
074 0 -74 5 9 /12 / $ 31. 0 0 © 2 012 I E E E 	 September/October 2012 | IEEE Software � 47

cover image here

FOCUS: Lean Software Development

Suppose that you’re a manager
in a software development company
that has used Scrum for some period
of time, but primarily because of its
timeboxing, you’ve decided that Scrum
is too rigid for your company. Would
Kanban be a better approach? Un-
fortunately, the literature doesn’t yet

report the sort of evidence you would
want to make this type of shift, such
as that by introducing Kanban your
company will show improved perfor-
mance with respect to lead time, qual-
ity, and productivity.

Most people would agree that sys-
tematically collected empirical evidence

should be the basis for important de-
cisions. Data that can back up claims
is considered necessary in most scien-
tific or engineering disciplines. How-
ever, in the IT industry, little solid evi-
dence generally supports the utility of
a method in a given setting. Collecting
relevant data is perceived to be too dif-
ficult and resource-demanding for most
software organizations, and academia
seems not to have prioritized this area.

Empirical studies have been con-
ducted on certain agile practices,1 in
particular, pair programming,2 but
we haven’t found any scientific study
with industry data that compares the
effects of using various agile or lean
methods on the most interesting vari-
ables, such as lead time, quality, and
productivity. In response, we report
such a study here.

Setting
Software Innovation (SI) is a Scandina-
vian company that has developed and
sold document management products
for 28 years. These products are built
on the Microsoft SharePoint platform
and tightly integrated into the Micro-
soft Office environment. Currently,
approximately 100 developers and
specialists work in 10 teams on the
products. In total, SI has 330 employ-
ees distributed over five countries. The
developers and testers are primarily lo-
cated in Oslo, Norway, and Bangalore,
India. SI has partners in 12 countries
and has 400 customers.

From 2001 to 2006, SI followed a
waterfall process, with an annual cy-
cle of design, implementation, testing,
and deployment for each new release.
In early 2007, the company carefully
examined its development process,
which resulted in the decision to in-
troduce Scrum. SI implemented Scrum
with the standard elements: cross-func-
tional teams, sprint planning meetings

Quantifying
the Effect
of Using Kanban
versus Scrum:
A Case Study

Dag I.K. Sjøberg, University of Oslo

Anders Johnsen and Jørgen Solberg, Software Innovation

// Proponents of various processes and methods in

the agile and lean communities have made many bold

claims about usefulness, but those claims are rarely

supported by empirical investigations. Data gathered

from more than 12,000 work items collected over three

years sheds light on Kanban versus Scrum. //

48	 IEEE Software | www.computer.org/software

FOCUS: Lean software development

that included estimation of work items
using planning poker, daily standup
meetings, sprints of three weeks with
shippable increments of code (fully
tested) at the end of each sprint, and
demos in the review meetings. Work
status was made visible through auto-
mated reports and task boards for all
teams.

After a couple of years, the second
and third authors (Johnsen, SI’s R&D
operations manager; Solberg, SI’s
CTO) felt that Scrum was too rigid,
didn’t scale, and was unsuitable for
maintenance tasks. They also feared
that the combination of inaccurate es-
timates and timeboxes gave longer
lead times and what they perceived as
“waste,” such as Scrum planning meet-
ings, reduced productivity and quality.
Consequently, in 2010, the company
switched from Scrum to Kanban.

SI has implemented Kanban in the
following manner. When work starts
on an item, the company attempts to
let the item flow through all stages un-
til it’s ready for release at a satisfactory
quality and as quickly as possible (fast

delivery)—that is, without using time-
boxes. Furthermore, only a limited
number of work items are in progress
simultaneously (WIP limit). If the WIP
limit has been reached, work doesn’t
start on a new item until the previous
work finishes (“just-in-time” [JIT]). In
particular, one item at a time is pulled
out from the backlog and designed, as
opposed to in the Scrum period, where
all the items thought to be finished
within a sprint were pulled out simul-
taneously from the backlog and esti-
mated and initially designed.

Another change from the Scrum pe-
riod is that SI no longer needs cross-
functional teams. It has abandoned
start-up meetings focused on estima-
tions about work items. SI still has
daily standup meetings under Kan-
ban, but instead of demo meetings at
the end of each sprint, status meetings
with demos are held once or twice a
week, regardless of the progress of the
work items being discussed. There’s
no difference in the quality gates be-
tween Scrum and Kanban; all code is
equally shippable.

In 2011, the second and third au-
thors realized that “being rigorous
with agility just because it is written
in theoretical books showing toy ex-
amples is of no business value,”3 so
they contacted the University of Oslo
to help quantify their hypothesis that
the company had benefitted from
switching to Kanban with respect to
lead time, quality, and productivity.
To investigate this hypothesis, we (pri-
marily the first author) analyzed data
collected from more than 12,000 work
items over three years (2009–2011) by
using Microsoft’s Team Foundation
Server (TFS). Although the company
started using Scrum in 2007, we ana-
lyzed data only from 2009 onward be-
cause SI had overcome the start-up dif-
ficulties with agile development by this
point. Table 1 shows the independent,
control, and dependent variables used
in this study.4

Lead Time
Merriam-Webster’s defines lead time
as “the time between the beginning
of a process or project and the ap-
pearance of its results.” Collins pro-
vides two definitions: “Manufactur-
ing: the time between the design of
a product and its production” and
“Business: the time from the plac-
ing of an order to the delivery of the
goods.” For a consultancy company
contracted with a customer who re-
quests tailored software solutions,
this last definition is a useful starting
point—in other words, lead time can
be defined as the amount of time be-
tween the proposal of a new feature
or another request and its deployment
in the customer’s environment.

However, for an in-house develop-
ment company such as SI that provides
two or three releases of its products a
year to 400 customers, this definition
is unsuitable for two reasons. First, the
amount of time a work item remains
in the backlog queue before it’s put
on the board is a function of priority,

Ta
b

l
e

 1 Measuring process quality.

Name Values

Independent
variables

Process Scrum or Kanban

Type of work
item

Bug or project backlog item (new features,
adaptive maintenance tasks, and support tasks
—that is, all tasks that aren’t bug fixing)

Control
variables

Year.quarter Each quarter from 2009.1 to 2011.4

Churn Number of lines added, deleted, or modified

Dependent
variables

Lead time Number of days from “next” state to “ready for
release” state on the board

Production Number of work items developed per quarter
(often called “throughput”4)

Productivity Production per developer

Productivity 2 Total churn per developer per quarter

Quality Number of weighted bugs in the severity levels:
blocking (weight 8), critical (4), moderate (2), and
minimal (1)

	 september/october 2012 | IEEE Software � 49

not whether the company uses Scrum,
Kanban, or other development meth-
ods. Furthermore, companies that de-
velop and sell products to many cus-
tomers might propose new features
themselves and put them on the back-
log before any customers request them.
Second, given a policy of two or three
releases a year, the result of a work
item isn’t delivered to the customer im-
mediately after it’s finished.

Consequently, the Merriam-Webster’s
definition is more appropriate—that
we define lead time as the amount of
time that passes from the moment that
the development team receives a re-
quest to the moment that it completes
the work item. This definition is con-
sistent with the one given elsewhere:5
“The time for an item to move all the
way across the board.”

Figure 1 shows the average lead
time for bugs and project backlog items
(PBIs) for each quarter within the pe-
riods in which SI used Scrum or Kan-
ban. In the third quarter of 2010, both
Scrum and Kanban appear in the data
because during that period, some teams
in SI still used Scrum, while other teams
had switched to Kanban. (To prevent
outliers from having a large effect, we
removed the work items within the top
10 percent of the longest lead times
in each quarter for each type of work
item. Consequently, the analysis set was
composed of 10,804 work items.)

The figure doesn’t show the large
variation in lead times. The standard
deviation in the Scrum period (17
days for bugs and 20 for PBIs) was
much greater than the standard devi-
ation in the Kanban period (five days
for bugs and nine for PBIs). As the
figure shows, the long lead times for
Scrum occurred in 2009. In 2010, the
lead time of the Scrum period was at
the same level as the lead time in the
Kanban period (from 2010: 4.7 days
for Scrum bugs versus 5.4 for Kanban
bugs, and 8.2 days for Scrum PBIs ver-
sus 7.4 for Kanban PBIs).

Churn
A change in development performance
could be due to aspects other than a
change in the formal process—for ex-
ample, it could be due to changes in the
products or the technological environ-
ment. However, in this case, products
and environment were both very stable.
Furthermore, this work assumes that
the average amount of work per work
item is stable over time. We don’t have
timesheets that show how many hours
each developer or tester spent on each
work item. Instead, we use churn as a
surrogate measure of effort. Churn is
defined as the sum of the number of
lines added, deleted, and modified in
the source code. A study with exact
measures of effort found a correlation
of 0.6 between effort and churn for the
modification of existing files and a cor-
relation of 0.7 for the development of
new files.6

Figure 2 shows the average churn
for bugs and PBIs. We removed the
work items within the top 10 per-
cent of the largest churns within each

quarter for each work item type be-
fore conducting the analysis to re-
duce outlier effects. This analysis per-
tains to the work items that involved
changing code, which comprised ap-
proximately half of all work items
(that is, those with churn > 0). This
finding indicates that the size of the
work needed to finish a work item
might change over time, although the
changes aren’t dramatic. Only a small
correlation exists between churn and
lead time at the individual file level
(for bugs, Spearman’s  = 0.13, p <
0.01; for PBIs, Spearman’s  = 0.17,
p < 0.01). However, at the quarterly
level, a medium, insignificant correla-
tion exists between average churn and
average lead time for bugs ( = 0.45,
p = 0.15), whereas a large, significant
correlation exists for PBIs ( = 0.71,
p = 0.01).

Consequently, even if we account
for the possible changes over time
in the effort needed to finish a work
item, as measured by change in churn,
the average lead time still declines by

24
22
20
18
16
14
12
10
8
6
4
2
0

Le
ad

 ti
m

e
(d

ay
s)

Scrum Kanban
Bug Product backlog item

Year.Quarter

Process
Work item type

Scrum Kanban

20
09

.1
20

09
.2

20
09

.3
20

09
.4

20
10

.1
20

10
.2

20
10

.3
20

10
.3

20
10

.4
20

11
.1

20
11

.2
20

11
.3

20
11

.4
20

09
.1

20
09

.2
20

09
.3

20
09

.4
20

10
.1

20
10

.2
20

10
.3

20
10

.3
20

10
.4

20
11

.1
20

11
.2

20
11

.3
20

11
.4

Figure 1. Average lead time measured in days by work item type, process, and quarter.

The average lead time declined by approximately 50 percent from the Scrum period to

the Kanban period. For bugs, the average lead time fell from 12 days for Scrum to five

for Kanban. For the project backlog items (PBIs), the lead time declined from 14 to seven

days. The orange and purple lines indicate that the bugs and PBIs had the same (weighted)

average lead time (nine days) over the whole period. The local top on each third quarter is due

to less activity during the summer holiday.

50	 IEEE Software | www.computer.org/software

FOCUS: Lean software development

approximately 50 percent from the
Scrum to the Kanban periods (58 per-
cent for bugs and 40 percent for PBIs).

Quality
According to the ISO/IEC standard
9126, a software system has six ma-
jor dimensions that pertain to quality:
functionality, reliability, usability, ef-
ficiency, maintainability, and portabil-
ity. In this study, we focus on reliability,

which is important because bugs in an
operational system could lead to unde-
sirable outcomes, such as system crashes
or data corruption. To measure reliabil-
ity, we used the number of bugs, which
we classified into four levels of sever-
ity, as indicated in the Orthogonal De-
fect Classification.7 We gave each bug
a weight corresponding to its level of
severity; see the last row of Table 1. In
SI, bugs are detected both internally (70

percent) and externally by SI’s custom-
ers (30 percent). Most of the internal
bugs are detected the last three weeks
before a release because of intense man-
ual and automatic testing in that period.

Figure 3a shows that the average
number of weighted bugs per quarter
fell from 1,774 in the Scrum period to
1,591 in the Kanban period (that is, by
10 percent). The variability declined
much more—the standard deviation

70

60

50

40

30

20

10

0

Ch
ur

n

450
400
350
300
250
200
150
100
50
0

Ch
ur

n

20
09

.1

20
09

.2

20
09

.3

20
09

.4

20
10

.1

20
10

.2

20
10

.3

20
10

.3

20
10

.4

20
11

.1

20
11

.2

20
11

.3

20
11

.4

Scrum Kanban Scrum

Year.Quarter within process Year.Quarter within process

Kanban

20
09

.1

20
09

.2

20
09

.3

20
09

.4

20
10

.1

20
10

.2

20
10

.3

20
10

.3

20
10

.4

20
11

.1

20
11

.2

20
11

.3

20
11

.4

(a) (b)

Figure 2. Average churn of (a) bugs and (b) PBIs. The average churn for bugs is 6 percent higher in the Kanban period than in the Scrum

period, while for PBIs, the average churn is 12 percent lower in the Kanban period than in the Scrum period.

3,000

2,500

2,000

1,500

1,000

500

0

Su
m

-w
ei

gh
te

d
bu

gs

100
90
80
70
60
50
40
30
20
10
0

N
bl

oc
ki

ng
 b

ug
s

20
09

.1

20
09

.2

20
09

.3

20
09

.4

20
10

.1

20
10

.2

20
10

.3

20
10

.3

20
10

.4

20
11

.1

20
11

.2

20
11

.3

20
11

.4
Scrum Kanban Scrum

Year.Quarter within process Year.Quarter within process

Kanban

20
09

.1

20
09

.2

20
09

.3

20
09

.4

20
10

.1

20
10

.2

20
10

.3

20
10

.3

20
10

.4

20
11

.1

20
11

.2

20
11

.3

20
11

.4

(a) (b)

Figure 3. Bugs: (a) weighted and (b) blocking. The average number of weighted bugs per quarter fell from 1,774 in the Scrum period

to 1,591 in the Kanban period. The most critical bugs, blocking bugs, declined in number even more between the two process periods (from

65 to 48).

	 september/october 2012 | IEEE Software � 51

was 832 for Scrum and 476 for Kan-
ban. The most critical bugs, blocking
bugs, declined in number even more
between the two process periods (from
65 to 48 [by 26 percent; see Figure
3b]). The standard deviation fell from
31 to 19. The dip in the third quarters
is mainly due to less bug fixing during
the summer holiday.

More weighted bugs were found in
the Scrum period during the two first
quarters of 2009—afterward, Scrum
was no worse than Kanban. Hence, the
reduction in the number of bugs might
be independent of whether the process
was Scrum or Kanban. In any case,
these numbers must be interpreted with
caution: an increase in the number of
bugs could be due to better bug detec-
tion or larger products. Since 2009, SI
has employed more and presumably
better testers, and the code base of its
three products is continually extended.

Production
and Productivity
We measure production in terms of the
numbers of bugs fixed and PBIs fin-
ished. The number of bugs fixed is al-
most the same over the Scrum (mean
per quarter 595, stddev 271) and

Kanban periods (mean 580, stddev
164), whereas the production of PBIs
more than tripled from the Scrum pe-
riod (mean 190, stddev 50) to the Kan-
ban period (mean 601, stddev 227).

However, you can usually increase
production by employing more people.
In the long run, productivity might be
more important to a company than its
total production. In SI, the number of
developers and testers who fixed bugs
increased from an average of 40 in the
Scrum period to 48 in the Kanban pe-
riod. The number of people who worked
with PBIs increased from 34 to 59. Pro-
ductivity (the number of work items per
person) decreased from 15.3 to 12.1 (by
21 percent) for bugs (see Figure 4a) but
increased from 5.9 to 10.2 (by 73 per-
cent) for PBIs (see Figure 4b).

By using churn as an indicator of
work item size (see Figure 2), we pro-
pose an alternative measure of produc-
tivity to validate our results. Specifi-
cally, we define Productivity 2 as the
total churn divided by the number of
developers in each quarter. Figure 5a
shows that, for bugs, productivity de-
creased from an average of 0.46 KLOC
(stddev 0.22) for Scrum to 0.41 KLOC
(stddev 0.12) for Kanban—a reduction

of 11 percent. Figure 5b shows that,
for PBIs, productivity increased from
an average of 1.28 KLOC (stddev
0.39) for Scrum to 1.55 KLOC (std-
dev 0.61) for Kanban—an increase of
21 percent. Consequently, if we adjust
for work item size measured by churn,
we get a reduction in productivity for
bugs, but productivity still increases
considerably overall from the Scrum
period to the Kanban period.

The productivity gain in the Kanban
period should also be viewed in light of
the growth in the number of employ-
ees and the reduction in the number
of project managers. In a period dur-
ing which the number of employees
increases, you would expect produc-
tivity per employee to decline slightly
because of organizational and com-
munication overhead.8 Furthermore,
despite almost doubling the number of
developers and testers, SI managed to
reduce the number of (costly) project
managers from four to three by transi-
tioning from Scrum to Kanban.

Qualitative Evaluation
To complement the quantitative data
presented so far, we sought the opinions
of the R&D Operations Manager

28
26
24
22
20
18
16
14
12
10
8
6
4
2
0

Pr
od

uc
tiv

ity
 b

ug
s

18
16
14
12
10

8
6
4
2
0

Pr
od

uc
tiv

ity
 P

BI
s

20
09

.1

20
09

.2

20
09

.3

20
09

.4

20
10

.1

20
10

.2

20
10

.3

20
10

.3

20
10

.4

20
11

.1

20
11

.2

20
11

.3

20
11

.4

Scrum Kanban Scrum

Year.Quarter within process Year.Quarter within process

Kanban

20
09

.1

20
09

.2

20
09

.3

20
09

.4

20
10

.1

20
10

.2

20
10

.3

20
10

.3

20
10

.4

20
11

.1

20
11

.2

20
11

.3

20
11

.4

(a) (b)

Figure 4. Productivity: (a) bugs per developer and (b) PBIs per developer. The number of work items per person, or productivity, decreased

from 15.3 to 12.1 for bugs but increased from 5.9 to 10.2 for PBIs.

52	 IEEE Software | www.computer.org/software

FOCUS: Lean software development

(second author), CTO (third author),
a team leader, and a developer, all of
whom have been with SI for more than
10 years. The first author interviewed
the team leader and developer for one
hour each. All these people clearly
favored Kanban over Scrum.

All four perceived the fixed time-
boxes in Scrum to be artificial. Work
items were frequently underestimated,
and developers also had to deal with
ad hoc bug fixing, support, and main-
tenance tasks while working on the
items. Regardless, they were supposed
to finish the items within the given
timebox. In practice, this timeline led
to work items that were finished before
quality was satisfactory, that were de-
ferred to the next iteration (which re-
quired new planning activities), or that
weren’t finished at all. In the Kanban
period, at least all of the items that had
been started were finished because de-
velopers could focus on one item at a
time until it was finished.

In the Scrum period, it was difficult
to allocate resources optimally within
the sprints—for example, testers tended
to have little to do in the beginning of
a sprint and too much to do at the end.
Much of the sprint start-up meetings

were perceived as “waste.” In fact, SI
had already reduced sprint-planning
activities (and abandoned cross-func-
tional teams) by the end of 2009. Two
employees mentioned this relaxation of
the Scrum rules as an explanation for
why the lead time reduced from 2009
to 2010 (see Figure 1).

Did the lack of timeboxes in Kan-
ban lead to insufficient pressure to fin-
ish items? The consensus was that the
combination of daily stand-up meetings
and weekly status meetings, the visibil-
ity of the items’ status on the board,
and the personal ambitions to complete
the job constituted sufficient pressure.

A fter replacing Scrum with
Kanban, SI almost halved its
lead time, reduced the num-

ber of weighted bugs by 10 percent, and
improved productivity. Consequently,
SI appears to benefit more from using
Kanban than from using Scrum. We
strongly recommend software compa-
nies that face difficulties with effort
estimation and interruptions caused by
ad hoc bug fixing, support, and main-
tenance tasks to consider using the lean
practice of Kanban.

Nevertheless, as with any kind of
study in software engineering, gen-
eralizing the results of case studies is
challenging. Even though SI had been
using Scrum for almost two years be-
fore the data analyzed in this study was
collected, much of Kanban’s indicated
advantage might have simply been due
to the fact that Kanban was used after
Scrum. SI was familiar with agile meth-
ods (Scrum) for more than three years
before Kanban was introduced, and
other aspects, such as SI’s technological
environment and products, were basi-
cally the same in both the Scrum and
Kanban periods. Readers should judge
for themselves whether they’re in a situ-
ation similar enough to this company
to apply the results of this case study to
their own environment.

To provide the agile and lean soft-
ware community with more evidence
on how various processes, particularly
Scrum and Kanban, work for different
organizations or teams in different con-
texts, we encourage other companies to
collect and analyze data similar to our
dataset. Keep in mind that collecting
high-quality data might be a challenge.
Obtaining reliable information about
the performance of a particular process

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Ch
ur

n
(K

LO
C)

 p
er

 d
ev

el
op

er

2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2

0

20
09

.1

20
09

.2

20
09

.3

20
09

.4

20
10

.1

20
10

.2

20
10

.3

20
10

.3

20
10

.4

20
11

.1

20
11

.2

20
11

.3

20
11

.4

Scrum Kanban Scrum

Year.Quarter within process Year.Quarter within process

Kanban

20
09

.1

20
09

.2

20
09

.3

20
09

.4

20
10

.1

20
10

.2

20
10

.3

20
10

.3

20
10

.4

20
11

.1

20
11

.2

20
11

.3

20
11

.4

(a) (b)

Ch
ur

n
(K

LO
C)

 p
er

 d
ev

el
op

er

Figure 5. Productivity 2: (a) bugs per developer and (b) PBIs per developer. For bugs, productivity decreased from an average of 0.46 KLOC

for Scrum to 0.41 KLOC for Kanban; for PBIs, productivity increased from an average of 1.28 KLOC for Scrum to 1.55 KLOC for Kanban.

	 september/october 2012 | IEEE Software � 53

or method requires reliable raw data.
In a hectic environment, companies
might find it difficult to motivate de-
velopers and testers to record informa-
tion continually about the states of the
work items on which they’re working.
Fortunately, our experience suggests
that people become motivated if they
observe that the data that they record
leads to useful feedback. In addition to
feedback on the overall effects of vari-
ous processes, SI also displays informa-
tion about the number of bugs detected
in the past week and month on moni-
tors in its building’s common areas.
When visiting the company, partners
and customers can then observe the
number and trends of bugs in the vari-
ous products.

Our study compared Scrum with
Kanban, but different implementations
of these processes might have given dif-
ferent results, which is another reason
why our study should be replicated in
other environments. For example, a
particular characteristic of Kanban
is that the WIP should be limited, but
Kanban doesn’t specify the WIP limit.
To test the effects of various WIP lim-
its, we plan to conduct a controlled
experiment in which some teams will
have lower WIP limits than other
teams. We’ll then measure the team
performance based on the same success
criteria described in this article.

Acknowledgments
This work was partly funded by the Re-
search Council of Norway through the proj-
ect TeamIT, grant 193236/I40. We thank the
interviewees at Software Innovation for par-
ticipating in this study.

References
	 1.	 T. Dybå and T. Dingsøyr, “Empirical Studies

of Agile Software Development: A Systematic
Review,” Information & Software Tech., vol.
50, nos. 9–10, 2008, pp. 833–859.

	 2.	 J.E. Hannay et al., “The Effectiveness of Pair-
Programming: A Meta-Analysis,” Information
and Software Tech., vol. 55, no. 7, 2008, pp.
1110-1122.

	 3.	 C. Ebert and R. Dumke, Software Measure-
ment, Springer, 2007.

	 4.	 D. Anderson, Kanban: Successful Evolution-

ary Change for Your Technology Business,
Blue Hole Press, 2010.

	 5.	 H. Kniberg and M. Skarin, Kanban and
Scrum: Making the Most of Both, InfoQ,
2009.

	 6.	 D.I.K. Sjøberg et al., “Quantifying the Effect
of Code Smells on Maintenance Effort,”
IFI Research Report 417, University of Oslo

(ISBN 82-7368-381-8), 2012.
	 7.	 R. Chillarege et al., “Orthogonal Defect

Classification—A Concept for In-Process
Measurement,” IEEE Trans. Software Eng.,
vol. 18, no. 11, 1992, pp. 943–956.

	 8.	 T.K. Abdel-Hamid and S.E. Madnick,
Software Project Dynamics: An Integrated
Approach, Prentice Hall, 1991.

Dag I.K. Sjøberg is a professor of software engineering at the Uni-
versity of Oslo. His main interests are the software life cycle, including
agile and lean development processes, and empirical research methods
in software engineering. Sjøberg has a PhD in computing science from
the University of Glasgow. He’s a member of IEEE and ACM. Contact
him at dagsj@ifi.uio.no.

Anders Johnsen is head of product operations at Software In-
novation. His main interests are agile and lean development processes,
offshoring strategies, and the software life cycle. Johnsen has 11 years
of industry experience as a software developer, project manager, and
department manager. He’s a certified ScrumMaster. Contact him at
anders.johnsen@software-innovation.com.

Jørgen Solberg is the CTO of Software Innovation. He’s respon-
sible for the technical product road map, strategy, and architecture,
as well as managing SI’s development centers. Solberg has an MS in
engineering from the University of Trondheim. Contact him at jorgen.
solberg@software-innovation.com.

A
b

o
u

t
 t

h
e

 A
u

t
h

o
r

s

