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Learning Outcomes

After this lecture and exercises you will be able to:
» Draw relevant block diagrams of the DC motor
» Derive transfer functions based on the block diagram
» Interpret the most essential properties of second-order systems
» Explain the concept of time-scale separation
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Introduction

» Open-loop (plant) model of the DC motor

» Combination of the electrical and mechanical models
» Plant model is the starting point in the control design

» Brief recap on control theory tools in the context of the DC motor

» Block diagram, transfer function, 2nd-order system, state-variable form
» Basic knowledge of these tools is needed in the field of electric drives
(and in many other fields as well)

» Transient response in open loop (speed and current)
» Time-scale separation (electrical and mechanical subsystems)

Note: Controllers will not be considered today
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Example: Connection of a DC Voltage Source to the Terminals

Udc

I N\t

> Ug, es=kewm

» Assume that a DC voltage source is connected to the motor terminals
» How will the speed wy; and the current i, behave?
» How to model and analyse transient response in more general cases?
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Outline

Dynamic Model of the DC Motor
Model Equations
Block Diagrams
Transfer Functions and Their Properties
Nice-to-Know: State-Variable Form
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DC Motor Model

» Voltage equation

di, .
L, = Uy — Rala — €4

d¢

where e, = krwy is the back emf
» Motion equation

dwn
— L =Ty —T
J T M — 1L
where T\ = k¢i, is the electromagnetic torque

» For simplicity, the flux factor &; is assumed to be
constant in the following

Uy, €a

[e]
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Electrical and Mechanical Dynamics Are Coupled

Physical model

Block diagram

T = kria
ia Ra La Ug ia
TL — —>
= DC motor
11, WM
—> ——>

7/26



Electrical Dynamics in the Time Domain

dia Integrator

» Differential equation i
La% = Uy — €y — Rain 1/ i,
dt : >
S

» wu, and e, are the inputs
» i, is the output
» Integration of both sides gives

» In the time domain, s = d/dt refers to

1
' / (tta — e ala) the differential operator

La

In some textbooks, the symbol p = d/dt is used for the differential operator in the time domain.
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Electrical Dynamics in the Laplace Domain

» Laplace transform: d/dt — s
» Current can be solved

ia(s) L

1 1 ia
— ¥ - >
L, s
= T ta(s) — eals)] R,
» Transfer function (admittance)
1 1/R,
Ya = =
(S) sLa + Ry 1+ 7,8

where 7, = L,/ R,

interchangeably in many cases.

In the Laplace domain, s = o + jw is a complex variable. However, the differential operator and the Laplace variable can be used
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Useful Block Diagram Algebra

d
(s) G1(s)Ga(s) oy e + - v
()~ 1+ Gi(s)Ga(s)H(s) G(s) 4&* Gi(s)
(s)
(s)
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Block Diagram of the DC Motor

di .
La—2 = —Ryia — kpn + ug
dt
dw
J—— = ki, — T
dt fla L
T,
Us + + 1 1 la Tm u 1 1 WM
— b = ke — - = >
— — l;a S + J S
R,
€a

ke

» Flux factor k¢ couples the electrical and mechanical dynamics
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Block Diagram of the DC Motor

1,

Ua 4 1 ia j}ﬂ < 1 WM
sL,+ R, + sJ

€a

ke

» Armature current depends on the armature voltage and the load torque
ia(s) = Giu(s)ua(s) + Gir(s)TL(s)
» Speed depends on the armature voltage and the load torque
wm(s) = Guu(s)uals) + Gur(s)TL(s)

» Could you derive the transfer functions based on the block diagram?
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Transfer Function From u,(s) to wy(s)

» Transfer function from the voltage u,(s) to the speed wy(s)

K¢
JL ng
Guu = & =
(5) 2, R, N k? s2 + 2¢wos + wi
LT UL,

» Last form is a typical generic form of 2nd-order systems
» Undamped angular frequency, damping ratio, and DC gain

ke R, J 1
= — _ K = —
. STV it

You don'’t need to remember these more complex transfer functions, but practise deriving them based on the block diagram instead. However, you
should remember the generic form used above.

wo =

13/26



2nd-Order System in the Time Domain: Step Response

y/K (=0
» 2nd-order system 2+
y(s) ¢=02
G(s) = == 1
(s) u(s) 15
_ Kw% ¢=0.7
s2 + 2Cwos + wi L o 5RS
¢=1
» Response y(t) to the 051 =
step input u(t) is shown
» No overshoot if ( > 1 0 . .
0 T 2 3 A

wot (rad)

Step responses can be easily plotted using numerical simulation tools. If needed, an analytical solution could be obtained using the inverse
Laplace transformation.
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2nd-Order System in the Frequency Domain

» 2nd-order system

K
82+ 2Cwos + Wi

G(s)
i[¢=0

» Consider a sinusoidal input (=02
u(t) = U sin(wt)

» For ¢ > 0, the output in

steady state is

y(t) = AU sin(wt + ¢)

where 0.01 0.1 1 10

A=G(w)  ¢=/G(jw)

100w /uwp
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Transfer Function From v, (s) to i,(s)

» Transfer function from the voltage u.(s) to the current i, (s)

s/ L,
Guuls) = —LE2
24 1® f
s°+ LaS+JLa

» Characteristic polynomial remains the same
(holds also for other transfer functions of the system)

» Zero at s = 0 in this transfer function
» If J — oo (i.e. wy is constant)

Gw(s)

16/26



State-Variable Form

» State-variable model consists of coupled 1st-order differential equations

» Derivatives da/dt depend on the states « and the system input «
d
d—:: = Ax + Bu
y=Czx

» States x depend on the history, but not on the present values of the inputs

Output y depends only on the states (in physical systems)
» State variables are typically associated with the energy storage

» Current ¢ of an inductor (or its flux linkage v = Li)
» \oltage u of a capacitor (or its charge ¢ = Cu)
» Speed v of a mass (or its momentum p = mv)

» Choice of state variables is not unique (as shown in the parenthesis above)

v
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State-Variable Form of the DC Motor

d | i, —I> —]z—f ia + 0
- — a a a jﬂ
dt |:CUM:| [ % 0 iy + 0 Ug + _% L
—— ~—— ——
x A Bu BT
zd:[l O]w wM:[O 1|l x
S~—— S~——
C; C.

» Transfer function from u,(s) to wy(s) as an example
Guu(s) = Cy(sI — A)_lBu

» Transfer functions of the system are unique, i.e. the state-variable form leads
to the previous transfer functions

» Poles of the transfer function are eigenvalues of the system matrix A
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Outline

Simulation Examples
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Time-Domain Simulation Examples

Rated values of a small PM DC motor

» Armature voltage Uy = 110V Electrical parameters

» Armature current Iy = 10 A > R, =059
» Rotation speed nx = 1200 r/min > Lo =1mH
» k= 0.836 Vs
» Angular speed Two inertia values
_ » Case 1:J = 0.05 kgm?
WN = 2mnN _ (¢ =2.11, wy = 118 rad/s)
_ o . 1200 /min > Case 2: J = 0.005 kgm?
60 s/min (¢ = 0.67, wo — 374 rad/s)

= 125.7 rad/s
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Voltage-Step Response

» Armature is connected to the
rated voltage

v

Load torque is zero

» Current rises quickly and then
decreases as the back-emf
ea = krwy increases

» Very large current peak is
undesirable

ia (A)

200 1
150 7
100 A

50

wwm (rad/s)

150
100 +
50 T

0

\
\
\
\
\
\

\

-y -t — -

N L
N>+

0.04 0.06 0.08

0 0.02 0.1 t(s)
J = 0.005 kgm?
N e e e e e o e S o S
/
1
! 7 = 0.05 kgm?
I
I
0 0.02 0.04 006 008 0.1 ¢(s)



Load-Torque-Step Response

20
15 1
10 1

ia (A)
» Armature voltage is constant
(rated) .
» Initially no-load condition
» Rated load torque is applied at wu (rad/s)

t=001s

135 1
130
125 1

J = 0.005 kgm?

0.02

0.04  0.06

0.08



Outline

Time-Scale Separation
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Time-Scale Separation

» When considering the slow mechanical dynamics, the quickly converging
electrical dynamics may be approximated with the DC gain
Ty,
Ua + 1 ia I}NI u 1 WM

ne I I N e IV I

=

€a

ke

» When considering the fast electrical dynamics, the slowly varying rotor speed
may be assumed to be constant

ia

Ua + 1
__f sLy + R,
e, = constant
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Reduced-Order Model for Slow Mechanical Dynamics

ia (A) ___— First-order approximate model
200 FN\e..
AN Full-order model
150 ] "" \\\\/
» Response to the rated 100k :
voltage step 50 |

» Electrical dynamics are 0

approximated with the 0 002 004 006 008 01 t(s)
steady-state gain

» Response of the

wwm (rad/s)

. 150 1

reduced-order model is

close to the full-order model 100 1
501
0+

0 0.02 0.04 0.06 0.08 0.1 ¢(s)
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Reduced-Order Model for Fast Electrical Dynamics

» Response to the rated
voltage step

» Speed is assumed to be
constant

» Fast electrical transient is
well modelled using the
first-order model Y, (s)

» Notice a different scale of
the time axes compared to
the previous case

ta (A)

200 1
150
100

50 T

0

wwm (rad/s)

150
100 1
50 T

0

First-order approximate model

" Full-order model

0

0.002 0.004 0.006 0.008 0.01 ¢t(s)

0

0.002 0.004 0.006 0.008 0.01 ¢(s)
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