

Globally Distributed

Software Development

Maria Paasivaara

Dis

Contents

§ Global software development
§ What?
§ Why?
§ Challenges
§ Tips for how to succeed

§ Using agile practices in
distributed projects

Global Software Development – What?

Global Software Development – What?

•  Global software development
•  Global software engineering
•  Distributed software development

(intra/inter-organizational)
•  Offshore / nearshore development

–  On-site, off-site
•  Software outsourcing
•  Software subcontracting

Tampere
Boston

Budapest

Oulu

Global Software Development – Why?

Global Software Development – Why?

•  Concentration on core competences
•  Lack of own resources
•  Lack of own knowledge
•  Increasing the speed of development
•  Lower cost (offshore development,

nearshore development)
•  Development closer to the market
•  Flexibility
•  Around-the-clock development
•  Mergers and acquisitions

What is difficult in distributed software
development projects?

Pair discussion

Challenges of Distribution
•  The problem #1: Communication
•  Geographical distance
•  Time-zone differences
•  Motivational issues
•  Cultural differences
•  Company border

•  Managing a distributed project
–  Takes more time and effort than expected

 --> Distributed projects typically take longer than collocated

 Do we need to
communicate?

How ?

How to make distributed software
development projects to succeed?

Pair discussion

Tips for How to Succeed:

Starting a Distributed Project

•  Organization
–  Choose your partners carefully
–  Limit the number of partners and locations

•  Minimize the time-zone difference
–  Working across time-zones reduces possibilities for

communication
–  Choose sites and partners preferably within same

time-zone, if frequent communication is needed

Starting a Distributed Project

Whom to
contact?

§  Plan how to divide work effectively
§ Minimize the need for communication between

sites – maximize the possibilities for
communication

§ Modular product structure
§  Sub-project manager or team leader at every site
§ Maximize the possibilities for communication

§  Arrange needed tools: for communication, version/
backlog management, testing, bug repository…

§  Plan: What kind of trainings are needed?
§  Hands-on training, class room training….

§  Starting a distributed project requires a lot of effort!!
§  Allocate extra time

Team Building and Trust

•  Important to build trust between partners and team
members already in the beginning

•  Plan face-to-face meetings (kick-off, trainings, collocated
working periods, developer exchange etc.)
–  Especially meetings in the beginning are important
–  “Give faces” to all sites
–  Seeing good quality work helps to build trust
–  Frequent meetings to ensure good

collaboration

Example: Team Building and Trust
In this project testers were reluctant to test the code delivered by a
subcontractor from a distant country. The project manager commented:

 “We had difficulties to get our acceptance testing people to
understand that we are in the same boat [with our subcontractors]
and it is no use to be enemies. (…) [The reasons behind] might be
that when these developers get a delivery and it is not functioning
perfectly well, and they know that it is not made by their friends
here, but by someone living in Turkey and trying to do it as cheap
as possible. (…) And that was the reason why it [testing] was
delayed here, because it was not motivating. (…) [In this project] we
learned a lot (…) about communication and how much it actually
helps to see those [subcontractor’s] faces. It was difficult to believe
it beforehand!”

Informing, Monitoring, Transparency
•  “There is a lot of information at the corridors”

–  In a distributed project people get only the information
you give them

–  Do not expect anyone to know anything
 -> make sure they know

•  Transparency
–  Give progress information also to team members at all

distributed sites - motivation
–  Give feedback to subcontractors / developers at

distributed sites - also positive!
•  Agree on regular meetings (daily/weekly e.g.

teleconference, videoconference)

Example: Informing
In a distributed project there were modules, needed between the
parts the customer was developing, and the parts the
subcontractor was developing, but nobody was taking care of
them. The subcontractor’s project manager was quite nervous
when he found this out:

 ”We expected that they [the missing modules] would come from
somewhere else, until we found the truth. (…) You never know
whether some matter is forgotten or whether it is just that they
[customer] are not telling us about it. You just don’t want many
years to ask about things, when you get only counter questions,
such as ‘How are YOU meeting the deadlines?’ – meaning that
it is not our business. And then we get feedback that we should
carry the responsibility for the whole project. (…) It is hard to be
a subcontractor!”

Example: Give Frequent Feedback

A project manager from a foreign subsidiary commented:

 "Sometimes I feel that this is like a black hole, we make
[code], and send it somewhere. (...) If you haven't got
any feedback for your work during the last half year,
then you just start to wonder whether it is ok or not. Of
course it is not, because when they start to test after that
half a year, then you get the mistakes. It is difficult
because you have already forgotten what you did a half
year ago."

Continuous Integration, Automated tests

•  Arrange continuous integration and automated
testing (if not possible daily/weekly deliveries of
code & integration)

•  Short iterations (e.g. two weeks)
•  Benefits

–  Creates transparency
–  Reveals early misunderstandings of requirements
–  Brings real check points
–  Gives instant feedback
–  Adds developer motivation

Project Managers:
Bottlenecks or Contact Creators?

?

Team member Team member

Project managers

?

Team member Team member

Project managers

Example: Team Level Links

A system architect used a chat program called Messenger to discuss with
developers from a foreign subsidiary:

 “Messenger is more practical than phone, especially with

foreign partners. (...) It is already difficult to understand
different pronunciations, not to mention the difficulties for me
to even express what I want to say. (...) Writing emails takes a
lot of time when you have to structure it and give background
information. When I write some technical explanation, it takes
time, it can take even two hours to write one email when I
search information and go back to code. (...) But with
messenger, it’s more like talking. You do not have to structure
things or think too carefully. Comments are very short. You
can write about what you have in your mind. And the
discussion just flows to the right direction.”

Establishment of Peer-to-Peer Links
•  Establishment of peer-to-peer links between distributed sites /

companies at several levels is important
 Communication improves

 §  Links can be created between
3 levels
§ Management level
§  Project level
§  Team level

”Visiting Engineer”

•  Visits the collaboration partner (customer, subcontractor, subsidiary,
other site)

•  Stays and works there for a longer period of time (from one week to
several months)
–  Especially in the project initial and final phases
–  In a larger project a small group can visit instead

•  One major task is facilitation of communication
–  Passes information, creates contacts, solves problems, is

present for face-to-face discussions

Site 2 Site 1

Problem Solving

 I hava a problem, but
whom to contact?

Subcontractor Customer

Problem Solving Communication
•  Often neglected in the project planning phase!
•  Time-consuming
•  Important in distributed projects
•  The lack of answers delays the project
•  Barrier to ask / motivation to answer
•  Practices:

–  Direct contacts between developers (e.g., chat)
–  Screen sharing + teleconference
–  Face-to-face problem solving
–  Discussion forums
–  “Problem solving responsible”

?

Subcontractor Customer

Problem solving
responsible

Example: Problem Solving

A system architect working in a highly distributed project
commented on his new “role”:

 “It just gradually happened that I became “a link person”. I
have a lot of experience since I have been [here] so long. I
have also been interested in the big picture of the project. But
it is sometimes very hard. Because there are so many tasks,
sometimes tens of tasks at the same time. And then I have
my own work, what I should develop. (…) My phone rings
40-50 times a day, but at the same time I should code
thousands of lines. It is difficult to run from task to task, when
you cannot concentrate. (…) Approximately half of my time
goes to this kind of communication through phone or email,
I’m like a help desk.”

 Using Agile Practices in a Distributed
Project

Combining Agility and Distribution:
Why? Why Not?

Distributed Agile Development
•  Cons:

–  Agile practices based on collocation and continuous face-
to-face communication

–  The biggest problem of distribution: communication
–  Limited experiences in companies

•  Pros:
–  Agile practices are build on communication: they require

everyone to communicate
–  Frequent iterations: fast feedback, response to customer

requirements, visibility
–  Many successful experiences: It is possible to succeed!

Distributed Scrum Teams?
Site-specific Scrum Teams?

Distributed Scrum Teams?
Site-specific Scrum Teams?

E.g. new product development E.g. transforming the development and
maintenance of an old product to a new site

Successful Practices for DAD (1/3)

•  Daily Scrum meetings of distributed teams
(videoconference, teleconference, chat)
–  Requires everyone to communicate – encourage!
–  Peer-to-peer discussions afterwards
–  Scrum-of-scrums

•  Continuous communication, e.g. chat
–  Team rooms
–  Videoconference – seeing the faces

Successful Practices for DAD (2/3)

•  Common tools
–  Repository, version management (continuous or daily

check-in, nightly builds)
–  Backlog tool (e.g. Wiki, Jira)

•  Synchronous iterations (2-4 weeks)
–  Rotating people between teams and sites

•  Product owner for each team
–  Participates actively even if distributed!

Successful Practices for DAD (3/3)

•  Frequent visits – travel enough!
–  Team building: everyone should meet
–  Hands-on training, collocated working, pair

programming etc.
–  Sprint planning together (collocated or distributed)
–  Demo (videoconference, application sharing)
–  Retrospective meeting

Questions?

