Entanglement:
Let us again consider two electrons in a double-wele potential, assuming that the spins are in the (singlet or triplet) state

$$
\left|\Psi_{s / \uparrow}\right\rangle=\frac{1}{\sqrt{2}}\left(|\uparrow\rangle_{L}|\downarrow\rangle_{R} \pm|\downarrow\rangle_{L}|\uparrow\rangle_{R}\right)^{\prime}
$$

where $|\theta=\uparrow, \downarrow\rangle_{\alpha=L, R}$ denotes the spin of the electron in the left/right potential well.
As an aside, we see that we can write the state as

$$
\begin{aligned}
&|\Psi s / \uparrow\rangle=\frac{1}{\sqrt{2}} {\left[\left(|L\rangle_{1}|R\rangle_{2}|\uparrow\rangle_{1}|\downarrow\rangle_{2}-|R\rangle_{1}|L\rangle_{2}|\downarrow\rangle_{1}|\uparrow\rangle_{2}\right)\right.} \\
&\left. \pm\left(|L\rangle_{1}|R\rangle_{2}|\downarrow\rangle_{1}|\uparrow\rangle_{2}-|R\rangle_{1}|L\rangle_{2}|\uparrow\rangle_{1}|\downarrow\rangle_{2}\right)\right] \\
&=\frac{1}{\sqrt{2}} {\left[|\downarrow\rangle_{1}|R\rangle_{2}\left(|\uparrow\rangle_{1}|\downarrow\rangle_{2} \pm|\downarrow\rangle_{1}|\uparrow\rangle_{2}\right)\right.} \\
&\left.-|R\rangle_{1}|L\rangle_{2}\left(|\downarrow\rangle_{1}|\uparrow\rangle_{2} \pm|\uparrow\rangle_{1}|\downarrow\rangle_{2}\right)\right] \\
&=\frac{1}{\sqrt{2}}\left[|l\rangle_{1}|R\rangle_{2}\left(|\uparrow\rangle_{1}|\downarrow\rangle_{2} \pm|\downarrow\rangle_{1}|\uparrow\rangle_{2}\right)\right. \\
&\left.\mp|R\rangle_{1}|L\rangle_{2}\left(|\uparrow\rangle_{1}|\downarrow\rangle_{2} \pm|\downarrow\rangle_{1}|\uparrow\rangle_{2}\right)\right] \\
&=\frac{1}{\sqrt{2}}\left(|l\rangle_{1}|R\rangle_{2} \mp|R\rangle_{1}|L\rangle_{2}\right)\left(|\uparrow\rangle_{1}|\downarrow\rangle_{2} \pm|\downarrow\rangle_{1}|\uparrow\rangle_{2}\right)
\end{aligned}
$$

The state

$$
\left|\Phi_{S / T}\right\rangle=\frac{1}{\sqrt{2}}\left(|\uparrow\rangle_{L}|\downarrow\rangle_{R} \pm|\downarrow\rangle_{L}|\uparrow\rangle_{R}\right)
$$

is interesting because it cannot be written on the product form $|\theta\rangle_{L}\left|\theta^{\prime}\right\rangle_{R}$. It is an entangled state. Before we discuss some of the peculiar features of butanglenent, let us see how entanglement car be created. We begin by assuming that two electrons occupy two well-separated potelticc well.

(L)

(R)

We measure the spins in each well and find, say,

$$
|\psi\rangle=|\uparrow\rangle_{L}|\downarrow\rangle_{R}
$$

(If any other direction is found, we can use electron spin resonance to this the spins and prepare the spin state above)

Next, we bung the two electrons together, so that they can tunnel between the wells.

Now, the spins interact due to the exchange coupling

$$
\hat{X}=-J \hat{\underline{s}}_{1}, \hat{\underline{s}}_{2} \text { with } J=\frac{4 t^{2}}{U}
$$

The time-evolution of the spins recols (omitting overall phase factors in several places)

$$
\begin{aligned}
& |\psi(t)\rangle=e^{-i \hat{\gamma e} t / \hbar}|\uparrow\rangle_{L}|\downarrow\rangle_{R} \\
& \left.=e^{-i \hat{H e t} / \hbar} \frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2}}(\mid \uparrow)_{l}(\downarrow\rangle_{R}+|\downarrow \lambda| \uparrow\right\rangle_{R}\right) \\
& \left.+\frac{1}{\sqrt{2}}\left(|\tau\rangle_{2}|\downarrow\rangle_{R}-|\downarrow\rangle_{L}|\eta\rangle_{R}\right)\right] \\
& \left.\left.=e^{-i \dot{H}^{2} t / t} \frac{1}{\sqrt{2}}[\mid \text { thplet }\rangle+\mid \text { singles }\right\rangle\right] \\
& \left.\left.\left.=\frac{1}{\sqrt{2}}[\mid \text { title }\rangle+e^{+i J t / \hbar} \right\rvert\, \text { single }\right\rangle\right]
\end{aligned}
$$

We then see that if $J t / \hbar=\pi \rightarrow t^{+}=\frac{\pi \hbar}{J}$, we get $\left\lvert\, \varphi\left(t^{*}| \rangle=\frac{1}{\sqrt{2}}[\mid\right.$ triplet $)$ - \mid sister $]\right.$

$$
=\frac{1}{2}\left[|\nu\rangle_{L}|\uparrow\rangle_{R}+|\downarrow\rangle_{\lambda}|\tau\rangle_{R}\right]-|\downarrow\rangle_{L}|\uparrow\rangle_{R}
$$

In this case, we haver swapped the state of the spins lusted, if we consider $t^{*} / 2=\frac{\pi}{2} \frac{5}{2}$, we get

$$
\begin{aligned}
&\left.\left.\left.\left|\psi\left(t^{t} / 2\right)\right\rangle=\frac{1}{\sqrt{2}}[\mid \text { triplet }\rangle+i \right\rvert\, \text { singlet }\right\rangle\right] \\
&=\frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2}}\left(|\uparrow\rangle_{L}|\downarrow\rangle_{R}+|\downarrow\rangle_{L}|\uparrow\rangle_{R}\right)\right. \\
&\left.+\frac{i}{\sqrt{2}}\left(|\uparrow\rangle_{L}|\downarrow\rangle_{R}-|\downarrow\rangle_{L}|\uparrow\rangle_{R}\right)\right] \\
&=\frac{1}{2}\left[(1+i)|\uparrow\rangle_{L}|\downarrow\rangle_{R}+\left(1-i| | \iota_{L}\right\rangle_{L}|\uparrow\rangle_{R}\right] \\
&=\frac{1+i}{2}\left[|\uparrow\rangle_{L}|\downarrow\rangle_{R}+\frac{1-i}{1+i}|\downarrow\rangle_{L}|\uparrow\rangle_{R}\right]
\end{aligned}
$$

4 overall phase seeker which can be omitted
Now we use that $\frac{1-i}{1+i}=\frac{\left(1-\left.i\right|^{2}\right.}{(1+i)(1-i)}=\frac{\mid-1-2 i}{1+1}=-i$,
So we find

$$
\left|\psi \left(E^{*} / 2| \rangle=\frac{1}{\sqrt{2}}\left[|\uparrow\rangle_{L}|\downarrow\rangle_{R}-i|\downarrow\rangle_{L}|\uparrow\rangle_{R}\right]\right.\right.
$$

Which is an entangles spin state. Finally, by moving the two election epart, we have crected long-distarce entanglement

Bell inequality:
Let us now consider some of the remarkable and counterintuitive properties of entangled states, in particular the singlet state.

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left(\left|\uparrow_{z}\right\rangle_{L}\left|\downarrow_{z}\right\rangle_{R}-\left|\downarrow_{z}\right\rangle_{L}\left|\uparrow_{z}\right\rangle_{R}\right)
$$

If we measure the left spin, we will alleys find that the night spin posits in the opposite direction. In principle, this is not very surprising. Just imocyine a "classical" device that sends out spins to the left and to the night that alleys point in opposite directions:

In this case, we would indeed find that the left and ught spins always point in op port ina directions. In particular, the state of the spins
was already determined before the measurement, and there was no "spooky action at a distemee" in the sense that the measurement in one location numediotely affected a sheasurement in a different location. This is the essence of "local realism" as advocated by Einstein, Podolsley, and Rosen (EPR).

Thus, according to EPR, the measurement outcomes could be explained by having a large ensemble of $s p(i s)$ with 50% being $\left|\uparrow_{z}\right\rangle_{L}\left|\downarrow_{z}\right\rangle_{R}$ and 50% being $\left|\left.\right|_{z}\right\rangle_{L}\left|\uparrow_{z}\right\rangle_{R}$.

Now, as we have seen in the exercises, the sciglet state is always of the form

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left(\left|\uparrow_{\underline{n}}\right\rangle\left|\downarrow_{\underline{n}}\right\rangle_{R}-\left|\downarrow_{\underline{n}}\right\rangle_{L}\left|\uparrow_{\underline{n}}\right\rangle_{R}\right)
$$

no matter what direction M we choose for our spin basis. For example, with $\underline{h}=\underline{x}$,
we have

$$
|\varphi\rangle=\frac{1}{\sqrt{2}}\left(\left|\uparrow_{x}\right\rangle_{L}\left|\downarrow_{x}\right\rangle_{R}-\left|\downarrow_{x}\right\rangle_{L}\left|\uparrow_{x}\right\rangle_{R}\right)
$$

Thus; if we measure along the x-direction, we find $\left|\tau_{x}\right\rangle_{L}\left|\downarrow_{x}\right\rangle_{R}$ halt of the time, and $\left|L_{x}\right\rangle_{L}\left|\uparrow_{x}\right\rangle_{R}$ the other halt of the time.

Now, imagine that we measure along the z-direction halt of the time and along the x-direction the other halt.

According to local realism, we could explain the measurement outcomes by having a large ensemble of particles with the following properties:
25% of paris with the left pastide having \uparrow_{z} and \uparrow_{x} and the righe portick having \downarrow_{z} and \downarrow_{x} 25% with t_{z} and d_{x} (left) and \downarrow_{2} end t_{x} (right) 25%-u- \downarrow_{z} and τ_{x} (bit) and τ_{z} and \downarrow_{x} (night) 25% - $-\downarrow_{z}$ and d_{x} (left and T_{z} and T_{x} (angle)

From this distribution, we would also find that we would measure τ_{z} for the left particle and 4_{x} for the nit particle 25% of the time. However, this is also consistent with quantum mechanies. Indeed, if we calculate the probability that the left particle is in the state $\left|\tau_{\underline{Q}}\right\rangle$ and the right one is in the state $\left|T_{\underline{b}}\right|$, we fluid

$$
\begin{aligned}
P(\underline{Q}, \underline{b}) & =\left.\left.\right|_{R}\left\langle\left.\tau_{\underline{b}}\right|_{L}\left\langle\tau_{\underline{Q}}\right| \mid \psi\right\rangle_{L R}\right|^{2} \\
& =\left.\right|_{R}\left\langle\tau_{\underline{b}}\right|\left\langle\tau_{\underline{Q}}\right| \frac{1}{\sqrt{2}}\left(\left|\tau_{\underline{Q}}\right\rangle_{L}\left|\psi_{\underline{a}}\right\rangle_{R}-\left.\left|\downarrow_{\underline{Q}}\right\rangle_{L}\left|\tau_{\underline{Q}}\right\rangle_{R}\right|^{2}\right. \\
& =\left.\left.\frac{1}{2}\right|_{R}\left\langle\tau_{\underline{b}} \mid \downarrow_{\underline{a}}\right\rangle_{R}\right|^{2}
\end{aligned}
$$

To calculate the overlap, we place the $x-y$ coordinate system in the $\underline{a}-\underline{b}$ plane and wite

$$
\begin{aligned}
\left\|\|_{\underline{a}}\right\rangle & =\hat{U}_{\underline{z}}\left(\pi-\theta_{a b}\right)\left|\hat{\imath}_{\underline{b}}\right\rangle=e^{-i\left(\frac{\pi-\theta_{c b}}{2}\right) \hat{\theta}_{z}}\left|\uparrow_{\underline{b}}\right\rangle \\
& =\left[\hat{1} \cos \left(\frac{\pi-\theta_{a b}}{2}\right)-i \hat{\sigma}_{z} \sin \left(\frac{\hbar-\theta_{a b}}{2}\right)\right]\left|\uparrow_{\underline{b}}\right\rangle
\end{aligned}
$$

Since $\left|T_{b}\right\rangle$ has no component in the z-direction, we have $\left\langle\uparrow_{\underline{b}}\right| \hat{\sigma}_{z}\left|\uparrow_{y}\right\rangle=0$, and thus

$$
\begin{aligned}
P(\underline{a}, \underline{b}) & =\frac{1}{2} \cos ^{2}\left(\frac{t-\epsilon a b}{2}\right) \\
& =\frac{1}{2} \sin ^{2}(\theta a b / 2)
\end{aligned}
$$

From this result, we get

which nicked implies 25%
So abs in the case of two measurement directions, we can explaci the ont comes based on local realism.

Bell realized that "local realism" mus in to trouble, if we consider three different measurent directions $\underline{a}, \underline{b}, \underline{c}$. In this case, load realism would require N pairs of election with the pollouning properties:

(Note that the spin of the left partich is clwers opposite to the rigle pastiche as regucied for a sizhefl The toted number of pairs is $N=N_{1}+N_{2}+\ldots+N_{8}$ Based on this table, we find

$$
\begin{aligned}
& P\left(\uparrow_{a}, \uparrow_{b}\right)=\frac{N_{3}+N_{4}}{N} \\
& P\left(\uparrow_{a}, T_{c}\right)=\frac{N_{2}+N_{4}}{N} \\
& P\left(T_{c}, T_{b}\right)=\frac{N_{3}+N_{7}}{N}
\end{aligned}
$$

Next, we use the obvious in equality

$$
\begin{aligned}
& N_{3}+N_{4} \leqslant N_{3}+N_{4}+N_{2}+N_{7}=\left(N_{2}+N_{4}\right)+\left(N_{3}+N_{7}\right) \\
& \Rightarrow P\left(\uparrow_{a}, \uparrow_{b}\right) \leqslant P\left(\uparrow_{a} \uparrow_{c}\right)+P\left(\uparrow_{c} \uparrow_{b}\right) \\
& \begin{array}{l}
\text { Bells's } \\
\text { inequality. }
\end{array}
\end{aligned}
$$

This is the prediction based on "lac(realism".
However, QM allows us to violate Bell's inepectin.
Quantum mechanically, we have

$$
P(\underline{a}, \underline{b}) \quad\left(=P\left(\tau_{a}, T_{b}\right)\right)=\frac{1}{2} \sin ^{2}(\theta a b / 2) \pi^{a}
$$

Thus, if we chase the directions as So that $\theta_{a b}=2 \theta$ and $\theta_{a c}=\theta_{c b}=\theta$,
 we get

$$
\frac{1}{2} \sin ^{2} \theta \leq \sin ^{2}(\theta / 2)
$$

However, this in equality is violated for any $\theta \leqslant \frac{\pi}{2}$ For mistime, with $\theta \ll 1$, we easily get

$$
\frac{1}{2} \sin ^{2} \theta \simeq \frac{1}{2} \theta^{2} \text { and } \sin ^{2}(\theta / 2) \simeq \frac{1}{4} \theta^{2}
$$

and dearly $\frac{1}{2} \theta^{2} \geq \frac{1}{4} \theta^{2}$.
\Rightarrow local realign cannot be true!

CSHS:
Bell's original in equality from 1964 thins out to be difficult to realize in experiment, since if requires highly accurate control of the measurement directions. In 1969, Clavier, Horne, Shimony, and Holt (Estes) devised another in equality to test local redism. To this end, let us consider the setup below.

In this experiment, Alice and Bobs each receive a particle and can choose either to measure $Q= \pm 1$ or $R= \pm 1$ for Alice, and $S= \pm 1$ or $E \pm 1$ for Bob.
To test local realism, we consider the correlations between these measurements. In particular, it will be useful to courider the quantity

$$
Q S+R S+R T-Q T=(Q+R) S+(R-Q) T
$$

Now, since $Q= \pm 1$ and $R= \pm 1$, we must have either $(Q+R) S= \pm 2$ and $(R-Q) T=0$
er $(Q+R) S=0 \quad$ and $(R-Q) T= \pm 2$, slice $S= \pm 1$ and $T= \pm 1$. Thess, we conclude that

$$
Q S+R S+R T-Q T= \pm 2
$$

We now make two assumptions:
(Realism): The particles have definite values of Q, R, T, S before the measurements.
(Locality) : Alice's measuremats do not influence Bob's measurements and vice versa.

Thus, the measurement outcomes are deterniund by the classical probability distribution $P(Q, R, S, T)$ that a given pair of particles have the values Q, R, S, T. Using this probabity distribution, we can evaluate the average of $Q S+R S+R T-Q T$:

$$
\begin{aligned}
& \langle Q S+R S+R T-Q T\rangle=\sum_{Q_{1} R S, T}\left(Q S \perp R S+R T-Q_{T} \mid P\left(Q_{1} R_{1} S_{i} T\right)\right. \\
& =\sum_{Q, R, S, T} Q S P(Q, R, S, T)+\ldots=\langle Q S\rangle+\langle R S\rangle+\langle R T\rangle-\langle Q T\rangle
\end{aligned}
$$

However, we abs have

$$
\begin{aligned}
\langle Q S+R S+R T-Q T\rangle & =\sum_{Q, R, T} \underbrace{(Q S+R S+R T-Q T)}_{= \pm 2 \leqslant+2} P(Q, R, S, T) \\
& \leqslant 2 \underbrace{\sum_{Q_{1} R_{1} S_{T} T} P(Q, R, S, T)}_{=1}=2
\end{aligned}
$$

We thereby obtain the SHIS in equality

$$
\langle Q S\rangle+\langle R S\rangle+\langle R T\rangle-\langle Q T\rangle \leqslant 2
$$

If this inequality is violated, local realism cannot be trice. Importacth, the lept-hard side ear be measured and has bean found to exceed 2!

In the exerieses, yon will see that if you use

$$
Q=\hat{\sigma}_{z}, \quad R=\hat{\sigma}_{x}, \quad S=-\left(\hat{\sigma}_{x}+\hat{\sigma}_{z}\right) / \sqrt{2}, \quad \text { and } T=\left(\hat{\sigma}_{z}-\hat{\theta}_{x}\right) / \sqrt{2}
$$

for a singlet state, yon find

$$
\langle Q S\rangle+\langle R S\rangle+\langle R T\rangle-\langle Q T\rangle=2 \sqrt{2}\rangle 20_{0}^{\nabla}
$$

