A?

Aalto University School of Electrical Engineering

Lecture 5: Open-Loop Dynamics of a DC Motor ELEC-E8405 Electric Drives (5 ECTS)

Marko Hinkkanen

Autumn 2020

Learning Outcomes

After this lecture and exercises you will be able to:

- Draw relevant block diagrams of the DC motor
- Derive transfer functions based on the block diagram
- Interpret the most essential properties of second-order systems
- Explain the concept of time-scale separation

Introduction

- Open-loop (plant) model of the DC motor
 - Combination of the electrical and mechanical models
 - Plant model is the starting point in the control design
- Brief recap on control theory tools in the context of the DC motor
 - Block diagram, transfer function, 2nd-order system, state-variable form
 - Basic knowledge of these tools is needed in the field of electric drives (and in many other fields as well)
- Transient response in open loop (speed and current)
- ► Time-scale separation (electrical and mechanical subsystems)

Note: Controllers will not be considered today

Example: Connection of a DC Voltage Source to the Terminals

- Assume that a DC voltage source is connected to the motor terminals
- How will the speed ω_M and the current i_a behave?
- How to model and analyse transient response in more general cases?

Outline

Dynamic Model of the DC Motor

Model Equations Block Diagrams Transfer Functions and Their Properties Nice-to-Know: State-Variable Form

Simulation Examples

Time-Scale Separation

DC Motor Model

Voltage equation

$$L_{\rm a}\frac{\mathrm{d}i_{\rm a}}{\mathrm{d}t} = u_{\rm a} - R_{\rm a}i_{\rm a} - e_{\rm a}$$

where $e_{\mathrm{a}} = k_{\mathrm{f}} \omega_{\mathrm{M}}$ is the back emf

Motion equation

$$J\frac{\mathrm{d}\omega_{\mathrm{M}}}{\mathrm{d}t} = T_{\mathrm{M}} - T_{\mathrm{L}}$$

where $T_{\rm M} = k_{\rm f} i_{\rm a}$ is the electromagnetic torque

 For simplicity, the flux factor k_f is assumed to be constant in the following

Electrical and Mechanical Dynamics Are Coupled

Electrical Dynamics in the Time Domain

Differential equation

$$L_{\mathrm{a}}\frac{\mathrm{d}i_{\mathrm{a}}}{\mathrm{d}t} = u_{\mathrm{a}} - e_{\mathrm{a}} - R_{\mathrm{a}}i_{\mathrm{a}}$$

- \blacktriangleright $u_{\rm a}$ and $e_{\rm a}$ are the inputs
- $i_{\rm a}$ is the output
- Integration of both sides gives

$$i_{\mathrm{a}} = \int \frac{1}{L_{\mathrm{a}}} \left(u_{\mathrm{a}} - e_{\mathrm{a}} - R_{\mathrm{a}} i_{\mathrm{a}} \right) \mathrm{d}t$$

► In the time domain, s = d/dt refers to the differential operator

In some textbooks, the symbol p = d/dt is used for the differential operator in the time domain.

Electrical Dynamics in the Laplace Domain

- ► Laplace transform: $d/dt \rightarrow s$
- Current can be solved

$$i_{a}(s) = \frac{1}{sL_{a} + R_{a}}[u_{a}(s) - e_{a}(s)]$$

Transfer function (admittance)

$$Y_{\rm a}(s) = \frac{1}{sL_{\rm a} + R_{\rm a}} = \frac{1/R_{\rm a}}{1 + \tau_{\rm a}s}$$

where $\tau_{\rm a} = L_{\rm a}/R_{\rm a}$

In the Laplace domain, $s = \sigma + j\omega$ is a complex variable. However, the differential operator and the Laplace variable can be used interchangeably in many cases.

Useful Block Diagram Algebra

Block Diagram of the DC Motor

► Flux factor k_f couples the electrical and mechanical dynamics

Block Diagram of the DC Motor

Armature current depends on the armature voltage and the load torque

$$i_{\mathrm{a}}(s) = G_{iu}(s)u_{\mathrm{a}}(s) + G_{iT}(s)T_{\mathrm{L}}(s)$$

Speed depends on the armature voltage and the load torque

$$\omega_{\rm M}(s) = G_{\omega u}(s)u_{\rm a}(s) + G_{\omega T}(s)T_{\rm L}(s)$$

Could you derive the transfer functions based on the block diagram?

Transfer Function From $u_{a}(s)$ to $\omega_{M}(s)$

• Transfer function from the voltage $u_{a}(s)$ to the speed $\omega_{M}(s)$

$$G_{\omega u}(s) = \frac{\frac{k_{\rm f}}{JL_{\rm a}}}{s^2 + \frac{R_{\rm a}}{L_{\rm a}}s + \frac{k_{\rm f}^2}{JL_{\rm a}}} = \frac{K\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$$

- Last form is a typical generic form of 2nd-order systems
- Undamped angular frequency, damping ratio, and DC gain

$$\omega_0 = \frac{k_{\rm f}}{\sqrt{JL_{\rm a}}} \qquad \zeta = \frac{R_{\rm a}}{2k_{\rm f}}\sqrt{\frac{J}{L_{\rm a}}} \qquad K = \frac{1}{k_{\rm f}}$$

You don't need to remember these more complex transfer functions, but practise deriving them based on the block diagram instead. However, you should remember the generic form used above.

2nd-Order System in the Time Domain: Step Response

Step responses can be easily plotted using numerical simulation tools. If needed, an analytical solution could be obtained using the inverse Laplace transformation.

2nd-Order System in the Frequency Domain

► 2nd-order system

$$G(s) = \frac{K\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$$

- Consider a sinusoidal input
 - $u(t) = U\sin(\omega t)$
- For ζ > 0, the output in steady state is

$$y(t) = AU\sin(\omega t + \phi)$$

where

$$A = |G(j\omega)| \qquad \phi = \underline{/G(j\omega)}$$

Transfer Function From $u_{a}(s)$ to $i_{a}(s)$

• Transfer function from the voltage $u_a(s)$ to the current $i_a(s)$

$$G_{iu}(s) = \frac{s/L_{\rm a}}{s^2 + \frac{R_{\rm a}}{L_{\rm a}}s + \frac{k_{\rm f}^2}{JL_{\rm a}}}$$

- Characteristic polynomial remains the same (holds also for other transfer functions of the system)
- Zero at s = 0 in this transfer function
- ▶ If $J \to \infty$ (i.e. ω_M is constant)

$$G_{iu}(s) = \frac{1}{sL_{\rm a} + R_{\rm a}} = Y_{\rm a}(s)$$

State-Variable Form

- State-variable model consists of coupled 1st-order differential equations
- Derivatives dx/dt depend on the states x and the system input u

$$rac{\mathrm{d}oldsymbol{x}}{\mathrm{d}t} = oldsymbol{A}oldsymbol{x} + oldsymbol{B}u$$
 $y = oldsymbol{C}oldsymbol{x}$

- States x depend on the history, but not on the present values of the inputs
- Output y depends only on the states (in physical systems)
- State variables are typically associated with the energy storage
 - Current *i* of an inductor (or its flux linkage $\psi = Li$)
 - Voltage u of a capacitor (or its charge q = Cu)
 - Speed v of a mass (or its momentum p = mv)
- Choice of state variables is not unique (as shown in the parenthesis above)

State-Variable Form of the DC Motor

$$\frac{\mathrm{d}}{\mathrm{d}t} \underbrace{\begin{bmatrix} i_{\mathrm{a}} \\ \omega_{\mathrm{M}} \end{bmatrix}}_{\boldsymbol{x}} = \underbrace{\begin{bmatrix} -\frac{R_{\mathrm{a}}}{L_{\mathrm{a}}} & -\frac{k_{\mathrm{f}}}{L_{\mathrm{a}}} \\ \frac{k_{\mathrm{f}}}{J} & 0 \end{bmatrix}}_{\boldsymbol{A}} \begin{bmatrix} i_{\mathrm{a}} \\ \omega_{\mathrm{M}} \end{bmatrix} + \underbrace{\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}}_{\boldsymbol{B}_{u}} u_{\mathrm{a}} + \underbrace{\begin{bmatrix} 0 \\ -\frac{1}{J} \end{bmatrix}}_{\boldsymbol{B}_{T}} T_{\mathrm{L}}$$
$$i_{\mathrm{a}} = \underbrace{\begin{bmatrix} 1 & 0 \end{bmatrix}}_{\boldsymbol{C}_{i}} \boldsymbol{x} \qquad \omega_{\mathrm{M}} = \underbrace{\begin{bmatrix} 0 & 1 \end{bmatrix}}_{\boldsymbol{C}_{\omega}} \boldsymbol{x}$$

 $\blacktriangleright\,$ Transfer function from $u_{\rm a}(s)$ to $\omega_{\rm M}(s)$ as an example

$$G_{\omega u}(s) = \boldsymbol{C}_{\omega}(s\boldsymbol{I} - \boldsymbol{A})^{-1}\boldsymbol{B}_{u}$$

- Transfer functions of the system are unique, i.e. the state-variable form leads to the previous transfer functions
- Poles of the transfer function are eigenvalues of the system matrix A

Outline

Dynamic Model of the DC Motor

Simulation Examples

Time-Scale Separation

Time-Domain Simulation Examples

Rated values of a small PM DC motor

- $\blacktriangleright\,$ Armature voltage $\mathit{U}_{\rm N}=$ 110 V
- Armature current $I_{\rm N} =$ 10 A
- ▶ Rotation speed $n_{\rm N} =$ 1200 r/min
- Angular speed

$$\omega_{
m N} = 2\pi n_{
m N}$$

= $2\pi \cdot rac{1200 \text{ r/min}}{60 \text{ s/min}}$
= 125.7 rad/s

Electrical parameters

- \blacktriangleright $R_{\rm a} = 0.5 \ \Omega$
- \blacktriangleright $L_{\rm a} = 1 \text{ mH}$
- ► k_f = 0.836 Vs

Two inertia values

- Case 1: $J = 0.05 \text{ kgm}^2$ ($\zeta = 2.11, \omega_0 = 118 \text{ rad/s}$)
- Case 2: J = 0.005 kgm²
 (ζ = 0.67, ω₀ = 374 rad/s)

Voltage-Step Response

- Armature is connected to the rated voltage
- Load torque is zero
- ► Current rises quickly and then decreases as the back-emf e_a = k_fω_M increases
- Very large current peak is undesirable

Load-Torque-Step Response

20 -15 -10 Armature voltage is constant $\mathbf{5}$ (rated) 0 Initially no-load condition 0.020.040.060 Rated load torque is applied at $\omega_{\rm M}$ (rad/s) \uparrow t = 0.01 s135 - $J = 0.05 \, {\rm kgm}^2$

*i*_a (A) †

 $130 \\ 125$

0

0.02

t (s)

0.08

0.08

 $J = 0.005 \text{ kgm}^2$

0.06

0.04

0.1

0.1

t (s)

Outline

Dynamic Model of the DC Motor

Simulation Examples

Time-Scale Separation

Time-Scale Separation

When considering the slow mechanical dynamics, the quickly converging electrical dynamics may be approximated with the DC gain

When considering the fast electrical dynamics, the slowly varying rotor speed may be assumed to be constant

$$u_{a} + 1$$

 $e_{a} = \text{constant}$ i_{a}

Reduced-Order Model for Slow Mechanical Dynamics

- Response to the rated voltage step
- Electrical dynamics are approximated with the steady-state gain
- Response of the reduced-order model is close to the full-order model

Reduced-Order Model for Fast Electrical Dynamics

- Response to the rated voltage step
- Speed is assumed to be constant
- ► Fast electrical transient is well modelled using the first-order model Y_a(s)
- Notice a different scale of the time axes compared to the previous case

