A"

Aalto University School of Electrical Engineering

Lecture 10: Field-Oriented Control ELEC-E8405 Electric Drives (5 ECTS)

Marko Hinkkanen

Autumn 2020

Learning Outcomes

After this lecture and exercises you will be able to:

- Explain the basic principles of field-oriented control of a permanent-magnet synchronous motor
- Draw and explain the block diagram of field-oriented control
- Calculate the operating points of the motor in rotor coordinates

Outline

3-Phase Inverter

Field-Oriented Control

Current and Voltage Limits

3-Phase Inverter

DC-DC Converter vs. 3-Phase Inverter

Space Vector of the Converter Output Voltages

- Zero-sequence voltage does not affect the phase currents
- Reference potential of the phase voltages can be freely chosen

$$\begin{split} \underline{u}_{\rm s}^{\rm s} &= \frac{2}{3} \left(u_{\rm an} + u_{\rm bn} {\rm e}^{{\rm j}2\pi/3} + u_{\rm cn} {\rm e}^{{\rm j}4\pi/3} \right) & {\rm Neutral \ n \ as \ a \ reference} \\ &= \frac{2}{3} \left(u_{\rm aN} + u_{\rm bN} {\rm e}^{{\rm j}2\pi/3} + u_{\rm cN} {\rm e}^{{\rm j}4\pi/3} \right) & {\rm Negative \ DC \ bus \ N \ as \ a \ reference} \end{split}$$

Converter output voltage vector

$$\underline{u}_{\rm s}^{\rm s} = \frac{2}{3} \left(u_{\rm aN} + u_{\rm bN} e^{j2\pi/3} + u_{\rm cN} e^{j4\pi/3} \right)$$
$$= \frac{2}{3} \left(q_{\rm a} + q_{\rm b} e^{j2\pi/3} + q_{\rm c} e^{j4\pi/3} \right) U_{\rm dc}$$

where $q_{\rm abc}$ are the switching states (either 0 or 1)

• Vector (1,0,0) as an example

$$\underline{u}_{\rm s}^{\rm s} = \frac{2U_{\rm dc}}{3}$$

Switching-Cycle Averaged Voltage

Using PWM, any voltage vector inside the voltage hexagon can be produced in average over the switching period

$$\underline{\overline{u}}_{s}^{s} = \frac{2}{3} \left(d_{a} + d_{b} e^{j2\pi/3} + d_{c} e^{j4\pi/3} \right) U_{dc}$$

where $d_{\rm abc}$ are the duty ratios (between 0...1)

- Maximum magnitude of the voltage vector is $u_{\text{max}} = U_{\text{dc}}/\sqrt{3}$ in linear modulation (the circle inside the hexagon)
- PWM can be implemented using the carrier comparison
- Only switching-cycle averaged quantities will be needed in the following (overlining will be omitted for simplicity)

The 3-phase PWM and the space-vector current controller can be realized using similar techniques as we used in connection with the DC-DC converters and the DC motors, respectively. However, details of these methods are out of the scope of this course.

Outline

3-Phase Inverter

Field-Oriented Control

Current and Voltage Limits

Permanent-Magnet Synchronous Motor

- Current distribution produced by the 3-phase winding is illustrated in the figure
- Torque is constant only if the supply frequency equals the electrical rotor speed $\omega_{\rm m} = {\rm d}\vartheta_{\rm m}/{\rm d}t$
- For controlling the torque, the current distribution has to be properly placed in relation to the rotor
- Rotor position has to be measured (or estimated)

Field-Oriented Control

- Resembles cascaded control of DC motors
- Automatically synchronises the supply frequency with the rotating rotor field
- Torque can be controlled simply via i_q in rotor coordinates
- Field-oriented control of other AC motors is quite similar to that of a surface-mounted permanent-magnet synchronous motor considered in these lectures

Synchronous Motor Model in Rotor Coordinates

Stator voltage

$$\underline{u}_{\rm s} = R_{\rm s}\underline{i}_{\rm s} + \frac{\mathrm{d}\underline{\psi}_{\rm s}}{\mathrm{d}t} + \mathrm{j}\omega_{\rm m}\underline{\psi}_{\rm s}$$

Stator flux linkage

$$\underline{\psi}_{\rm s} = L_{\rm s}\underline{i}_{\rm s} + \psi_{\rm f}$$

Torque is proportional to the q component of the current

$$T_{\rm M} = \frac{3p}{2} \operatorname{Im} \left\{ \underline{i}_{\rm s} \underline{\psi}_{\rm s}^* \right\} = \frac{3p}{2} \psi_{\rm f} i_{\rm q}$$

Space-Vector and Coordinate Transformations

• Space-vector transformation (abc/ $\alpha\beta$)

$$\underline{i}_{\rm s}^{\rm s} = \frac{2}{3} \left(i_{\rm a} + i_{\rm b} {\rm e}^{{\rm j} 2\pi/3} + i_{\rm c} {\rm e}^{{\rm j} 4\pi/3} \right)$$

• Transformation to rotor coordinates ($\alpha\beta/dq$)

$$\underline{i}_{\rm s} = \underline{i}_{\rm s}^{\rm s} {\rm e}^{-{\rm j}\vartheta_{\rm n}}$$

- Combination of these two transformations is often referred to as an abc/dq transformation
- Similarly, the inverse transformation is referred to as a dq/abc transformation

Fast Current Controller in Rotor Coordinates

- Absolute rotor position ϑ_{M} has to be measured (or estimated)
- Current reference $\underline{i}_{s,ref} = i_{d,ref} + ji_{q,ref}$ is calculated in rotor coordinates

The current controller could consist, for example, of two similar real-valued PI-type controllers (one for i_d and another for i_q).

Field-Oriented Controller

- Control principle $i_{d,ref} = 0$ minimises the resistive losses
- Speed controller is not needed in some applications

Outline

3-Phase Inverter

Field-Oriented Control

Current and Voltage Limits

Stator Voltage

- ► In steady state, d/dt = 0 holds in rotor coordinates
- Steady-state stator voltage

$$\begin{split} \underline{u}_{\mathrm{s}} &= \mathrm{j}\omega_{\mathrm{m}}\underline{\psi}_{\mathrm{s}} \\ &= \mathrm{j}\omega_{\mathrm{m}}(L_{\mathrm{s}}\underline{i}_{\mathrm{s}} + \psi_{\mathrm{f}}) \\ &= \mathrm{j}\omega_{\mathrm{m}}(L_{\mathrm{s}}i_{\mathrm{d}} + \psi_{\mathrm{f}} + \mathrm{j}L_{\mathrm{s}}i_{\mathrm{q}}) \end{split}$$

when $R_{\rm s}=0$ is assumed

- Voltage increases with the speed
- ► Maximum voltage magnitude u_{max} is limited by the DC-bus voltage U_{dc}

Field Weakening Above the Base Speed

If a synchronous machine had a field winding instead of the permanent magnets, ψ_{f} could also be varied.

Current Limit

Current limit

$$i_{\rm s}^2 = i_{\rm d}^2 + i_{\rm q}^2 \le i_{\rm max}^2$$

- ► Example figure
 - Rated motor current i_N
 - Maximum converter current is assumed to be 1.5i_N
- Motor tolerates short-time overload currents due to its longer thermal time constant

Voltage Limit

Voltage limit

$$u_{\rm s}^2 = \omega_{\rm m}^2 \psi_{\rm s}^2 \le u_{\rm max}^2$$

can be represented as a speed-dependent stator-flux limit

$$\psi_{\rm s}^2 = (L_{\rm s}i_{\rm d} + \psi_{\rm f})^2 + (L_{\rm s}i_{\rm q})^2 \le \frac{u_{\rm max}^2}{\omega_{\rm m}^2}$$

 Example figure: current loci at two different speeds as the torque varies

Summary of Control Principles

Control principle below the base speed

$$i_{
m d,ref}=0$$
 and $i_{
m q,ref}=rac{2T_{
m M,ref}}{3p\psi_{
m f}}$

- Field weakening ($i_d < 0$) can be used to reach higher speeds
 - ► Nonzero $i_{\rm d}$ causes losses $(3/2)R_{\rm s}i_{\rm d}^2$
 - Risk of overvoltages if the current control is lost
 - Risk of demagnetizing the permanent magnets in some machines
- Current and voltage limits have to be taken into account