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Learning Outcomes

After this lecture and exercises you will be able to:
I Draw relevant block diagrams of the DC motor
I Derive transfer functions based on the block diagram
I Interpret the most essential properties of second-order systems
I Explain the concept of time-scale separation
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Introduction

I Open-loop (plant) model of the DC motor
I Combination of the electrical and mechanical models
I Plant model is the starting point in the control design

I Brief recap on control theory tools in the context of the DC motor
I Block diagram, transfer function, 2nd-order system, state-variable form
I Basic knowledge of these tools is needed in the field of electric drives

(and in many other fields as well)
I Transient response in open loop (speed and current)
I Time-scale separation (electrical and mechanical subsystems)

Note: Controllers will not be considered today
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Example: Connection of a DC Voltage Source to the Terminals

ia LaRa

uaUdc ea =kfωM

I Assume that a DC voltage source is connected to the motor terminals
I How will the speed ωM and the current ia behave?
I How to model and analyse transient response in more general cases?
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Outline
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Model Equations
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Nice-to-Know: State-Variable Form

Simulation Examples

Time-Scale Separation
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DC Motor Model

I Voltage equation

La
dia
dt

= ua −Raia − ea

where ea = kfωM is the back emf
I Motion equation

J
dωM

dt
= TM − TL

where TM = kfia is the electromagnetic torque
I For simplicity, the flux factor kf is assumed to be

constant in the following

ia

ea

LaRa

ua
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Electrical and Mechanical Dynamics Are Coupled

ia LaRa

ua

ωM

TL

TM = kf ia

ea =kfωM
DC motor

Physical model

ua

TL

ia

ωM

Block diagram

⇒
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Electrical Dynamics in the Time Domain

I Differential equation

La
dia
dt

= ua − ea −Raia

I ua and ea are the inputs
I ia is the output
I Integration of both sides gives

ia =

∫
1

La
(ua − ea −Raia) dt

ua 1

La

Ra

ea

ia1

s

dia
dt

Integrator

I In the time domain, s = d/dt refers to
the differential operator

In some textbooks, the symbol p = d/dt is used for the differential operator in the time domain.
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Electrical Dynamics in the Laplace Domain

I Laplace transform: d/dt→ s

I Current can be solved

ia(s) =
1

sLa +Ra
[ua(s)− ea(s)]

I Transfer function (admittance)

Ya(s) =
1

sLa +Ra
=

1/Ra

1 + τas

where τa = La/Ra ea

ua 1

La

Ra

ea

ia1

s

ua ia1

sLa +Ra

In the Laplace domain, s = σ + jω is a complex variable. However, the differential operator and the Laplace variable can be used
interchangeably in many cases.
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Useful Block Diagram Algebra

y(s)

r(s)
=

G1(s)G2(s)

1 +G1(s)G2(s)H(s)

y(s)

d(s)
=

G2(s)

1 +G1(s)G2(s)H(s)

r
G1(s)

H(s)

G2(s)

d

y
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Block Diagram of the DC Motor

La
dia
dt

= −Raia − kfωM + ua

J
dωM

dt
= kfia − TL

ua 1

La

Ra

ea

ia1

s
kf

1

J

1

s

TL

TM ωM

kf

I Flux factor kf couples the electrical and mechanical dynamics
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Block Diagram of the DC Motor

ua

ea

ia
kf

1

sJ

TL

TM ωM

kf

1

sLa +Ra

I Armature current depends on the armature voltage and the load torque

ia(s) = Giu(s)ua(s) +GiT (s)TL(s)

I Speed depends on the armature voltage and the load torque

ωM(s) = Gωu(s)ua(s) +GωT (s)TL(s)

I Could you derive the transfer functions based on the block diagram?
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Transfer Function From ua(s) to ωM(s)

I Transfer function from the voltage ua(s) to the speed ωM(s)

Gωu(s) =

kf
JLa

s2 +
Ra

La
s+

k2f
JLa

=
Kω2

0

s2 + 2ζω0s+ ω2
0

I Last form is a typical generic form of 2nd-order systems
I Undamped angular frequency, damping ratio, and DC gain

ω0 =
kf√
JLa

ζ =
Ra

2kf

√
J

La
K =

1

kf

You don’t need to remember these more complex transfer functions, but practise deriving them based on the block diagram instead. However, you
should remember the generic form used above.
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2nd-Order System in the Time Domain: Step Response

I 2nd-order system

G(s) =
y(s)

u(s)

=
Kω2

0

s2 + 2ζω0s+ ω2
0

I Response y(t) to the
step input u(t) is shown

I No overshoot if ζ ≥ 1

y/K

π 2π 3π 4π

1

0.5

0
0

1.5

2
ζ=0

ζ=0.2

ζ=0.7

ζ=1

ζ=2

ω0t (rad)

Step responses can be easily plotted using numerical simulation tools. If needed, an analytical solution could be obtained using the inverse
Laplace transformation.
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2nd-Order System in the Frequency Domain
I 2nd-order system

G(s) =
Kω2

0

s2 + 2ζω0s+ ω2
0

I Consider a sinusoidal input

u(t) = U sin(ωt)

I For ζ > 0, the output in
steady state is

y(t) = AU sin(ωt+ φ)

where

A = |G(jω)| φ = G(jω)

|G(jω)|
K

0
ω/ω0

2.5

2

1.5

1

0.5

10.1 100.01 100

ζ=0
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ζ=1

ζ=2
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Transfer Function From ua(s) to ia(s)

I Transfer function from the voltage ua(s) to the current ia(s)

Giu(s) =
s/La

s2 +
Ra

La
s+

k2f
JLa

I Characteristic polynomial remains the same
(holds also for other transfer functions of the system)

I Zero at s = 0 in this transfer function
I If J →∞ (i.e. ωM is constant)

Giu(s) =
1

sLa +Ra
= Ya(s)
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State-Variable Form

I State-variable model consists of coupled 1st-order differential equations
I Derivatives dx/dt depend on the states x and the system input u

dx

dt
= Ax + Bu

y = Cx

I States x depend on the history, but not on the present values of the inputs
I Output y depends only on the states (in physical systems)
I State variables are typically associated with the energy storage

I Current i of an inductor (or its flux linkage ψ = Li)
I Voltage u of a capacitor (or its charge q = Cu)
I Speed v of a mass (or its momentum p = mv)

I Choice of state variables is not unique (as shown in the parenthesis above)
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State-Variable Form of the DC Motor

d

dt

[
ia
ωM

]
︸ ︷︷ ︸

x

=

[
−Ra

La
− kf

La
kf
J 0

]
︸ ︷︷ ︸

A

[
ia
ωM

]
+

[ 1
La

0

]
︸ ︷︷ ︸
Bu

ua +

[
0
− 1

J

]
︸ ︷︷ ︸
BT

TL

ia =
[
1 0

]︸ ︷︷ ︸
Ci

x ωM =
[
0 1

]︸ ︷︷ ︸
Cω

x

I Transfer function from ua(s) to ωM(s) as an example

Gωu(s) = Cω(sI −A)−1Bu

I Transfer functions of the system are unique, i.e. the state-variable form leads
to the previous transfer functions

I Poles of the transfer function are eigenvalues of the system matrix A
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Outline

Dynamic Model of the DC Motor

Simulation Examples

Time-Scale Separation
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Time-Domain Simulation Examples

Rated values of a small PM DC motor
I Armature voltage UN = 110 V
I Armature current IN = 10 A
I Rotation speed nN = 1200 r/min

I Angular speed

ωN = 2πnN

= 2π · 1200 r/min
60 s/min

= 125.7 rad/s

Electrical parameters
I Ra = 0.5 Ω

I La = 1 mH
I kf = 0.836 Vs

Two inertia values
I Case 1: J = 0.05 kgm2

(ζ = 2.11, ω0 = 118 rad/s)
I Case 2: J = 0.005 kgm2

(ζ = 0.67, ω0 = 374 rad/s)
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Voltage-Step Response

I Armature is connected to the
rated voltage

I Load torque is zero
I Current rises quickly and then

decreases as the back-emf
ea = kfωM increases

I Very large current peak is
undesirable
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Load-Torque-Step Response

I Armature voltage is constant
(rated)

I Initially no-load condition
I Rated load torque is applied at
t = 0.01 s

t (s)
0

ia (A)
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Time-Scale Separation
I When considering the slow mechanical dynamics, the quickly converging

electrical dynamics may be approximated with the DC gain

ua

ea

ia
kf

1

sJ

TL

TM ωM

kf

1

Ra

I When considering the fast electrical dynamics, the slowly varying rotor speed
may be assumed to be constant

ea = constant

ua ia1

sLa +Ra
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Reduced-Order Model for Slow Mechanical Dynamics

I Response to the rated
voltage step

I Electrical dynamics are
approximated with the
steady-state gain

I Response of the
reduced-order model is
close to the full-order model
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Reduced-Order Model for Fast Electrical Dynamics

I Response to the rated
voltage step

I Speed is assumed to be
constant

I Fast electrical transient is
well modelled using the
first-order model Ya(s)

I Notice a different scale of
the time axes compared to
the previous case
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