Nanus, B., and L. Farr, "Some Cost Contrite
utors to Large-Sole-Programs," AFIPS Pro-
ceedinga, SJCC, 25 (1964), 239-248.

3. Weinwurm, G. F., Research hi the Mana#e-
ment of Computer Programmiw. Report SP-
2059, 1965, System Development Corp., Santa
Monica.

4. Morin, L. H., Estimation of Resources for
Computer Programming Projects, M. S. thesis,
Univ. of North Carolina, Chapel Hill, 1974.

5. Quoted by D. B. Mayer and A. W. Stalnaker.
Â¥"Selectio and Evaluation of Computer Per-
sonnel," Proceedings 23 A C M Conference,
1968.661.

6. Paper given at a panel session and not in-
cluded in the AFIPS Proceedings.

7. Corbat6. F. I., Sensitive Issues in the Desitn
of Multi-Use Systems. Lecture at the opening
of the Honeywell EDP Technology Center,
1968.

8. Taliaffcro, W. M.. "Modularity the Key to
System Growth Potential," Software, 1 (1971).
245-257.

9. Nelson, E. A., Management Handbook for the
Estimation of Computei Protramming Costs.
Report TM-3225, System Development Corp.,
Santa Monica, pp. 66-67.

10. Reynolds, C. H.. "What's Wrong with Com-
outer Programming Management?" in On the
Management of Computer Programming. Ed.
G. F. Weinwurm. Philadelphia: Auerbtch.
1971, pp. 3542.

11. King, W. R., and T. A. Wilson, "Subjective
Time Estimates in Critical Path Planning4
Preliminary Analyw' Management Sciences,
13 (1967). 307-320, and sequel, W. R. King,
D. M. Witterrongel. and K. D. Hezel, "On
the Analysis of Critical Path Time &timating
Behavior," Management Sciences, 14 (1967).
79-84,

12. Brooks, F. P., and K. E. Ivenon. Automatic
Data Processing, System/SSO ~d i t ion . New
York: Wiley, 1969, pp. 428-430. 0

Or. Brooks is presently a professor
a t the Univ. o f Nor th Carolina a t
Chapel Hill, a n d chairman of the
c o m p u t e r s c i e n c e d e p a r t m e n t
there. He is bes t known a s "the
fa ther of the I B M Sys teml360 ,~ '
having served a s project manager
for the hardware development a n d
a s manager of t h e Operating Sys-
t am1360 project during i ts design
phase. Earlier h e w a s a n architect
o f the I B M Stretch and Harvest
computers.

A t Chapel Hill h e has participated
in establishing a n d guiding the Tri-
a n g l e U n i v e r s i t i e s C o m p u t a t i o n
Center and t h e North Carolina Edu-
cational Computing Service. He is
the author o f t w o editions of "Auto-
mat ic D a t a Processing" a n d "The
Mythical Man-Month: Essays o n
Sof tware Engineering" (Addison-
Wesley), from which this excerpt is
taken.

